Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 315
Filtrar
1.
Microb Cell Fact ; 23(1): 135, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735926

RESUMO

Biotin, serving as a coenzyme in carboxylation reactions, is a vital nutrient crucial for the natural growth, development, and overall well-being of both humans and animals. Consequently, biotin is widely utilized in various industries, including feed, food, and pharmaceuticals. Despite its potential advantages, the chemical synthesis of biotin for commercial production encounters environmental and safety challenges. The burgeoning field of synthetic biology now allows for the creation of microbial cell factories producing bio-based products, offering a cost-effective alternative to chemical synthesis for biotin production. This review outlines the pathway and regulatory mechanism involved in biotin biosynthesis. Then, the strategies to enhance biotin production through both traditional chemical mutagenesis and advanced metabolic engineering are discussed. Finally, the article explores the limitations and future prospects of microbial biotin production. This comprehensive review not only discusses strategies for biotin enhancement but also provides in-depth insights into systematic metabolic engineering approaches aimed at boosting biotin production.


Assuntos
Biotina , Engenharia Metabólica , Biotina/biossíntese , Biotina/metabolismo , Engenharia Metabólica/métodos , Biologia Sintética/métodos
2.
mBio ; 15(5): e0341423, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38572988

RESUMO

Acetyl-CoA carboxylases (ACCs) convert acetyl-CoA to malonyl-CoA, a key step in fatty acid biosynthesis and autotrophic carbon fixation pathways. Three functionally distinct components, biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), and carboxyltransferase (CT), are either separated or partially fused in different combinations, forming heteromeric ACCs. However, an ACC with fused BC-BCCP and separate CT has not been identified, leaving its catalytic mechanism unclear. Here, we identify two BC isoforms (BC1 and BC2) from Chloroflexus aurantiacus, a filamentous anoxygenic phototroph that employs 3-hydroxypropionate (3-HP) bi-cycle rather than Calvin cycle for autotrophic carbon fixation. We reveal that BC1 possesses fused BC and BCCP domains, where BCCP could be biotinylated by E. coli or C. aurantiacus BirA on Lys553 residue. Crystal structures of BC1 and BC2 at 3.2 Å and 3.0 Å resolutions, respectively, further reveal a tetramer of two BC1-BC homodimers, and a BC2 homodimer, all exhibiting similar BC architectures. The two BC1-BC homodimers are connected by an eight-stranded ß-barrel of the partially resolved BCCP domain. Disruption of ß-barrel results in dissociation of the tetramer into dimers in solution and decreased biotin carboxylase activity. Biotinylation of the BCCP domain further promotes BC1 and CTß-CTα interactions to form an enzymatically active ACC, which converts acetyl-CoA to malonyl-CoA in vitro and produces 3-HP via co-expression with a recombinant malonyl-CoA reductase in E. coli cells. This study revealed a heteromeric ACC that evolves fused BC-BCCP but separate CTα and CTß to complete ACC activity.IMPORTANCEAcetyl-CoA carboxylase (ACC) catalyzes the rate-limiting step in fatty acid biosynthesis and autotrophic carbon fixation pathways across a wide range of organisms, making them attractive targets for drug discovery against various infections and diseases. Although structural studies on homomeric ACCs, which consist of a single protein with three subunits, have revealed the "swing domain model" where the biotin carboxyl carrier protein (BCCP) domain translocates between biotin carboxylase (BC) and carboxyltransferase (CT) active sites to facilitate the reaction, our understanding of the subunit composition and catalytic mechanism in heteromeric ACCs remains limited. Here, we identify a novel ACC from an ancient anoxygenic photosynthetic bacterium Chloroflexus aurantiacus, it evolves fused BC and BCCP domain, but separate CT components to form an enzymatically active ACC, which converts acetyl-CoA to malonyl-CoA in vitro and produces 3-hydroxypropionate (3-HP) via co-expression with recombinant malonyl-CoA reductase in E. coli cells. These findings expand the diversity and molecular evolution of heteromeric ACCs and provide a structural basis for potential applications in 3-HP biosynthesis.


