Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0300760, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635807

RESUMO

Brown spot caused by Bipolaris oryzae is a major damaging fungal disease of rice which can decrease the yield and value of produce due to grain discoloration. The objectives of the current study were to investigate and understand the biochemical indices of brown spot disease resistance in rice. A total of 108 genotypes (mutant and hybrid) along with Super Basmati and parent RICF-160 were evaluated against brown spot disease. The genotypes exhibiting resistant and susceptible responses to brown spot disease according to the IRRI standard disease rating scale were screened and selected. To study the biochemical response mechanism, forty five selected genotypes along with Super Basmati and RICF-160 were analyzed using the biochemical markers. The physiological and biochemical analysis provided valuable insights and confirmed the resistance of rice hybrids and mutants against brown spot disease. Positive correlations were observed among stress bio-markers and disease response. Rice genotypes i.e. Mu-AS-8, Mu-AS-19, Mu-AS-20 and Mu-AS-35 exhibited moderate resistant response while Hy-AS-92, Hy-AS-98, Hy-AS-99, Hy-AS-101, Hy-AS-102 and Hy-AS-107 showed resistant response to brown spot disease. Brown spot resistant rice genotypes had lesser values of malondialdehyde and total oxidant status and higher antioxidant activities i.e. superoxide dismutase, peroxidase, total phenolic content and lycopene. The selected resistant rice genotypes had resistance capacity against Bipolaris oryzae stress. In conclusion, identified resistant mutants i.e. Mu-AS-8, Mu-AS-19, Mu-AS-20 and Mu-AS-35 and hybrids i.e. Hy-AS-92, Hy-AS-98, Hy-AS-99, Hy-AS-101, Hy-AS-102 and Hy-AS-107 could be used in rice breeding program to achieve sustainable rice production by coping the emerging challenge of brown spot disease under variable climate conditions.


Assuntos
Bipolaris , Etilenos , Oryza , Oryza/genética , Oryza/microbiologia , Resistência à Doença/genética , Melhoramento Vegetal
2.
Phytochemistry ; 221: 114046, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460780

RESUMO

Eight previously undescribed chromones eleusineketones A-H (1-8), as well as eight known compounds (9-16), were isolated from the endophytic fungus Bipolaris eleusines. These planar structures were created using an in-depth analysis of their spectral data, which included 1D, 2D, and HRESIMS data. Furthermore, the absolute configurations of compounds 1, 2, and 6 were determined by spectroscopic analysis and quantum chemical computational approaches, and compound 5 was determined by single-crystal X-ray diffraction analysis. The cytotoxic activity assay revealed that compounds 1 and 5 both inhibited MDA-MB-231 cells with IC50 values of 14.48 µM and 17.99 µM, respectively.


Assuntos
Ascomicetos , Cromonas , Estrutura Molecular , Cromonas/farmacologia , Cromonas/química , Bipolaris , Ascomicetos/química
3.
J Agric Food Chem ; 72(8): 3926-3936, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38365616

RESUMO

Chitosan, as a natural nontoxic biomaterial, has been demonstrated to inhibit fungal growth and enhance plant defense against pathogen infection. However, the antifungal pattern and mechanism of how chitosan application evokes plant defense are poorly elucidated. Herein, we provide evidence that chitosan exposure is fungicidal to C. heterostrophus. Chitosan application impairs conidia germination and appressorium formation of C. heterostrophus and has a pronounced effect on reactive oxygen species production, thereby preventing infection in maize. In addition, the toxicity of chitosan to C. heterostrophus requires Mkk1 and Mps1, two key components in the cell wall integrity pathway. The Δmkk1 and Δmps1 mutants were more tolerant to chitosan than the wild-type. To dissect chitosan-mediated plant defense response to C. heterostrophus, we conducted a metabolomic analysis, and several antifungal compounds were upregulated in maize upon chitosan treatment. Taken together, our findings provide a comprehensive understanding of the mechanism of chitosan-alleviated infection of C. heterostrophus, which would promote the application of chitosan in plant protection in agriculture.


