Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 323
Filtrar
1.
Development ; 149(2)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35001104

RESUMO

Biological systems are highly complex, yet notably ordered structures can emerge. During syncytial stage development of the Drosophila melanogaster embryo, nuclei synchronously divide for nine cycles within a single cell, after which most of the nuclei reach the cell cortex. The arrival of nuclei at the cortex occurs with remarkable positional order, which is important for subsequent cellularisation and morphological transformations. Yet, the mechanical principles underlying this lattice-like positional order of nuclei remain untested. Here, using quantification of nuclei position and division orientation together with embryo explants, we show that short-ranged repulsive interactions between microtubule asters ensure the regular distribution and maintenance of nuclear positions in the embryo. Such ordered nuclear positioning still occurs with the loss of actin caps and even the loss of the nuclei themselves; the asters can self-organise with similar distribution to nuclei in the wild-type embryo. The explant assay enabled us to deduce the nature of the mechanical interaction between pairs of nuclei. We used this to predict how the nuclear division axis orientation changes upon nucleus removal from the embryo cortex, which we confirmed in vivo with laser ablation. Overall, we show that short-ranged microtubule-mediated repulsive interactions between asters are important for ordering in the early Drosophila embryo and minimising positional irregularity.


Assuntos
Blastoderma/metabolismo , Divisão do Núcleo Celular , Células Gigantes/metabolismo , Animais , Blastoderma/citologia , Núcleo Celular/metabolismo , Drosophila melanogaster , Células Gigantes/citologia , Microtúbulos/metabolismo , Estresse Mecânico
2.
PLoS Comput Biol ; 17(12): e1009614, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34871312

RESUMO

Epithelial tissues form folded structures during embryonic development and organogenesis. Whereas substantial efforts have been devoted to identifying mechanical and biochemical mechanisms that induce folding, whether and how their interplay synergistically shapes epithelial folds remains poorly understood. Here we propose a mechano-biochemical model for dorsal fold formation in the early Drosophila embryo, an epithelial folding event induced by shifts of cell polarity. Based on experimentally observed apical domain homeostasis, we couple cell mechanics to polarity and find that mechanical changes following the initial polarity shifts alter cell geometry, which in turn influences the reaction-diffusion of polarity proteins, thus forming a feedback loop between cell mechanics and polarity. This model can induce spontaneous fold formation in silico, recapitulate polarity and shape changes observed in vivo, and confer robustness to tissue shape change against small fluctuations in mechanics and polarity. These findings reveal emergent properties of a developing epithelium under control of intracellular mechano-polarity coupling.


Assuntos
Fenômenos Biomecânicos/fisiologia , Blastoderma , Polaridade Celular/fisiologia , Desenvolvimento Embrionário/fisiologia , Epitélio/fisiologia , Animais , Blastoderma/citologia , Blastoderma/fisiologia , Drosophila/embriologia , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Modelos Biológicos
3.
Cell ; 184(7): 1914-1928.e19, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33730596

RESUMO

Embryo morphogenesis is impacted by dynamic changes in tissue material properties, which have been proposed to occur via processes akin to phase transitions (PTs). Here, we show that rigidity percolation provides a simple and robust theoretical framework to predict material/structural PTs of embryonic tissues from local cell connectivity. By using percolation theory, combined with directly monitoring dynamic changes in tissue rheology and cell contact mechanics, we demonstrate that the zebrafish blastoderm undergoes a genuine rigidity PT, brought about by a small reduction in adhesion-dependent cell connectivity below a critical value. We quantitatively predict and experimentally verify hallmarks of PTs, including power-law exponents and associated discontinuities of macroscopic observables. Finally, we show that this uniform PT depends on blastoderm cells undergoing meta-synchronous divisions causing random and, consequently, uniform changes in cell connectivity. Collectively, our theoretical and experimental findings reveal the structural basis of material PTs in an organismal context.