Assuntos
Acetil-CoA Carboxilase , Carbono-Nitrogênio Ligases , Chloroflexus , Acetil-CoA Carboxilase/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/química , Carbono-Nitrogênio Ligases/metabolismo , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/química , Chloroflexus/genética , Chloroflexus/metabolismo , Chloroflexus/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Biotina/metabolismo , Biotina/biossíntese , Malonil Coenzima A/metabolismo , Acetilcoenzima A/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Ácido Graxo Sintase Tipo II
3.
Chembiochem ; 23(17): e202200171, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35695820

RESUMO

The carbon backbone of biotin is constructed from the C7 di-acid pimelate, which is converted to an acyl-CoA thioester by an ATP-dependent, pimeloyl-CoA synthetase (PCAS, encoded by BioW). The acyl-thioester is condensed with ʟ-alanine in a decarboxylative, Claisen-like reaction to form an aminoketone (8-amino-7-oxononanoic acid, AON). This step is catalysed by the pyridoxal 5'-phosphate (PLP)-dependent enzyme (AON synthase, AONS, encoded by BioF). Distinct versions of Bacillus subtilis BioW (BsBioW) and E. coli BioF (EcBioF) display strict substrate specificity. In contrast, a BioW-BioF fusion from Corynebacterium amycolatum (CaBioWF) accepts a wider range of mono- and di-fatty acids. Analysis of the active site of the BsBioW : pimeloyl-adenylate complex suggested a key role for a Phe (F192) residue in the CaBioW domain; a F192Y mutant restored the substrate specificity to pimelate. This surprising substrate flexibility also extends to the CaBioF domain, which accepts ʟ-alanine, ʟ-serine and glycine. Structural models of the CaBioWF fusion provide insight into how both domains interact with each other and suggest the presence of an intra-domain tunnel. The CaBioWF fusion catalyses conversion of various fatty acids and amino acids to a range of AON derivatives. Such unexpected, natural broad substrate scope suggests that the CaBioWF fusion is a versatile biocatalyst that can be used to prepare a number of aminoketone analogues.


Assuntos
Proteínas de Bactérias , Biotina , Coenzima A Ligases , Acil Coenzima A/metabolismo , Alanina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biotina/biossíntese , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Escherichia coli/metabolismo , Ácidos Graxos/metabolismo , Fosfato de Piridoxal/metabolismo , Especificidade por Substrato
4.
Mol Microbiol ; 116(5): 1315-1327, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34597430

RESUMO

Biotin is an essential metabolic cofactor and de novo biotin biosynthetic pathways are widespread in microorganisms and plants. Biotin synthetic genes are generally found clustered into bio operons to facilitate tight regulation since biotin synthesis is a metabolically expensive process. Dethiobiotin synthetase (DTBS) catalyzes the penultimate step of biotin biosynthesis, the formation of 7,8-diaminononanoate (DAPA). In Escherichia coli, DTBS is encoded by the bio operon gene bioD. Several studies have reported transcriptional activation of ynfK a gene of unknown function, under anaerobic conditions. Alignments of YnfK with BioD have led to suggestions that YnfK has DTBS activity. We report that YnfK is a functional DTBS, although an enzyme of poor activity that is poorly expressed. Supplementation of growth medium with DAPA or substitution of BioD active site residues for the corresponding YnfK residues greatly improved the DTBS activity of YnfK. We confirmed that FNR activates transcriptional level of ynfK during anaerobic growth and identified the FNR binding site of ynfK. The ynfK gene is well conserved in γ-proteobacteria.


Assuntos
Biotina/biossíntese , Biotina/genética , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Sequência de Aminoácidos , Diamino Aminoácidos/metabolismo , Anaerobiose , Sítios de Ligação , Vias Biossintéticas , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Ferro-Enxofre/metabolismo , Óperon , Filogenia
5.
Plant J ; 107(5): 1283-1298, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34250670

RESUMO

Cadaverine, a polyamine, has been linked to modification of root growth architecture and response to environmental stresses in plants. However, the molecular mechanisms that govern the regulation of root growth by cadaverine are largely unexplored. Here we conducted a forward genetic screen and isolated a mutation, cadaverine hypersensitive 3 (cdh3), which resulted in increased root-growth sensitivity to cadaverine, but not other polyamines. This mutation affects the BIO3-BIO1 biotin biosynthesis gene. Exogenous supply of biotin and a pathway intermediate downstream of BIO1, 7,8-diaminopelargonic acid, suppressed this cadaverine sensitivity phenotype. An in vitro enzyme assay showed cadaverine inhibits the BIO3-BIO1 activity. Furthermore, cadaverine-treated seedlings displayed reduced biotinylation of Biotin Carboxyl Carrier Protein 1 of the acetyl-coenzyme A carboxylase complex involved in de novo fatty acid biosynthesis, resulting in decreased accumulation of triacylglycerides. Taken together, these results revealed an unexpected role of cadaverine in the regulation of biotin biosynthesis, which leads to modulation of primary root growth of plants.