Assuntos
Ascomicetos , Bipolaris , Quitosana , Virulência , Quitosana/farmacologia , Quitosana/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Ascomicetos/metabolismo , Proteínas Fúngicas/metabolismo , Zea mays/metabolismo , Doenças das Plantas/microbiologia
4.
BMC Plant Biol ; 24(1): 118, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368386

RESUMO

BACKGROUND: Spot blotch is a serious foliar disease of barley (Hordeum vulgare L.) plants caused by Bipolaris sorokiniana, which is a hemibiotrophic ascomycete that has a global impact on productivity. Some Trichoderma spp. is a promising candidate as a biocontrol agent as well as a plant growth stimulant. Also, the application of nanomaterials in agriculture limits the use of harmful agrochemicals and helps improve the yield of different crops. The current study was carried out to evaluate the effectiveness of Trichoderma. cf. asperellum and the biosynthesized titanium dioxide nanoparticles (TiO2 NPs) to manage the spot blotch disease of barley caused by B. sorokiniana and to assess the plant's innate defense response. RESULTS: Aloe vera L. aqueous leaf extract was used to biosynthesize TiO2 NPs by reducing TiCl4 salt into TiO2 NPs and the biosynthesized NPs were detected using SEM and TEM. It was confirmed that the NPs are anatase-crystalline phases and exist in sizes ranging from 10 to 25 nm. The T. cf. asperellum fungus was detected using morphological traits and rDNA ITS analysis. This fungus showed strong antagonistic activity against B. sorokiniana (57.07%). Additionally, T. cf. asperellum cultures that were 5 days old demonstrated the best antagonistic activity against the pathogen in cell-free culture filtrate. Also, B. sorokiniana was unable to grow on PDA supplemented with 25 and 50 mg/L of TiO2 NPs, and the diameter of the inhibitory zone increased with increasing TiO2 NPs concentration. In an in vivo assay, barley plants treated with T. cf. asperellum or TiO2 NPs were used to evaluate their biocontrol efficiency against B. sorokiniana, in which T. cf. asperellum and TiO2 NPs enhanced the growth of the plant without displaying disease symptoms. Furthermore, the physiological and biochemical parameters of barley plants treated with T. cf. asperellum or TiO2 NPs in response to B. sorokiniana treatment were quantitively estimated. Hence, T. cf. asperellum and TiO2 NPs improve the plant's tolerance and reduce the growth inhibitory effect of B. sorokiniana. CONCLUSION: Subsequently, T. cf. asperellum and TiO2 NPs were able to protect barley plants against B. sorokiniana via enhancement of chlorophyll content, improvement of plant health, and induction of the barley innate defense system. The present work emphasizes the major contribution of T. cf. asperellum and the biosynthesized TiO2 NPs to the management of spot blotch disease in barley plants, and ultimately to the enhancement of barley plant quality and productivity.


Assuntos
Bipolaris , Hordeum , Hypocreales , Nanopartículas , Titânio , Trichoderma , Hordeum/genética , Doenças das Plantas/microbiologia
5.
J Agric Food Chem ; 72(7): 3549-3559, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38325810

RESUMO

Bipoladiens A-E (1-5), five new ophiobolin-derived sesterterpenoids, and a known compound 6 (bipolaricin R) were isolated from the cultures of the phytopathogenic fungus Bipolaris maydis. Their structures and absolute configurations were elucidated based on comprehensive spectroscopic analyses, HRESIMS, electronic circular dichroism (ECD) calculations, and single-crystal X-ray diffraction analyses. Notably, compound 1 has an undescribed tetracyclic 5/8/5/7 fused carbon skeleton, and compound 2 possesses a rare multicyclic caged ring system. The biosynthetic pathway of 1 was proposed starting from 6 via a series of oxidation and cyclization reactions. Compound 6 showed excellent antiproliferation and apoptosis induction effects against A549 cell line. Additionally, compounds 5 and 6 exhibited noticeable antimicrobial ability against Bacillus cereus, Staphylococcus aureus, and Staphylococcus epidermidis. These findings not only developed the chemical and bioactivities diversities of ophiobolin-sesterterpenoid but also provided an idea to boost the application of natural products in the control of food pathogens.