Assuntos
Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário , Animais , Blastoderma/citologia , Blastoderma/fisiologia , Caderinas/antagonistas & inibidores , Caderinas/genética , Caderinas/metabolismo , Adesão Celular , Embrião não Mamífero/citologia , Morfolinos/metabolismo , Reologia , Viscosidade , Peixe-Zebra/crescimento & desenvolvimento
4.
Dev Biol ; 468(1-2): 26-40, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32937161

RESUMO

Cell migration is the main driver of the evolutionarily conserved process of gastrulation, which shapes metazoan embryo morphology. The molecular and cellular mechanisms of cell migration during gastrulation though well researched lacks an understanding of the contribution of cell sizes to collective cell migration. This is especially important during the early phase of metazoan development, which is dominated by constantly changing cell sizes in the background of which cells migrate en mass to shape the embryo. Here we investigate this phenomenon in zebrafish embryos, a model system in which early cell divisions causes cell sizes to decrease naturally over time as cells migrate collectively to sculpt the embryonic body plan. Because mutations that can perturb cell sizes so early in development do not exist, we generate haploid and tetraploid zebrafish embryos and show that cell sizes in such embryos are smaller and larger than the diploid norm, respectively. Cells in embryos made of smaller or larger than normal cells migrate sub-optimally, leading to gastrulation defects. Gene expression analysis suggests that the observed defects originate from altered cell size, and not from pleiotropic effects of altered ploidy. This interpretation is strengthened when gastrulation defects are rescued by increasing cell sizes in embryos wherein cell sizes are smaller than normal. We show that the migration defects are cell-autonomous by live imaging migrating haploid and tetraploid cells during gastrulation in chimeric diploid embryos. Analysis of membrane protrusion dynamics in single cells shows that cells normally extend protrusions non-uniformly during migration, a phenomenon which is perturbed when cell sizes deviate from the norm. Thus, an optimal range of developmental stage-specific cell sizes appears necessary for collective cell migration to correctly position cells in space and time to shape an amorphous ball of blastoderm into an embryo.


Assuntos
Blastoderma/embriologia , Gastrulação , Regulação da Expressão Gênica no Desenvolvimento , Peixe-Zebra/embriologia , Animais , Blastoderma/citologia , Tamanho Celular , Mutação
5.
Int J Dev Biol ; 64(4-5-6): 275-287, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32658989

RESUMO

Drosophila embryogenesis begins with nuclear division in a common cytoplasm forming a syncytial cell. Morphogen gradient molecules spread across nucleo-cytoplasmic domains to pattern the body axis of the syncytial embryo. The diffusion of molecules across the syncytial nucleo-cytoplasmic domains is potentially constrained by association with the components of cellular architecture. However, the extent of restriction has not been examined. Here we use photoactivation (PA) to generate a source of cytoplasmic or cytoskeletal molecules in order to monitor the kinetics of their spread in the syncytial Drosophila embryo. Photoactivated PA-GFP and PA-GFP-Tubulin generated within a fixed anterior area diffused along the antero-posterior axis. These molecules were enriched in the cortical cytoplasm above the yolk-filled center, suggesting that the cortical cytoplasm is phase separated from the yolk-filled center. The length scales of diffusion were extracted using exponential fits under steady state assumptions. PA-GFP spread a greater distance as compared to PA-GFP-Tubulin. Both molecules were more restricted when generated in the center of the embryo. The length scale of spread for PA-GFP-Tubulin increased in mutant embryos containing short plasma membrane furrows and a disrupted tubulin cytoskeleton. PA-GFP spread was unaffected by cyto-architecture perturbation. Taken together, these data show that PA-GFP-Tubulin spread is restricted by its incorporation in the microtubule network and intact plasma membrane furrows. This photoactivation based analysis of protein spread allows for interpretation of the dependence of gradient formation on syncytial cyto-architecture.