Assuntos
Acetil-CoA Carboxilase/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Biotina/biossíntese , Cadaverina/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Transaminases/metabolismo , Acetil-CoA Carboxilase/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Biotinilação , Carbono-Nitrogênio Ligases/genética , Ácido Graxo Sintase Tipo II/genética , Ácido Graxo Sintase Tipo II/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Transaminases/genética
6.
J Bacteriol ; 203(15): e0018121, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-33972354

RESUMO

Biotin is essential for the growth and pathogenicity of microorganisms. Damage to biotin biosynthesis results in impaired bacterial growth and decreased virulence in vivo. However, the mechanisms of biotin biosynthesis in Riemerella anatipestifer remain unclear. In this study, two R. anatipestifer genes associated with biotin biosynthesis were identified. AS87_RS05840 encoded a BirA protein lacking the N-terminal winged helix-turn-helix DNA binding domain, identifying it as a group I biotin protein ligase, and AS87_RS09325 encoded a BioX protein, which was in the helix-turn-helix xenobiotic response element family of transcription factors. Electrophoretic mobility shift assays demonstrated that BioX bound to the promoter region of bioF. In addition, the R. anatipestifer genes bioF (encoding 7-keto-8-aminopelargonic acid synthase), bioD (encoding dethiobiotin synthase), and bioA (encoding 7,8-diaminopelargonic acid synthase) were in an operon and were regulated by BioX. Quantitative reverse transcription-PCR showed that transcription of the bioFDA operon increased in the mutant Yb2ΔbioX in the presence of excessive biotin, compared with that in the wild-type strain Yb2, suggesting that BioX acted as a repressor of biotin biosynthesis. Streptavidin blot analysis showed that BirA caused biotinylation of BioX, indicating that biotinylated BioX was involved in metabolic pathways. Moreover, as determined by the median lethal dose, the virulence of Yb2ΔbioX was attenuated 500-fold compared with that of Yb2. To summarize, the genes birA and bioX were identified in R. anatipestifer, and BioX was found to act as a repressor of the bioFDA operon involved in the biotin biosynthesis pathway and identified as a bacterial virulence factor. IMPORTANCE Riemerella anatipestifer is a causative agent of diseases in ducks, geese, turkeys, and various other domestic and wild birds. Our study reveals that biotin synthesis of R. anatipestifer is regulated by the BioX through binding to the promoter region of the bioF gene to inhibit transcription of the bioFDA operon. Moreover, bioX is required for R. anatipestifer pathogenicity, suggesting that BioX is a potential target for treatment of the pathogen. R. anatipestifer BioX has thus been identified as a novel negative regulator involved in biotin metabolism and associated with bacterial virulence in this study.


Assuntos
Proteínas de Bactérias/metabolismo , Biotina/biossíntese , Infecções por Flavobacteriaceae/veterinária , Regulação Bacteriana da Expressão Gênica , Doenças das Aves Domésticas/microbiologia , Riemerella/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Patos , Infecções por Flavobacteriaceae/microbiologia , Gansos , Óperon , Regiões Promotoras Genéticas , Conformação Proteica em alfa-Hélice , Riemerella/genética , Riemerella/patogenicidade , Fatores de Transcrição/química , Fatores de Transcrição/genética , Perus , Virulência
7.
Mol Microbiol ; 116(2): 648-662, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34028100

RESUMO

Group I biotin protein ligases (BPLs) catalyze the covalent attachment of biotin to its cognate acceptor proteins. In contrast, Group II BPLs have an additional N-terminal DNA-binding domain and function not only in biotinylation but also in transcriptional regulation of genes of biotin biosynthesis and transport. Most bacteria contain only a single biotin protein ligase, whereas Clostridium acetobutylicum contains two biotin protein ligase homologs: BplA and BirA'. Sequence alignments showed that BplA is a typical group I BPL, whereas BirA' lacked the C-terminal domain conserved throughout extant BPL proteins. This raised the questions of why two BPL homologs are needed and why the apparently defective BirA' has been retained. We have used in vivo and in vitro assays to show that BplA is a functional BPL whereas BirA' acts as a biotin sensor involved in transcriptional regulation of biotin transport. We also successfully converted BirA' into a functional biotin protein ligase with regulatory activity by fusing it to the C-terminal domain from BplA. Finally, we provide evidence that BplA and BirA' interact in vivo.