Assuntos
Anti-Infecciosos , Sesterterpenos , Sesterterpenos/farmacologia , Sesterterpenos/química , Bipolaris , Estrutura Molecular
6.
Plant Genome ; 17(1): e20425, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38221748

RESUMO

Spot blotch caused by Bipolaris sorokiniana ((Sacc.) Shoemaker) (teleomorph: Cochliobolus sativus [Ito and Kuribayashi] Drechsler ex Dastur) is an economically important disease of warm and humid regions. The present study focused on identifying resistant genotypes and single-nucleotide polymorphism (SNP) markers associated with spot blotch resistance in a panel of 174 bread spring wheat lines using field screening and genome-wide association mapping strategies. Field experiments were conducted in Agua Fria, Mexico, during the 2019-2020 and 2020-2021 cropping seasons. A wide range of phenotypic variation was observed among genotypes tested during both years. Twenty SNP markers showed significant association with spot blotch resistance on 15 chromosomes, namely, 1A, 1B, 2A, 2B, 2D, 3A, 3B, 4B, 4D, 5A, 5B, 6A, 6B, 7A, and 7B. Of these, two consistently significant SNPs on 5A, TA003225-0566 and TA003225-1427, may represent a new resistance quantitative trait loci. Further, in the proximity of Tsn1 on 5B, AX-94435238 was the most stable and consistent in both years. The identified genomic regions could be deployed to develop spot blotch-resistant genotypes, particularly in the spot blotch-vulnerable wheat growing areas.


Assuntos
Bipolaris , Estudo de Associação Genômica Ampla , Triticum , Triticum/genética , Estações do Ano , Fenótipo , Resistência à Doença/genética , Doenças das Plantas/genética , Genótipo
7.
Mol Plant Pathol ; 25(1): e13413, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38279855

RESUMO

Southern corn leaf blight (SCLB) caused by Cochliobolus heterostrophus is a destructive disease that threatens global maize (Zea mays) production. Despite many studies being conducted, very little is known about molecular processes employed by the pathogen during infection. There is a need to understand the fungal arms strategy and identify novel functional genes as targets for fungicide development. Transcriptome analysis based on RNA sequencing was carried out across conidia germination and host infection by C. heterostrophus. The present study revealed major changes in C. heterostrophus gene expression during host infection. Several differentially expressed genes (DEGs) induced during C. heterostrophus infection could be involved in the biosynthesis of secondary metabolites, peroxisome, energy metabolism, amino acid degradation and oxidative phosphorylation. In addition, histone acetyltransferase, secreted proteins, peroxisomal proteins, NADPH oxidase and transcription factors were selected for further functional validation. Here, we demonstrated that histone acetyltransferases (Hat2 and Rtt109), secreted proteins (Cel61A and Mep1), peroxisomal proteins (Pex11A and Pex14), NADPH oxidases (NoxA, NoxD and NoxR) and transcription factors (Crz1 and MtfA) play essential roles in C. heterostrophus conidiation, stress adaption and virulence. Taken together, our study revealed major changes in gene expression associated with C. heterostrophus infection and identified a diverse repertoire of genes critical for successful infection.