Assuntos
Blastoderma/metabolismo , Drosophila melanogaster/metabolismo , Embrião não Mamífero/metabolismo , Células Gigantes/metabolismo , Tubulina (Proteína)/metabolismo , Algoritmos , Animais , Animais Geneticamente Modificados , Blastoderma/citologia , Blastoderma/embriologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Células Gigantes/citologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Modelos Teóricos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Tubulina (Proteína)/genética
6.
Curr Top Dev Biol ; 140: 391-427, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32591082

RESUMO

Gastrulation is a critical early morphogenetic process of animal development, during which the three germ layers; mesoderm, endoderm and ectoderm, are rearranged by internalization movements. Concurrent epiboly movements spread and thin the germ layers while convergence and extension movements shape them into an anteroposteriorly elongated body with head, trunk, tail and organ rudiments. In zebrafish, gastrulation follows the proliferative and inductive events that establish the embryonic and extraembryonic tissues and the embryonic axis. Specification of these tissues and embryonic axes are controlled by the maternal gene products deposited in the egg. These early maternally controlled processes need to generate sufficient cell numbers and establish the embryonic polarity to ensure normal gastrulation. Subsequently, after activation of the zygotic genome, the zygotic gene products govern mesoderm and endoderm induction and germ layer patterning. Gastrulation is initiated during the maternal-to-zygotic transition, a process that entails both activation of the zygotic genome and downregulation of the maternal transcripts. Genomic studies indicate that gastrulation is largely controlled by the zygotic genome. Nonetheless, genetic studies that investigate the relative contributions of maternal and zygotic gene function by comparing zygotic, maternal and maternal zygotic mutant phenotypes, reveal significant contribution of maternal gene products, transcripts and/or proteins, that persist through gastrulation, to the control of gastrulation movements. Therefore, in zebrafish, the maternally expressed gene products not only set the stage for, but they also actively participate in gastrulation morphogenesis.


Assuntos
Embrião não Mamífero/metabolismo , Gastrulação/genética , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese/genética , Peixe-Zebra/genética , Animais , Blastoderma/citologia , Blastoderma/metabolismo , Blástula/citologia , Blástula/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Herança Materna/genética , Peixe-Zebra/embriologia , Zigoto/citologia , Zigoto/metabolismo
7.
Curr Top Dev Biol ; 136: 319-341, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31959293

RESUMO

Epiboly is a conserved gastrulation movement describing the thinning and spreading of a sheet or multi-layer of cells. The zebrafish embryo has emerged as a vital model system to address the cellular and molecular mechanisms that drive epiboly. In the zebrafish embryo, the blastoderm, consisting of a simple squamous epithelium (the enveloping layer) and an underlying mass of deep cells, as well as a yolk nuclear syncytium (the yolk syncytial layer) undergo epiboly to internalize the yolk cell during gastrulation. The major events during zebrafish epiboly are: expansion of the enveloping layer and the internal yolk syncytial layer, reduction and removal of the yolk membrane ahead of the advancing blastoderm margin and deep cell rearrangements between the enveloping layer and yolk syncytial layer to thin the blastoderm. Here, work addressing the cellular and molecular mechanisms as well as the sources of the mechanical forces that underlie these events is reviewed. The contribution of recent findings to the current model of epiboly as well as open questions and future prospects are also discussed.


Assuntos
Blastoderma/fisiologia , Padronização Corporal , Embrião não Mamífero/fisiologia , Epitélio/fisiologia , Gastrulação , Morfogênese , Peixe-Zebra/fisiologia , Animais , Blastoderma/citologia , Movimento Celular , Embrião não Mamífero/citologia , Gástrula/citologia , Gástrula/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
8.
Curr Top Dev Biol ; 136: 85-111, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31959299

RESUMO

The avian embryo is a key experimental model system for early development of amniotes. One key difference with invertebrates and "lower" vertebrates like fish and amphibians is that amniotes do not rely so heavily on maternal messages because the zygotic genome is activated very early. Early development also involves considerable growth in volume and mass of the embryo, with cell cycles that include G1 and G2 phases from very early cleavage. The very early maternal to zygotic transition also allows the embryo to establish its own polarity without relying heavily on maternal determinants. In many amniotes including avians and non-rodent mammals, this enables an ability of the embryo to "regulate": a single multicellular embryo can give rise to more than one individual-monozygotic twins. Here we discuss the embryological, cellular, molecular and evolutionary underpinnings of gastrulation in avian embryos as a model amniote embryo. Many of these properties are shared by human embryos.