Assuntos
Biotina/metabolismo , Biotinilação/fisiologia , Carbono-Nitrogênio Ligases/metabolismo , Clostridium acetobutylicum/metabolismo , Transcrição Gênica/genética , Biotina/biossíntese , Carbono-Nitrogênio Ligases/genética , Clostridium acetobutylicum/genética , Regulação Bacteriana da Expressão Gênica/genética , Domínios e Motivos de Interação entre Proteínas/fisiologia
8.
Nat Commun ; 12(1): 2056, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824341

RESUMO

Biotin is an essential micro-nutrient across the three domains of life. The paradigm earlier step of biotin synthesis denotes "BioC-BioH" pathway in Escherichia coli. Here we report that BioZ bypasses the canonical route to begin biotin synthesis. In addition to its origin of Rhizobiales, protein phylogeny infers that BioZ is domesticated to gain an atypical role of ß-ketoacyl-ACP synthase III. Genetic and biochemical characterization demonstrates that BioZ catalyzes the condensation of glutaryl-CoA (or ACP) with malonyl-ACP to give 5'-keto-pimeloyl ACP. This intermediate proceeds via type II fatty acid synthesis (FAS II) pathway, to initiate the formation of pimeloyl-ACP, a precursor of biotin synthesis. To further explore molecular basis of BioZ activity, we determine the crystal structure of Agrobacterium tumefaciens BioZ at 1.99 Å, of which the catalytic triad and the substrate-loading tunnel are functionally defined. In particular, we localize that three residues (S84, R147, and S287) at the distant bottom of the tunnel might neutralize the charge of free C-carboxyl group of the primer glutaryl-CoA. Taken together, this study provides molecular insights into the BioZ biotin synthesis pathway.


Assuntos
Vias Biossintéticas , Biotina/biossíntese , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteína de Transporte de Acila/metabolismo , Acil Coenzima A/metabolismo , Agrobacterium/crescimento & desenvolvimento , Sequência de Aminoácidos , Biocatálise , Cristalografia por Raios X , Simulação de Acoplamento Molecular , Filogenia , Multimerização Proteica , Homologia Estrutural de Proteína , Especificidade por Substrato
9.
Biotechnol Lett ; 43(6): 1221-1228, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33666816

RESUMO

OBJECTIVE: To enhance biotin production in Escherichia coli by engineering a heterologous biotin synthetic pathway. RESULTS: Biotin operon genes from Pseudomonas putida, which consisted of a bioBFHCD cluster and a bioA gene, was engineered into Escherichia coli for biotin production. The introduction of bioW gene from Bacillus subtilis, encoding pimeloyl-CoA synthetase and sam2 gene from Saccharomyces cerevisiae, encoding S-adenosyl-L-methionine (SAM) synthetase contributed to the heterologous production of biotin in recombinant E. coli. Furthermore, biotin production was efficiently enhanced by optimization of the fermentation compositions, especially pimelic acid and L-methionine, the precursor related to the pimeloyl-CoA and SAM synthesis, respectively. The combination of overexpression of the heterologous biotin operon genes and enhanced supply of key intermediate pimeloyl-CoA and SAM increased biotin production in E. coli by more than 121-fold. With bioprocess engineering efforts, biotin was produced at a final titer of 92.6 mg/L in a shake flask and 208.7 mg/L in a fed-batch fermenter. CONCLUSION: Through introduction of heterologous biotin synthetic pathway, increasing the supply of precursor pimeloyl-CoA and cofactor SAM can significantly enhance biotin production in E. coli.


Assuntos
Bacillus subtilis/enzimologia , Vias Biossintéticas , Biotina/biossíntese , Escherichia coli/crescimento & desenvolvimento , Pseudomonas putida/enzimologia , Saccharomyces cerevisiae/enzimologia , Bacillus subtilis/genética , Técnicas de Cultura Celular por Lotes , Clonagem Molecular , Escherichia coli/genética , Fermentação , Engenharia Metabólica/métodos , Metionina/química , Óperon , Ácidos Pimélicos/química , Pseudomonas putida/genética , Saccharomyces cerevisiae/genética
10.
Org Lett ; 23(1): 37-41, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33284636

RESUMO

Alb29, an α-oxoamine synthase involved in albogrisin biosynthesis in Streptomyces albogriseolus MGR072, was characterized and responsible for the incorporation of l-glutamate to acyl-coenzyme A substrates. Combined with Alb29 and Mgr36 (an acyl-coenzyme A ligase), a one-pot enzymatic system was established to synthesize seven α-amino ketones. When these α-amino ketones were fed into the alb29 knockout strain Δalb29, respectively, the albogrisin analogs with different side chains were observed.