Assuntos
Ascomicetos , Bipolaris , Zea mays , Virulência/genética , Zea mays/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Doenças das Plantas/microbiologia
8.
J Agric Food Chem ; 72(5): 2598-2611, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38227461

RESUMO

Thirteen new sativene sesquiterpenoids (1 and 3-14), one new natural product (2), and 16 known compounds (15-30) were isolated from the endophytic fungus Bipolaris victoriae S27. Their structures were elucidated by extensive spectroscopic analysis, NMR and ECD calculations, and X-ray crystal diffractions. Compound 1 represented the first example of sativene sesquiterpenoids with a 6/5/3/5-caged tetracyclic ring system. All obtained compounds were evaluated for their plant-growth regulatory activity. The results showed that 1, 3, 4, 6, 8, 11, 12, 17, 19, 26, and 27 could suppress the growth of Arabidopsis thaliana, while 2, 5, 13, 15, 18, and 25 showed promoting effects. Among them, compound 3 showed the most potent plant-growth inhibitory activity, which is obviously superior to that of the marked herbicide glyphosate.


Assuntos
Bipolaris , Reguladores de Crescimento de Plantas , Sesquiterpenos , Estrutura Molecular , Sesquiterpenos/química , Fungos
9.
Ecotoxicol Environ Saf ; 271: 115938, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218102

RESUMO

Chemical fertilizers are the primary source of crop nutrition; however, their increasing rate of application has created environmental hazards, such as heavy metal toxicity and eutrophication. The synchronized use of chemical fertilizers and eco-friendly biological tools, such as microorganisms and biochar, may provide an efficient foundation to promote sustainable agriculture. Therefore, the current study aimed to optimize the nutrient uptake using an inorganic fertilizer, sulfate of potash (SOP) from the plant growth-promoting fungus Bipolaris maydis AF7, and biochar under heavy metal toxicity conditions in rice. Bioassay analysis showed that AF7 has high resistance to heavy metals and a tendency to produce gibberellin, colonize the fertilizer, and increase the intake of free amino acids. In the plant experiment, the co-application of AF7 +Biochar+MNF+SOP significantly lowered the heavy metal toxicity, enhanced the nutrient uptake in the rice shoots, and improved the morphological attributes (total biomass). Moreover, the co-application augmented the glucose and sucrose levels, whereas it significantly lowered the endogenous phytohormone levels (salicylic acid and jasmonic acid) in the rice shoots. The increase in nutrient content aligns with the higher expression of the OsLSi6, PHT1, and OsHKT1 genes. The plant growth traits and heavy metal tolerance of AF7 were validated by whole-genome sequencing that showed the presence of the heavy metal tolerance and detoxification protein, siderophore iron transporter, Gibberellin cluster GA4 desaturase, and DES_1 genes, as well as others that regulate glucose, antioxidants, and amino acids. Because the AF7 +biochar+inorganic fertilizer works synergistically, nutrient availability to the crops could be improved, and heavy metal toxicity and environmental hazards could be minimized.


Assuntos
Bipolaris , Metais Pesados , Oryza , Solo/química , Fertilizantes/análise , Oryza/genética , Giberelinas/farmacologia , Carvão Vegetal/farmacologia , Carvão Vegetal/química , Metais Pesados/análise , Genômica , Fungos , Aminoácidos , Glucose
10.
Pest Manag Sci ; 80(2): 463-472, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37743431

RESUMO

BACKGROUD: Two-component histidine kinase (HK) phosphorelay signaling systems play important roles in differentiation, virulence, secondary metabolite production and response to environmental signals. Allyl isothiocyanate (A-ITC) is a hydrolysis product of glucosinolates with excellent antifungal activity. Our previous study indicated that the mycelial growth of Cochliobolus heterostrophus was significantly hindered by A-ITC. However, the function of HK in regulating A-ITC sensitivity was not clear in C. heterostrophus, the causal agent of Southern corn leaf blight. RESULTS: In this study, the role of HKs was investigated in C. heterostrophus. Deletion of the HK coding gene ChNIK1 resulted in dramatically increased sensitivity of C. heterostrophus to A-ITC. In addition, ΔChnik1 mutant exhibited significantly decreased conidiation and increased sensitivity to NaCl, KCl, tebuconazole and azoxystrobin, but deletion of the other five HK genes did not affect the A-ITC sensitivity of C. heterostrophus. ChSLN1, ChNIK4, ChNIK8 and ChMAK2 are essential for conidiation and response to H2 O2 and sodium dodecyl sulfate. However, deletion of NIKs had on effect on significant virulence. CONCLUSION: Our findings demonstrate that the HKs play different roles in A-ITC sensitivity in C. heterostrophus. © 2023 Society of Chemical Industry.