Assuntos
Proteínas Aviárias/metabolismo , Blastoderma/fisiologia , Polaridade Celular , Embrião de Mamíferos/fisiologia , Gastrulação , Regulação da Expressão Gênica no Desenvolvimento , Animais , Proteínas Aviárias/genética , Blastoderma/citologia , Embrião de Galinha , Galinhas , Embrião de Mamíferos/citologia , Transdução de Sinais
9.
Dev Growth Differ ; 61(7-8): 393-401, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31613003

RESUMO

Transgenic birds are commonly used for time-lapse imaging and fate mapping studies in developmental biology. When researchers use transgenic birds expressing fluorescent protein, they need to understand the integration site of the transgene in the genome and the intensity of fluorescence in the tissues of interest. In this study, we determined the integration site of the transgene and fluorescence property of developing organs in our transgenic chicken line generated by lentivirus infection. The transgene was localized between exons 3 and 4 of MED27. Some homozygotes and heterozygotes appeared to be lethal at early embryonic stages. We performed histological analysis of EGFP expression in transgenic embryos at St. 14, 17, and 24 by immunohistochemistry with anti-GFP antibody on paraffin sections. Next, we cut cryosections and quantified direct EGFP intensity from the transgene in each tissue without performing immunohistochemistry. These results revealed that EGFP intensity in each tissue was unique in developing embryos and changed according to developmental stages. Finally, we demonstrated that EGFP-expressing cells in a micromass culture with co-culturing wild-type cells were clearly distinguishable via live cell imaging. These results provide essential information on the potential of our transgenic line and indicate that these transgenic chicken lines are useful for research associated with developmental biology.


Assuntos
Proteínas Aviárias/genética , Genoma/genética , Proteínas de Fluorescência Verde/genética , Transgenes/genética , Animais , Animais Geneticamente Modificados , Sequência de Bases , Sítios de Ligação/genética , Blastoderma/citologia , Blastoderma/embriologia , Blastoderma/metabolismo , Células Cultivadas , Embrião de Galinha , Galinhas , Fluorescência , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Microscopia de Fluorescência , Imagem com Lapso de Tempo/métodos
10.
Biophys J ; 117(4): 743-750, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31378311

RESUMO

Embryonic development starts with cleavages, a rapid sequence of reductive divisions that result in an exponential increase of cell number without changing the overall size of the embryo. In Drosophila, the final four rounds of cleavages occur at the surface of the embryo and give rise to ∼6000 nuclei under a common plasma membrane. We use live imaging to study the dynamics of this process and to characterize the emergent nuclear packing in this system. We show that the characteristic length scale of the internuclear interaction scales with the density, which allows the densifying embryo to sustain the level of structural order at progressively smaller length scales. This is different from nonliving materials, which typically undergo disorder-order transition upon compression. To explain this dynamics, we use a particle-based model that accounts for density-dependent nuclear interactions and synchronous divisions. We reproduce the pair statistics of the disordered packings observed in embryos and recover the scaling relation between the characteristic length scale and the density both in real and reciprocal space. This result reveals how the embryo can robustly preserve the nuclear-packing structure while being densified. In addition to providing quantitative description of self-similar dynamics of nuclear packings, this model generates dynamic meshes for the computational analysis of pattern formation and tissue morphogenesis.