Assuntos
Acil Coenzima A/metabolismo , Biotina/biossíntese , Streptomyces/química , Acil Coenzima A/química , Sequência de Aminoácidos , Biotina/metabolismo , Cetonas/química , Estrutura Molecular
11.
Microbiol Res ; 241: 126566, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33032167

RESUMO

The tangerine pathotype of Alternaria alternata affects many citrus cultivars, resulting in yield losses. The capability to produce the host-selective toxin and cell-wall-degrading enzymes and to mitigate toxic reactive oxygen species is crucial for A. alternata pathogenesis to citrus. Little is known about nutrient availability within citrus tissues to the fungal pathogen. In the present study, we assess the infectivity of a biotin deficiency mutant (ΔbioB) and a complementation strain (CP36) on citrus leaves to determine how biotin impacts A. alternata pathogenesis. Growth and sporulation of ΔbioB are highly dependent on biotin. ΔbioB retains its ability to acquire and transport biotin from the surrounding environment. Growth deficiency of ΔbioB can also be partially restored by the presence of oleic acid or Tween 20, suggesting the requirement of biotin in lipid metabolism. Experimental evidence indicates that de novo biotin biosynthesis is regulated by the NADPH oxidase, implicating in the production of H2O2, and is affected by the function of peroxisomes. Three genes involved in the biosynthesis of biotin are clustered and co-regulated by biotin indicating a transcriptional feedback loop activation. Infectivity assays using fungal mycelium reveal that ΔbioB cultured on medium without biotin fails to infect citrus leaves; co-inoculation with biotin fully restores infectivity. The CP36 strain re-expressing a functional copy of bioB displays wild-type growth, sporulation and virulence. Taken together, we conclude that the attainability or accessibility of biotin is extremely restricted in citrus cells. A. alternata must be able to synthesize biotin in order to utilize nutrients for growth, colonization and development within the host.


Assuntos
Alternaria/metabolismo , Alternaria/patogenicidade , Biotina/biossíntese , Citrus/microbiologia , Esporos Fúngicos/crescimento & desenvolvimento , Alternaria/genética , Biotina/deficiência , Biotina/genética , Metabolismo dos Lipídeos/fisiologia , NADPH Oxidases/metabolismo , Ácido Oleico/metabolismo , Peroxissomos/metabolismo , Doenças das Plantas/microbiologia , Polissorbatos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
12.
Proc Natl Acad Sci U S A ; 117(38): 23794-23801, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32900960

RESUMO

Biotin plays an essential role in growth of mycobacteria. Synthesis of the cofactor is essential for Mycobacterium tuberculosis to establish and maintain chronic infections in a murine model of tuberculosis. Although the late steps of mycobacterial biotin synthesis, assembly of the heterocyclic rings, are thought to follow the canonical pathway, the mechanism of synthesis of the pimelic acid moiety that contributes most of the biotin carbon atoms is unknown. We report that the Mycobacterium smegmatis gene annotated as encoding Tam, an O-methyltransferase that monomethylates and detoxifies trans-aconitate, instead encodes a protein having the activity of BioC, an O-methyltransferase that methylates the free carboxyl of malonyl-ACP. The M. smegmatis Tam functionally replaced Escherichia coli BioC both in vivo and in vitro. Moreover, deletion of the M. smegmatis tam gene resulted in biotin auxotrophy, and addition of biotin to M. smegmatis cultures repressed tam gene transcription. Although its pathogenicity precluded in vivo studies, the M. tuberculosis Tam also replaced E. coli BioC both in vivo and in vitro and complemented biotin-independent growth of the M. smegmatis tam deletion mutant strain. Based on these data, we propose that the highly conserved mycobacterial tam genes be renamed bioCM. tuberculosis BioC presents a target for antituberculosis drugs which thus far have been directed at late reactions in the pathway with some success.