Assuntos
Ascomicetos , Bipolaris , Histidina , Histidina Quinase/genética , Ascomicetos/genética , Isotiocianatos , Zea mays/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
11.
J Nat Prod ; 87(1): 68-76, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38117952

RESUMO

Seven undescribed terpestacin-type sesterterpenoids, maydistacins A-G (1-7), along with two known congeners (8 and 9), were isolated from the phytopathogenic fungus Bipolaris maydis collected from the leaves of Hypericum longistylum. The structures of 1-7 were elucidated based on extensive spectroscopic analysis, chemical methods, NMR calculations with DP4+ probability analysis, and comparison of experimental and calculated electronic circular dichroism (ECD) calculations. In vitro anti-inflammatory effects of these compounds were tested in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Compound 1 exhibited inhibition of the production of nitric oxide in LPS-induced macrophages, with an IC50 value of 19 ± 2 µM. A dexamethasone control displayed an IC50 value of 6.7 ± 0.6 µM. Compound 1 is the first terpestacin-type sesterterpenoid reported to display anti-inflammatory activity and may provide a novel chemical scaffold for the discovery of new anti-inflammatory drugs.


Assuntos
Anti-Inflamatórios , Bipolaris , Lipopolissacarídeos , Animais , Camundongos , Células RAW 264.7 , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/química , Fungos , Óxido Nítrico , Estrutura Molecular , Compostos Bicíclicos com Pontes
12.
JBJS Case Connect ; 13(4)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37889989

RESUMO

CASE: We present a case report of a 64-year-old man who developed a rare Bipolaris species fungal periprosthetic joint infection (PJI) after revision arthroplasty for complications associated with a metal-on-metal total hip arthroplasty. The patient underwent a 2-stage debridement with antibiotic bead placement and implant retention, along with chronic antifungal suppression. At the 2-year follow-up, the patient remained asymptomatic. CONCLUSION: Fungal PJI with filamentous fungi such as Bipolaris species is a rare clinical entity. This case report highlights the clinical presentation and management of this rare condition.


Assuntos
Artrite Infecciosa , Infecções Relacionadas à Prótese , Masculino , Humanos , Pessoa de Meia-Idade , Bipolaris , Estudos Retrospectivos , Resultado do Tratamento , Reoperação/efeitos adversos , Desbridamento , Infecções Relacionadas à Prótese/tratamento farmacológico , Infecções Relacionadas à Prótese/microbiologia , Artrite Infecciosa/microbiologia
13.
PeerJ ; 11: e15980, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37727689

RESUMO

Background: The leaves of Serjania erecta Radlk (Sapindaceae) are renowned in ethnobotany for their medicinal properties and are significant as a medicinal resource for traditional Brazilian communities. As necrotic spots are common on these leaves, indicating interaction with phytopathogenic fungi, it was hypothesized that biotrophic fungal species colonize the leaf tissues of S. erecta. Methods: To test this hypothesis, we employed standard techniques in plant anatomy, which enabled us to investigate the interaction of fungal structures with plant tissues and describe the morphoanatomical and histochemical characteristics of the epidermis and limbus of S. erecta. Results: The anatomical analysis showed the existence of leaf teeth on the leaf tips. Additionally, hyphae, conidiospores, and spores of Bipolaris/Curvularia species were detected on the adaxial epidermis. Moreover, melanized microsclerotia were found in glandular areas of the leaf teeth and the phloem, providing evidence of biotrophic behavior. The hypothesis that biotrophic phytopathogenic fungi interact with S. erecta leaf tissues was confirmed, despite the presence of many bioactive compounds (such as flavonoids, alkaloids, and essential oils), as evidenced by histochemical analyses. The presence of tector, glandular, and scabiform trichomes on the leaf teeth and epidermis was also revealed. This study presents, for the first time, the synthesis of essential oils and alkaloids in the leaves of S. erecta. Additionally, it investigates previously unexplained aspects of the anatomy and histochemistry of the species, as well as its interaction with resident microorganisms. Therefore, it is recommended that future research focus on extracting and characterizing the oils and alkaloids of S. erecta, as well as exploring other aspects related to its microbiome and its relationship.