Assuntos
Blástula/citologia , Simulação por Computador , Pressão , Animais , Fenômenos Biomecânicos , Blastoderma/citologia , Divisão Celular , Força Compressiva , Drosophila melanogaster
11.
Dev Dyn ; 248(10): 997-1008, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31390119

RESUMO

BACKGROUND: During zebrafish epiboly, the embryonic cell mass, or blastoderm, spreads to enclose the yolk cell. The blastoderm consists of an outer epithelial sheet, the enveloping layer (EVL), and the underlying deep cell layer (DEL). Studies have provided insights into the mechanisms of EVL and deep cell epiboly, but little is known about the interactions between the two cell layers and what role they may play during epiboly. RESULTS: We used live imaging to examine EVL basal protrusions. We identified them as filopodia based on f-actin content and localization of fluorescently tagged filopodial markers. A spatiotemporal analysis revealed that the largest number of EVL filopodia were present during early epiboly at the animal pole. In functional studies, expression of a constitutively active actin-bundling protein resulted in increased filopodial length and delayed gastrulation. CONCLUSIONS: We identified protrusions on the basal surface of EVL cells as filopodia and showed that they are present throughout the EVL during epiboly. The largest number of filopodia was at the animal pole during early epiboly, which is when and where deep cell radial intercalations occur to the greatest extent. These findings suggest that EVL filopodia may function during epiboly to promote deep cell rearrangements during epiboly initiation.


Assuntos
Epitélio/ultraestrutura , Pseudópodes/ultraestrutura , Análise Espaço-Temporal , Actinas/metabolismo , Animais , Blastoderma/citologia , Embrião não Mamífero , Gastrulação , Peixe-Zebra
12.
Dev Biol ; 455(1): 32-41, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31271752

RESUMO

The differentiation of primordial germ cells (PGCs) is a fundamental step in development. PR domain-containing protein 14 (PRDM14) and B lymphocyte-induced maturation protein 1 (BLIMP1) play pivotal roles in mouse PGC specification. In the present study, we assessed the roles of chicken orthologs of PRDM14 and BLIMP1 in PGC development. PRDM14 and BLIMP1 were expressed in blastodermal cells and PGCs. The in vivo knockdown of PRDM14 or BLIMP1 by introducing a replication-competent retroviral vector expressing shRNAs to the blastodermal stage of embryos reduced the number of SSEA-1 or chicken vasa homologue-positive PGCs on day 5.5-6.5. Since the inhibition of Activin receptor-like kinase 4/5/7 in cultured PGCs reduced the expression of PRDM14, BLIMP1, and NANOG, and that of MEK inhibited PRDM14 expression, the expression of these genes seems to be controlled by Activin A and FGF2 signaling. Overall, PRDM14, BLIMP1, and NANOG seem to be involved in the self-renewal of PGCs in cultured PGCs and embryos.


Assuntos
Proteínas Aviárias/genética , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Animais , Proteínas Aviárias/metabolismo , Blastoderma/citologia , Blastoderma/metabolismo , Autorrenovação Celular/genética , Células Cultivadas , Embrião de Galinha , Galinhas , Células Germinativas/citologia , Antígenos CD15/genética , Antígenos CD15/metabolismo , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Interferência de RNA
13.
In Vitro Cell Dev Biol Anim ; 55(3): 169-176, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30737631

RESUMO

Chicken blastodermal cells (BCs) are pluripotent stem cells derived from early embryos and may be easily obtained and manipulated. However, in vitro cultured BCs have extremely low germline capacity, which may limit their applications. Research on the germ cell differentiation of mammalian pluripotent cells using chemical-inducing agents has gained popularity, and tremendous achievements have been made. Whether chemical-inducing agents allow acquirement of germline competence in BCs is, however, questionable. In this study, retinoic acid (RA) and bone morphogenetic protein 4 (BMP4) promoted the expression of germline-specific genes and restored the germline competence of in vitro cultured BCs. Moreover, BCs induced with RA and BMP4 could efficiently produce gonadal chimeric chick embryos. These results may greatly enhance the potential applications of BCs in biotechnology and basic research.