Assuntos
Biotina/biossíntese , Mycobacterium smegmatis , Mycobacterium tuberculosis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli , Redes e Vias Metabólicas , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteína O-Metiltransferase
13.
Probiotics Antimicrob Proteins ; 12(4): 1439-1450, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32462507

RESUMO

Several species of eukaryotic organisms living in the high mountain areas of Armenia with naturally occurring levels of radiation have high adaptive responses to radiation. We speculate on the role of the gastrointestinal microbiota in this protection against radiation. Therefore, seventeen microorganisms with high antagonistic activities against several multi-drug-resistant pathogens were isolated from the human and animal gut microbiota, as well as from traditional Armenian fermented products. These strains were tested in vivo on Wistar rats to determine their ability to protect the eukaryotic host against radiation damages. The efficiency of the probiotics' application and the dependence on pre- and post-radiation nutrition of rats were described. The effects of Lactobacillus rhamnosus Vahe, isolated from a healthy breastfed infant, and Lactobacillus delbrueckii IAHAHI, isolated from the fermented dairy product matsuni, on the survival of irradiated rats, and their blood leucocyte and glucose levels, were considered to be the most promising, based on this study's results.


Assuntos
Microbioma Gastrointestinal/fisiologia , Lacticaseibacillus rhamnosus/metabolismo , Lactobacillus delbrueckii/metabolismo , Probióticos/farmacologia , Lesões por Radiação/prevenção & controle , Tolerância a Radiação/efeitos dos fármacos , Animais , Biotina/biossíntese , Produtos Fermentados do Leite , Ácido Fólico/biossíntese , Humanos , Lactobacillus delbrueckii/crescimento & desenvolvimento , Lacticaseibacillus rhamnosus/crescimento & desenvolvimento , Contagem de Leucócitos , Masculino , Estado Nutricional/fisiologia , Estado Nutricional/efeitos da radiação , Doses de Radiação , Lesões por Radiação/metabolismo , Lesões por Radiação/microbiologia , Lesões por Radiação/mortalidade , Tolerância a Radiação/fisiologia , Radiometria , Ratos , Ratos Wistar , Riboflavina/biossíntese , Análise de Sobrevida , Vitamina B 6/biossíntese , Irradiação Corporal Total , Raios X
14.
Metab Eng ; 60: 97-109, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32220614

RESUMO

Biotin, thiamine, and lipoic acid are industrially important molecules naturally synthesized by microorganisms via biosynthetic pathways requiring iron-sulfur (FeS) clusters. Current production is exclusively by chemistry because pathway complexity hinders development of fermentation processes. For biotin, the main bottleneck is biotin synthase, BioB, a S-adenosyl methionine-dependent radical enzyme that converts dethiobiotin (DTB) to biotin. BioB overexpression is toxic, though the mechanism remains unclear. We identified single mutations in the global regulator IscR that substantially improve cellular tolerance to BioB overexpression, increasing Escherichia coli DTB-to-biotin biocatalysis by more than 2.2-fold. Based on proteomics and targeted overexpression of FeS-cluster biosynthesis genes, FeS-cluster depletion is the main reason for toxicity. We demonstrate that IscR mutations significantly affect cell viability and improve cell factories for de novo biosynthesis of thiamine by 1.3-fold and lipoic acid by 1.8-fold. We illuminate a novel engineering target for enhancing biosynthesis of complex FeS-cluster-dependent molecules, paving the way for industrial fermentation processes.


Assuntos
Biotina/biossíntese , Proteínas de Escherichia coli/genética , Engenharia Metabólica/métodos , Tiamina/biossíntese , Ácido Tióctico/biossíntese , Fatores de Transcrição/genética , Biotina/análogos & derivados , Biotina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Proteínas Ferro-Enxofre/metabolismo , Modelos Moleculares , Proteômica , Sulfurtransferases/metabolismo
15.
Nat Chem Biol ; 16(4): 415-422, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32042199

RESUMO

In biotin biosynthesis, the conversion of pimeloyl intermediates to biotin is catalyzed by a universal set of four enzymes: BioF, BioA, BioD and BioB. We found that the gene homologous to bioA, the product of which is involved in the conversion of 8-amino-7-oxononanoate (AON) to 7,8-diaminononanoate (DAN), is missing in the genome of the cyanobacterium Synechocystis sp. PCC 6803. We provide structural and biochemical evidence showing that a novel dehydrogenase, BioU, is involved in biotin biosynthesis and functionally replaces BioA. This enzyme catalyzes three reactions: formation of covalent linkage with AON to yield a BioU-DAN conjugate at the ε-amino group of Lys124 of BioU using NAD(P)H, carboxylation of the conjugate to form BioU-DAN-carbamic acid, and release of DAN-carbamic acid using NAD(P)+. In this biosynthetic pathway, BioU is a suicide enzyme that loses the Lys124 amino group after a single round of reaction.