Assuntos
Sapindaceae , Bipolaris , Brasil , Curvularia
14.
Mycologia ; 115(5): 614-629, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37463242

RESUMO

Bipolaris gigantea (= Drechslera gigantea) causes Bipolaris leaf spot (BLS), a devastating and widespread disease on industrial hemp (Cannabis sativa). An investigation of relationships of isolates from hemp and other plants indicated variation in ploidy that has not previously been reported for Bipolaris. Isolates were obtained from BLS lesions on hemp and nearby weeds in 11 Kentucky counties and were similar to each other in morphology and growth characteristics. In total, 23 isolates were analyzed by multilocus phylogenetics, of which seven were also chosen for whole genome shotgun sequencing. Genes for RNA polymerase II subunit 2 (RPB2), translation elongation factor 1-α (TEF1), and mating type (MAT1) indicated that 13 of the isolates were haploid with only a single allele each of RPB2 and TEF1 and either the MAT1-1 or MAT1-2 idiomorph, whereas 10 were apparently "heteroploid" with two alleles each of RPB2 and TEF1 and both MAT1 idiomorphs. Haploids all had identical RPB2 alleles except for a 1-bp difference in two isolates, identical TEF1 alleles, and (if present) identical MAT1-2 alleles. Those alleles were also present in each heteroploid along with either of two related but distinct alleles for each gene. In contrast, haploids and heteroploids shared allelic variation of MAT1-1. In total, four haploid and two heteroploid genotypes were identified. Genome sequence data assembled to 30-32 Mb for each of four haploid isolates, but 10-31 Mb larger sizes for each of three heteroploids depending on sequencing platform and assembly program. The haploids and heteroploids caused similar disease on hemp.


Assuntos
Ascomicetos , Cannabis , Cannabis/genética , Bipolaris/genética , Haploidia , Ascomicetos/genética , Genes Fúngicos Tipo Acasalamento/genética
15.
Braz J Microbiol ; 54(3): 1351-1372, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37351789

RESUMO

Neoscytalidium dimidiatum and Bipolaris species are fungal plant pathogens that have been reported to cause human diseases. Recently, we have isolated numerous N. dimidiatum and Bipolaris species from the skin scrapings and nails of different patients. In this work, we have sequenced the genome of one strain of N. dimidiatum. The sequenced genome was compared to that of a previously reported Bipolaris papendorfii genome for a better understanding of their complex lifestyle and broad host-range pathogenicity. Both N. dimidiatum UM 880 (~ 43 Mb) and B. papendorfii UM 226 (~ 33 Mb) genomes include 11,015-12,320 putative coding DNA sequences, of which 0.51-2.49% are predicted transposable elements. Analysis of secondary metabolism gene clusters revealed several genes involved in melanin biosynthesis and iron uptake. The arsenal of CAZymes related to plants pathogenicity is comparable between the species, including genes involved in hemicellulose and pectin decomposition. Several important gene encoding keratinolytic peptidases were identified in N. dimidiatum and B. papendorfii, reflecting their potential pathogenic role in causing skin and nail infections. In this study, additional information on the metabolic features of these two species, such as nutritional profiling, pH tolerance, and osmotolerant, are revealed. The genomic characterization of N. dimidiatum and B. papendorfii provides the basis for the future functional studies to gain further insights as to what makes these fungi persist in plants and why they are pathogenic to humans.