Assuntos
Blastoderma/citologia , Proteína Morfogenética Óssea 4/farmacologia , Tretinoína/farmacologia , Animais , Animais Geneticamente Modificados , Blastoderma/efeitos dos fármacos , Blastoderma/fisiologia , Blastoderma/transplante , Proteína Morfogenética Óssea 4/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos
14.
Development ; 146(1)2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30602532

RESUMO

Blastema formation, a hallmark of limb regeneration, requires proliferation and migration of progenitors to the amputation plane. Although blastema formation has been well described, the transcriptional programs that drive blastemal progenitors remain unknown. We transcriptionally profiled dividing and non-dividing cells in regenerating stump tissues, as well as the wound epidermis, during early axolotl limb regeneration. Our analysis revealed unique transcriptional signatures of early dividing cells and, unexpectedly, repression of several core developmental signaling pathways in early regenerating stump tissues. We further identify an immunomodulatory role for blastemal progenitors through interleukin 8 (IL-8), a highly expressed cytokine in subpopulations of early blastemal progenitors. Ectopic il-8 expression in non-regenerating limbs induced myeloid cell recruitment, while IL-8 knockdown resulted in defective myeloid cell retention during late wound healing, delaying regeneration. Furthermore, the il-8 receptor cxcr-1/2 was expressed in myeloid cells, and inhibition of CXCR-1/2 signaling during early stages of limb regeneration prevented regeneration. Altogether, our findings suggest that blastemal progenitors are active early mediators of immune support, and identify CXCR-1/2 signaling as an important immunomodulatory pathway during the initiation of regeneration.


Assuntos
Blastoderma/imunologia , Diferenciação Celular/imunologia , Membro Posterior/fisiologia , Transdução de Sinais/imunologia , Células-Tronco/imunologia , Ambystoma mexicanum , Proteínas de Anfíbios/imunologia , Animais , Blastoderma/citologia , Interleucina-8/imunologia , Receptores de Interleucina-8A/imunologia , Receptores de Interleucina-8B/imunologia , Células-Tronco/citologia
15.
Nat Cell Biol ; 21(2): 169-178, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30559456

RESUMO

Tissue morphogenesis is driven by mechanical forces that elicit changes in cell size, shape and motion. The extent by which forces deform tissues critically depends on the rheological properties of the recipient tissue. Yet, whether and how dynamic changes in tissue rheology affect tissue morphogenesis and how they are regulated within the developing organism remain unclear. Here, we show that blastoderm spreading at the onset of zebrafish morphogenesis relies on a rapid, pronounced and spatially patterned tissue fluidization. Blastoderm fluidization is temporally controlled by mitotic cell rounding-dependent cell-cell contact disassembly during the last rounds of cell cleavages. Moreover, fluidization is spatially restricted to the central blastoderm by local activation of non-canonical Wnt signalling within the blastoderm margin, increasing cell cohesion and thereby counteracting the effect of mitotic rounding on contact disassembly. Overall, our results identify a fluidity transition mediated by loss of cell cohesion as a critical regulator of embryo morphogenesis.


Assuntos
Blastoderma/embriologia , Morfogênese , Via de Sinalização Wnt/fisiologia , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Fenômenos Biomecânicos , Blastoderma/citologia , Comunicação Celular/fisiologia , Divisão Celular , Movimento Celular/fisiologia , Elasticidade , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Mitose/fisiologia , Viscosidade , Peixe-Zebra/genética
16.
Elife ; 72018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30375972

RESUMO

Extraembryonic tissues contribute to animal development, which often entails spreading over embryo or yolk. Apart from changes in cell shape, the requirements for this tissue spreading are not well understood. Here, we analyze spreading of the extraembryonic serosa in the scuttle fly Megaselia abdita. The serosa forms from a columnar blastoderm anlage, becomes a squamous epithelium, and eventually spreads over the embryo proper. We describe the dynamics of this process in long-term, whole-embryo time-lapse recordings, demonstrating that free serosa spreading is preceded by a prolonged pause in tissue expansion. Closer examination of this pause reveals mechanical coupling to the underlying yolk sac, which is later released. We find mechanical coupling prolonged and serosa spreading impaired after knockdown of M. abdita Matrix metalloprotease 1. We conclude that tissue-tissue interactions provide a critical functional element to constrain spreading epithelia.