Assuntos
Biotina/biossíntese , Oxirredutases/ultraestrutura , Synechocystis/metabolismo , Sequência de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Diamino Aminoácidos/química , Diamino Aminoácidos/metabolismo , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Biotina/metabolismo , Catálise , Clonagem Molecular , Cianobactérias/genética , Cianobactérias/metabolismo , DNA Bacteriano/metabolismo , Escherichia coli/metabolismo , Genes Bacterianos , Oxirredutases/metabolismo , Synechocystis/genética , Transaminases/metabolismo
16.
Yeast ; 37(4): 283-304, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31972058

RESUMO

Chemically defined media for yeast cultivation (CDMY) were developed to support fast growth, experimental reproducibility, and quantitative analysis of growth rates and biomass yields. In addition to mineral salts and a carbon substrate, popular CDMYs contain seven to nine B-group vitamins, which are either enzyme cofactors or precursors for their synthesis. Despite the widespread use of CDMY in fundamental and applied yeast research, the relation of their design and composition to the actual vitamin requirements of yeasts has not been subjected to critical review since their first development in the 1940s. Vitamins are formally defined as essential organic molecules that cannot be synthesized by an organism. In yeast physiology, use of the term "vitamin" is primarily based on essentiality for humans, but the genome of the Saccharomyces cerevisiae reference strain S288C harbours most of the structural genes required for synthesis of the vitamins included in popular CDMY. Here, we review the biochemistry and genetics of the biosynthesis of these compounds by S. cerevisiae and, based on a comparative genomics analysis, assess the diversity within the Saccharomyces genus with respect to vitamin prototrophy.


Assuntos
Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vitaminas/biossíntese , Biomassa , Biotina/biossíntese , Inositol/biossíntese , Niacina/biossíntese , Ácido Pantotênico/biossíntese , Piridoxina/biossíntese , Reprodutibilidade dos Testes , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tiamina/biossíntese
17.
Metab Eng ; 61: 406-415, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31085296

RESUMO

Biotin (Vitamin H or B7) is one of the most important cofactors involved in central metabolism of pro- and eukaryotic cells. Currently, chemical synthesis is the only route for commercial production. This study reports efficient microbial production of biotin in Pseudomonas mutabilis via multi-level metabolic engineering strategies: Level 1, overexpressing rate-limiting enzyme encoding genes involved in biotin synthesis (i.e. promoter and ribosome binding site engineering); Level 2, deregulating biotin biosynthesis (i.e. deletion of the negative regulator and the biotin importer genes); Level 3, enhancing the supply of co-factors (i.e. S-adenosyl-L-methionine and [Fe-S] cluster) for biotin biosynthesis; Level 4, increasing the availability of the precursor pimelate thioester (i.e. introduction of the BioW-BioI pathway from Bacillus subtilis). The combination of these interventions resulted in the establishment of a biotin overproducing strain, with the secretion of biotin increased for more than 460-fold. In combination with bioprocess engineering efforts, biotin was produced at a final titer of 87.17 mg/L in a shake flask and 271.88 mg/L in a fed-batch fermenter with glycerol as the carbon source. This is the highest biotin titer ever reported so far using rationally engineered microbial cell factories.


Assuntos
Biotina , Engenharia Metabólica , Pseudomonas , Biotina/biossíntese , Biotina/genética , Pseudomonas/genética , Pseudomonas/metabolismo
18.
Nat Microbiol ; 5(1): 93-101, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31659298

