Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Invertebr Pathol ; 184: 107640, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34166714

RESUMO

Myrmicinosporidium durumHölldobler (1933) is a widely distributed fungal endoparasite of ants. However, little is known about its biology, ecology, or evolutionary history. Our study investigated the phylogenetics of this entomopathogenic fungus using a molecular approach. Samples of M. durum were obtained from infected Solenopsis fugax workers collected in Warsaw (Poland). Analyses of rDNA markers revealed that M. durum belongs to a phylum of primarily aquatic fungi, Blastocladiomycota. It is currently the only species from this group known to parasitise hymenopterans. Our findings have clarified this fungus' taxonomy and suggest future directions for research into its biology, ecology, and infection dynamics.


Assuntos
Formigas/microbiologia , Blastocladiomycota/classificação , Animais , DNA Fúngico/análise , DNA Ribossômico/análise , Interações Hospedeiro-Parasita , Polônia
2.
Philos Trans R Soc Lond B Biol Sci ; 373(1739)2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29254966

RESUMO

Zoosporic fungi are key saprotrophs and parasites of plants, animals and other fungi, playing important roles in ecosystems. They comprise at least three phyla, of which two, Chytridiomycota and Blastocladiomycota, developed a range of thallus morphologies including branching hyphae. Here we describe Retesporangicus lyonii gen. et sp. nov., an exceptionally well preserved fossil, which is the earliest known to produce multiple sporangia on an expanded hyphal network. To better characterize the fungus we develop a new method to render surfaces from image stacks generated by confocal laser scanning microscopy. Here, the method helps to reveal thallus structure. Comparisons with cultures of living species and character state reconstructions analysed against recent molecular phylogenies of 24 modern zoosporic fungi indicate an affinity with Blastocladiomycota. We argue that in zoosporic fungi, kinds of filaments such as hyphae, rhizoids and rhizomycelium are developmentally similar structures adapted for varied functions including nutrient absorption and anchorage. The fossil is the earliest known type to develop hyphae which likely served as a saprotrophic adaptation to patchy resource availability. Evidence from the Rhynie chert provides our earliest insights into the biology of fungi and their roles in the environment. It demonstrates that zoosporic fungi were already diverse in 407 million-year-old terrestrial ecosystems.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'.


Assuntos
Blastocladiomycota/classificação , Fósseis/anatomia & histologia , Evolução Biológica , Blastocladiomycota/citologia , Blastocladiomycota/fisiologia , Hifas/citologia , Hifas/fisiologia , Microscopia , Microscopia Confocal , Filogenia , Escócia
3.
Fungal Biol ; 120(3): 324-37, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26895861

RESUMO

Successful algal cultivation for biofuel production is one path in the transition to a renewable energy economy. The green alga Scenedesmus dimorphus is a candidate for biofuel production, but is subject to parasitism and subsequent population crash when cultivated in open ponds. From an open pond cultivating S. dimorphus for biofuel production in New Mexico, USA, an amoeboid parasite was isolated, designated as isolate FD61, and its rDNA operon sequenced. A BLAST search for nuc 18S rDNA (18S) sequence similarity identified the parasite as Paraphysoderma sedebokerense (Blastocladiomycota). Here, we examine the ultrastructure of P. sedebokerense and compare it with that of a sister taxon, Physoderma maydis. The parasite has thin-walled vegetative sporangia and thick-walled resting sporangia. Our observations indicate that amoeboid swarmers are produced in the vegetative phase, while either amoeboid swarmers or zoospores are the product of meiosis in resting sporangia. Meiosis is confirmed by the presence of synaptonemal complexes in resting sporangia nuclei. Notably, P. sedebokerense has a Golgi apparatus with stacked cisternae, a feature reported for P. maydis, but which is absent in all other examined taxa in Blastocladiomycota. This report furthers our knowledge of the life cycle of P. sedebokerense.


Assuntos
Blastocladiomycota/ultraestrutura , Clorófitas/microbiologia , Blastocladiomycota/classificação , Blastocladiomycota/genética , Blastocladiomycota/isolamento & purificação , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , Organelas/ultraestrutura , Filogenia , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
4.
Mycologia ; 108(2): 303-12, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26740543

RESUMO

Litter layers in the Lower Devonian (~ 410 Ma) Rhynie chert were inhabited by a wide variety of saprotrophic fungi, however, only a few of these organisms have been described formally. A new microfungus, Trewinomyces annulifer gen. et sp. nov., occurs as tufts on decaying land plant axes from the Rhynie chert. The fungus consists of an intramatrical rhizoidal system and an erect extramatrical hypha (stalk) that bears a single, terminal sporangium. One or two successive rings often are present in the stalk immediately below the sporangium base. Overall morphology of T. annulifer resembles the extant genera Macrochytrium (Chytridiomycota) and Blastocladiella (Blastocladiomycota). However, the rhizoids are septate or pseudoseptate, a feature not known in extant zoosporic fungi, and thus render the systematic affinities of T. annulifer unresolved. Trewinomyces annulifer offers a rare view of the morphology of a distinctive Early Devonian saprotrophic microfungus.


Assuntos
Blastocladiomycota/citologia , Quitridiomicetos/citologia , Fósseis , Blastocladiomycota/classificação , Quitridiomicetos/classificação , Especificidade da Espécie
5.
Fungal Biol ; 115(4-5): 381-92, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21530920

RESUMO

The Blastocladiomycota is a recently described phylum of ecologically diverse zoosporic fungi whose species have not been thoroughly sampled and placed within a molecular phylogeny. In this study, we investigated the phylogeny of the Blastocladiomycota based on ribosomal DNA sequences from strains identified by traditional morphological and ultrastructural characters. Our results support the monophyly of the Coelomomycetaceae and Physodermataceae but the Blastocladiaceae and Catenariaceae are paraphyletic or polyphyletic. The data support two clades within Allomyces with strains identified as Allomyces arbusculus in both clades, suggesting that species concepts in Allomyces are in need of revision. A clade of Catenaria species isolated from midge larvae group separately from other Catenaria species, suggesting that this genus may need revision. In the Physodermataceae, Urophlyctis species cluster with a clade of Physoderma species. The algal parasite Paraphysoderma sedebokerensis nom. prov. clusters sister to other taxa in the Physodermataceae. Catenomyces persicinus, which has been classified in the Catenariaceae, groups with the Chytridiomycota rather than Blastocladiomycota. The rDNA operon seems to be suitable for classification within the Blastocladiomycota and distinguishes among genera; however, this region alone is not suitable to determine the position of the Blastocladiomycota among other basal fungal phyla with statistical support. A focused effort to find and isolate, or directly amplify DNA from additional taxa will be necessary to evaluate diversity in this phylum. We provide this rDNA phylogeny as a preliminary framework to guide further taxon and gene sampling and to facilitate future ecological, morphological, and systematic studies.


Assuntos
Blastocladiomycota/genética , DNA Ribossômico/genética , Filogenia , Animais , Blastocladiomycota/classificação , Núcleo Celular/genética , DNA Fúngico/genética , Evolução Molecular , Insetos/microbiologia , Larva/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...