Assuntos
Dípteros/embriologia , Embrião não Mamífero/metabolismo , Membranas Extraembrionárias/metabolismo , Saco Vitelino/embriologia , Âmnio/citologia , Âmnio/embriologia , Animais , Blastoderma/citologia , Forma Celular , Dípteros/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Membrana Serosa/citologia , Membrana Serosa/embriologia , Imagem com Lapso de Tempo
17.
Biotechnol Prog ; 34(3): 778-783, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29388393

RESUMO

The goal of this study was to evaluate effect of slow freezing and vitrification methods on the viability of chicken blastodermal cells (BCs). Proper aliquot of isolated BCs were diluted in the freezing medium composed of 10% DMSO and frozen in the freezing vessel BICELL to reach desired temperature up to -80°C. Then samples were immersed in liquid nitrogen. Other cell aliquot was vitrified in solution containing 10% DMSO and samples were immediately immersed in the liquid nitrogen. The viability of fresh and frozen/thawed BCs was evaluated using Trypan blue method and flow cytometry. Flow cytometry analysis was provided by DRAQ5 dye in combination with Live-Dead kit. Overall, this technique provides both quantitative and qualitative information about BCs. Results obtained from Trypan blue method showed significant differences (P < 0.05) between control (8.37 ± 1.04%) slow freezing (83.73 ± 2.72%) and vitrification group (84.39 ± 1.77%) in the percentage of Trypan blue positive (necrotic) BCs. Moreover, differences (P < 0.05) between control and slow freezing (5.08 ± 1.94%, 73.31 ± 3.90%) and control and vitrification group (2.97 ± 0.30%, 79.02 ± 1.56%) in results on portion of necrotic cells (DRAQ5+ /LD+ ) analyzed by flow cytometry were also observed. The large percentage of necrotic BCs was found in all freezing methods. However, based on ultrastructural analysis, our study showed, that BCs contain lipid granules which prevent successful freezing even though different methods of cryopreservation were used. Thus, freezing of BCs probably required subsequent culture to eliminate lipid droples and yolk granules in the cells, which could possibly improve the success. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:778-783, 2018.


Assuntos
Blastoderma/citologia , Blastoderma/ultraestrutura , Criopreservação , Citometria de Fluxo , Microscopia Eletrônica de Transmissão , Animais , Galinhas
18.
FASEB J ; 32(5): 2563-2573, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29295863

RESUMO

NANOG plays a pivotal role in pluripotency acquisition and lineage specification in higher vertebrates, and its expression is restricted to primordial germ cells (PGCs) during early embryonic development. Mammalian NANOG self-associates via conserved tryptophan-repeat motifs in the C-terminal domain (CTD) to maintain pluripotency. Avian NANOG, however, lacks the conserved motifs, and the molecular mechanism underlying the biologic function is not clearly understood. Here, using spectroscopic and biochemical methods as well as cell-based assays, we report that chicken NANOG (cNANOG) oligomerizes through its CTD via a novel folding-upon-binding mechanism. The CTD of cNANOG is disordered as a monomer and associates into an α-helical multimer driven by intermolecular hydrophobic interactions. Mutation of key aromatic residues in the CTD abrogates the self-association, leading to a loss of the proliferation of chicken PGCs and blastoderm cells. Our results demonstrate that the CTD of cNANOG belongs to a novel IDP that switches into a helical oligomer via self-association, enabling the maintenance of PGCs and blastoderm cells.-Choi, H. J., Kim, I., Lee, H. J., Park, Y. H., Suh, J.-Y., Han, J. Y. Chicken NANOG self-associates via a novel folding-upon-binding mechanism.