RESUMO

To revitalize the antibiotic pipeline, it is critical to identify and validate new antimicrobial targets1. In Mycobacteria tuberculosis and Francisella tularensis, biotin biosynthesis is a key fitness determinant during infection2-5, making it a high-priority target. However, biotin biosynthesis has been overlooked for priority pathogens such as Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa. This can be attributed to the lack of attenuation observed for biotin biosynthesis genes during transposon mutagenesis studies in mouse infection models6-9. Previous studies did not consider the 40-fold higher concentration of biotin in mouse plasma compared to human plasma. Here, we leveraged the unique affinity of streptavidin to develop a mouse infection model with human levels of biotin. Our model suggests that biotin biosynthesis is essential during infection with A. baumannii, K. pneumoniae and P. aeruginosa. Encouragingly, we establish the capacity of our model to uncover in vivo activity for the biotin biosynthesis inhibitor MAC13772. Our model addresses the disconnect in biotin levels between humans and mice, and explains the failure of potent biotin biosynthesis inhibitors in standard mouse infection models.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Biotina/biossíntese , Farmacorresistência Bacteriana/efeitos dos fármacos , Animais , Antibacterianos/química , Antibacterianos/uso terapêutico , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Infecções Bacterianas/sangue , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biotina/sangue , Modelos Animais de Doenças , Farmacorresistência Bacteriana/genética , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Mutação , Especificidade da Espécie , Estreptavidina/administração & dosagem , Transaminases/antagonistas & inibidores , Transaminases/química , Transaminases/genética , Transaminases/metabolismo
19.
Biochem Biophys Res Commun ; 520(3): 538-543, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31615653

RESUMO

The BioH carboxylesterase which is a typical α/ß-hydrolase enzyme involved in biotin synthetic pathway in most bacteria. BioH acts as a gatekeeper and blocks the further elongation of its substrate. In the pathogen Klebsiella pneumoniae, BioH plays a critical role in the biosynthesis of biotin. To better understand the molecular function of BioH, we determined the crystal structure of BioH from K. pneumoniae at 2.26 Šresolution using X-ray crystallography. The structure of KpBioH consists of an α-ß-α sandwich domain and a cap domain. B-factor analysis revealed that the α-ß-α sandwich domain is a rigid structure, while the loops in the cap domain shows the structural flexibility. The active site of KpBioH contains the catalytic triad (Ser82-Asp207-His235) on the interface of the α-ß-α sandwich domain, which is surrounded by the cap domain. Size exclusion chromatography shows that KpBioH prefers the monomeric state in solution, whereas two-fold symmetric dimeric formation of KpBioH was observed in the asymmetric unit, the conserved Cys31-based disulfide bonds can maintain the irreversible dimeric formation of KpBioH. Our study provides important structural insight for understanding the molecular mechanisms of KpBioH and its homologous proteins.


Assuntos
Proteínas de Bactérias/química , Carboxilesterase/química , Klebsiella pneumoniae/enzimologia , Proteína de Transporte de Acila/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Biotina/biossíntese , Carboxilesterase/genética , Carboxilesterase/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Modelos Moleculares , Conformação Proteica , Estrutura Quaternária de Proteína , Especificidade por Substrato
20.
Mol Plant Pathol ; 20(11): 1574-1581, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31385410

RESUMO

MicroRNA-like RNAs (milRNAs) post-transcriptionally down-regulate target genes. We investigated Fusarium graminearum (Fg) milRNA expression during fungal vegetative growth and infection of wheat. Small RNA sequencing identified 36 milRNAs from Fg, one of which, Fgmil-2, had >100 transcripts per million in conidia, mycelia and infected wheat, with the highest expression in conidia and the lowest expression in colonized wheat tissue. Fgmil-2 displays perfect homology to the 3'-untranslated region (3'-UTR) of an FgbioH1 messenger RNA that is involved in biotin biosynthesis. Poly(A) polymerase-mediated rapid amplification of cDNA ends combined with sequencing analysis demonstrated that cleavage at a specific site by FgDicer2 in the 3'-UTR of FgbioH1 transcripts generated the Fgmil-2 precursor with a typical hairpin structure. Deletion of FgbioH1 or FgDicer2 genes abolished Fgmil-2 biogenesis. FgbioH1 had an inversely correlated pattern of expression to that of Fgmil-2 and FgDicer2. Deletion of FgbioH1 also showed that it is required for mycelial growth, virulence, mycotoxin biosynthesis and expression of biotin-dependent carboxylase genes. This study reveals in Fg a novel mode of inversely correlated post-transcriptional regulation in which Fgmil-2 originates from its own target transcript, FgbioH, to govern biotin biosynthesis.


Assuntos
Biotina/biossíntese , Fusarium/genética , Fusarium/patogenicidade , Regulação Fúngica da Expressão Gênica , MicroRNAs/genética , RNA Mensageiro/genética , Sequência de Bases , Biomassa , Fusarium/crescimento & desenvolvimento , Micélio/crescimento & desenvolvimento , RNA Mensageiro/metabolismo , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...