Assuntos
Ascomicetos , Humanos , Ascomicetos/genética , Curvularia , Genômica , Bipolaris
16.
Fungal Genet Biol ; 166: 103798, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37059379

RESUMO

The Spot Blotch (SB) caused by hemibiotrophic fungal pathogen Bipolaris sorokiniana is one of the most devastating wheat diseases leading to 15-100% crop loss. However, the biology of Triticum-Bipolaris interactions and host immunity modulation by secreted effector proteins remain underexplored. Here, we identified a total of 692 secretory proteins including 186 predicted effectors encoded by B. sorokiniana genome. Gene Ontology categorization showed that these proteins belong to cellular, metabolic and signaling processes, and exhibit catalytic and binding activities. Further, we functionally characterized a cysteine-rich, B. sorokiniana Candidate Effector 66 (BsCE66) that was induced at 24-96 hpi during host colonization. The Δbsce66 mutant did not show vegetative growth defects or stress sensitivity compared to wild-type, but developed drastically reduced necrotic lesions upon infection in wheat plants. The loss-of-virulence phenotype was rescued upon complementing the Δbsce66 mutant with BsCE66 gene. Moreover, BsCE66 does not form homodimer and conserved cysteine residues form intra-molecular disulphide bonds. BsCE66 localizes to the host nucleus and cytosol, and triggers a strong oxidative burst and cell death in Nicotiana benthamiana. Overall, our findings demonstrate that BsCE66 is a key virulence factor that is necessary for host immunity modulation and SB disease progression. These findings would significantly improve our understanding of Triticum-Bipolaris interactions and assist in the development of SB resistant wheat varieties.


Assuntos
Ascomicetos , Bipolaris , Virulência/genética , Triticum/microbiologia , Cisteína/genética , Doenças das Plantas/microbiologia
17.
Mol Plant Microbe Interact ; 36(7): 452-456, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36802869

RESUMO

Bipolaris sorokiniana, one of the most devastating hemibiotrophic fungal pathogens, causes root rot, crown rot, leaf blotching, and black embryos of gramineous crops worldwide, posing a serious threat to global food security. However, the host-pathogen interaction mechanism between B. sorokiniana and wheat remains poorly understood. To facilitate related studies, we sequenced and assembled the genome of B. sorokiniana LK93. Nanopore long reads and next generation sequencing short reads were applied in the genome assembly, and the final 36.4-Mb genome assembly contains 16 contigs with the contig N50 of 2.3 Mb. Subsequently, we annotated 11,811 protein-coding genes. Of these, 10,620 were functional genes, 258 of which were identified as secretory proteins, including 211 predicted effectors. Additionally, the 111,581-bp mitogenome of LK93 was assembled and annotated. The LK93 genomes presented in this study will facilitate research in the B. sorokiniana-wheat pathosystem for better control of crop diseases. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Ascomicetos , Genoma Mitocondrial , Ascomicetos/genética , Triticum/microbiologia , Genoma Mitocondrial/genética , Bipolaris/genética , Doenças das Plantas/microbiologia
18.
Genes (Basel) ; 13(12)2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36553473

RESUMO

Bipolaris sorokiniana is a fungal pathogen that infects wheat, barley, and other crops, causing spot blotch disease. The disease is most common in humid, warm, wheat-growing regions, with South Asia's Eastern Gangetic Plains serving as a hotspot. There is very little information known about its genetic variability, demography, and divergence period. The current work is the first to study the phylogeographic patterns of B. sorokiniana isolates obtained from various wheat and barley-growing regions throughout the world, with the goal of elucidating the demographic history and estimating divergence times. In this study, 162 ITS sequences, 18 GAPDH sequences, and 74 TEF-1α sequences from B. sorokiniana obtained from the GenBank, including 21 ITS sequences produced in this study, were used to analyse the phylogeographic pattern of distribution and evolution of B. sorokiniana infecting wheat and barley. The degrees of differentiation among B. sorokiniana sequences from eighteen countries imply the presence of a broad and geographically undifferentiated global population. The study provided forty haplotypes. The H_1 haplotype was identified to be the ancestral haplotype, followed by H_29 and H_27, with H_1 occupying a central position in the median-joining network and being shared by several populations from different continents. The phylogeographic patterns of species based on multi-gene analysis, as well as the predominance of a single haplotype, suggested that human-mediated dispersal may have played a significant role in shaping this pathogen's population. According to divergence time analysis, haplogroups began at the Plio/Pleistocene boundary.