Assuntos
Proteínas Aviárias , Blastoderma/metabolismo , Galinhas/metabolismo , Células Germinativas/metabolismo , Proteína Homeobox Nanog , Dobramento de Proteína , Multimerização Proteica , Motivos de Aminoácidos , Animais , Proteínas Aviárias/química , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Blastoderma/citologia , Embrião de Galinha , Galinhas/genética , Células Germinativas/citologia , Interações Hidrofóbicas e Hidrofílicas , Proteína Homeobox Nanog/química , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Domínios Proteicos
19.
Poult Sci ; 96(12): 4399-4408, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29053871

RESUMO

The pioneering study of Eyal-Giladi and Kochav (EG&K; Eyal-Giladi and Kochav, 1976) on the early developmental stages-from fertilization, through oviposition, to the gastrulation process-set the standard for characterizing chicken embryos, and has been used in numerous studies over the years. During uterine development, the chicken embryo undergoes dramatic changes, extremely rapid cell cycles, massive cell death, and axial determination processes. However, once the egg is laid, the temperature drops and the embryo enters into a diapause-like state. This phenomenon is utilized to store fertile eggs prior to incubation. The ability to resume development to hatching, following storage, relies on several factors, including the number of living cells and the embryonic developmental stage. These factors are highly influenced by the storage conditions-mainly duration and temperature. Thus, to study the effects of storage conditions on embryonic viability, a comprehensive characterization of the starting point-shortly after oviposition-is needed. In this study, we characterized freshly laid broiler eggs from Ross 308 flocks for embryonic developmental stage, total cell count, and cell viability. Using the novel high-resolution episcopic microscopy (HREM) system, we show, for the first time, high-resolution 3D morphological models of blastoderms which allow for highly accurate embryonic staging. Staging was also done under a dissecting microscope thus allowing for a direct side-by-side comparison of the two methods. Analysis of freshly laid blastomeres showed that the total nucleus count increases with developmental stage from ∼60,000 at stage X EG&K to ∼130,000 at stage XIII EG&K, whereas the proportion of mitotic index and dying cells at oviposition are ∼2% and ∼5%, respectively. Moreover, staging embryos from young and old flocks revealed that the blastoderms of the old flocks are more developed. Specifically, the predominant embryonic stages were XI and XII EG&K in young and old flocks, respectively. Collectively, we characterized parameters that can serve to analyze the maladaptive effects of prolonged storage under various conditions on embryo survival.


Assuntos
Criação de Animais Domésticos/métodos , Blastoderma/fisiologia , Embrião de Galinha/fisiologia , Galinhas/fisiologia , Óvulo/crescimento & desenvolvimento , Animais , Blastoderma/citologia , Blastoderma/embriologia , Contagem de Células/métodos , Sobrevivência Celular , Embrião de Galinha/embriologia , Embrião de Galinha/crescimento & desenvolvimento , Embriologia/métodos , Índice Mitótico/veterinária
20.
Sci Rep ; 7(1): 5502, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28710464

RESUMO

Mitochondria are inherited maternally as globular and immature organelles in metazoan embryos. We have used the Drosophila blastoderm embryo to characterize their morphology, distribution and functions in embryogenesis. We find that mitochondria are relatively small, dispersed and distinctly distributed along the apico-basal axis in proximity to microtubules by motor protein transport. Live imaging, photobleaching and photoactivation analyses of mitochondrially targeted GFP show that they are mobile in the apico-basal axis along microtubules and are immobile in the lateral plane thereby associating with one syncytial cell. Photoactivated mitochondria distribute equally to daughter cells across the division cycles. ATP depletion by pharmacological and genetic inhibition of the mitochondrial electron transport chain (ETC) activates AMPK and decreases syncytial metaphase furrow extension. In summary, we show that small and dispersed mitochondria of the Drosophila blastoderm embryo localize by microtubule transport and provide ATP locally for the fast syncytial division cycles. Our study opens the possibility of use of Drosophila embryogenesis as a model system to study the impact of maternal mutations in mitochondrial morphology and metabolism on embryo patterning and differentiation.


Assuntos
Blastoderma/citologia , Drosophila/embriologia , Mitocôndrias/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Ciclo Celular , Drosophila/citologia , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/genética , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...