Assuntos
Bipolaris , Hordeum , Triticum , Bipolaris/genética , Hordeum/microbiologia , Triticum/microbiologia
19.
ScientificWorldJournal ; 2022: 3602996, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36065336

RESUMO

In Kazakhstan, barley (Hordeum vulgare L.) is the second most important cereal crop after wheat, with an annual production of approximately 1.9 million tons. The study aimed to characterize Bipolaris sorokiniana isolates obtained from barley fields surveyed. A total of 21 diseased leaves showing spot blotch symptoms were collected from experimental plots located close to the Kazakh Research Institute of Agriculture and Crop Production, where the spring barley Arna cultivar was planted in June 2020. The overall strategy for control of spring barley blotch in the Almaty region of Kazakhstan should include the determination of the aggressiveness of the pathogen isolates to better understand the biology of the diseases and ultimately proper control strategy. Pathogenicity of B. sorokiniana isolates was made on barley seedlings in vitro. Inoculated seedlings showed clear symptoms of B. sorokiniana, and therefore, Koch's postulates were fulfilled by reisolating the pathogen from artificially inoculated seedlings and identifying it based on standard morphology criteria. Further investigation is needed to understand the impact of B. sorokiniana on barley production in Kazakhstan.


Assuntos
Ascomicetos , Hordeum , Ascomicetos/genética , Bipolaris , Hordeum/genética , Cazaquistão , Doenças das Plantas/prevenção & controle
20.
PLoS One ; 17(9): e0272944, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36137142

RESUMO

Fungi in the genus Metarhizium (Hypocreales: Clavicipitaceae) are insect-pathogens and endophytes that can benefit their host plant through growth promotion and protection against stresses. Cochliobolus heterostrophus (Drechsler) Drechsler (Pleosporales: Pleosporaceae) is an economically-significant phytopathogenic fungus that causes Southern Corn Leaf Blight (SCLB) in maize. We conducted greenhouse and lab-based experiments to determine the effects of endophytic M. robertsii J.F. Bisch., Rehner & Humber on growth and defense in maize (Zea mays L.) infected with C. heterostrophus. We inoculated maize seeds with spores of M. robertsii and, at the 3 to 4-leaf stage, the youngest true leaf of M. robertsii-treated and untreated control plants with spores of C. heterostrophus. After 96 h, we measured maize height, above-ground biomass, endophytic colonization by M. robertsii, severity of SCLB, and expression of plant defense genes and phytohormone content. We recovered M. robertsii from 74% of plants grown from treated seed. The severity of SCLB in M. robertsii-treated maize plants was lower than in plants inoculated only with C. heterostrophus. M. robertsii-treated maize inoculated or not inoculated with C. heterostrophus showed greater height and above-ground biomass compared with untreated control plants. Height and above-ground biomass of maize co-inoculated with M. robertsii and C. heterostrophus were not different from M. robertsii-treated maize. M. robertsii modulated the expression of defense genes and the phytohormone content in maize inoculated with C. heterostrophus compared with plants not inoculated with C. heterostrophus and control plants. These results suggest that endophytic M. robertsii can promote maize growth and reduce development of SCLB, possibly by induced systemic resistance mediated by modulation of phytohormones and expression of defense and growth-related genes in maize.


Assuntos
Ascomicetos , Metarhizium , Bipolaris , Metarhizium/genética , Reguladores de Crescimento de Plantas , Zea mays/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...