Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.546
Filtrar
1.
BMC Biol ; 22(1): 118, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769528

RESUMO

BACKGROUND: The animal sperm shows high diversity in morphology, components, and motility. In the lepidopteran model insect, the silkworm Bombyx mori, two types of sperm, including nucleate fertile eupyrene sperm and anucleate unfertile apyrene sperm, are generated. Apyrene sperm assists fertilization by facilitating the migration of eupyrene spermatozoa from the bursa copulatrix to the spermatheca. During spermatogenesis, eupyrene sperm bundles extrude the cytoplasm by peristaltic squeezing, while the nuclei of the apyrene sperm bundles are discarded with the same process, forming matured sperm. RESULTS: In this study, we describe that a mechanoreceptor BmPiezo, the sole Piezo ortholog in B. mori, plays key roles in larval feeding behavior and, more importantly, is essential for eupyrene spermatogenesis and male fertility. CRISPR/Cas9-mediated loss of BmPiezo function decreases larval appetite and subsequent body size and weight. Immunofluorescence analyses reveal that BmPiezo is intensely localized in the inflatable point of eupyrene sperm bundle induced by peristaltic squeezing. BmPiezo is also enriched in the middle region of apyrene sperm bundle before peristaltic squeezing. Cytological analyses of dimorphic sperm reveal developmental arrest of eupyrene sperm bundles in BmPiezo mutants, while the apyrene spermatogenesis is not affected. RNA-seq analysis and q-RT-PCR analyses demonstrate that eupyrene spermatogenic arrest is associated with the dysregulation of the actin cytoskeleton. Moreover, we show that the deformed eupyrene sperm bundles fail to migrate from the testes, resulting in male infertility due to the absence of eupyrene sperm in the bursa copulatrix and spermatheca. CONCLUSIONS: In conclusion, our studies thus uncover a new role for Piezo in regulating spermatogenesis and male fertility in insects.


Assuntos
Bombyx , Mecanorreceptores , Espermatogênese , Animais , Espermatogênese/fisiologia , Bombyx/fisiologia , Bombyx/genética , Masculino , Mecanorreceptores/fisiologia , Mecanorreceptores/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Espermatozoides/fisiologia , Espermatozoides/metabolismo
2.
PLoS One ; 19(5): e0298502, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38814922

RESUMO

The skin microbiome maintains healthy human skin, and disruption of the microbiome balance leads to inflammatory skin diseases such as folliculitis and atopic dermatitis. Staphylococcus aureus and Cutibacterium acnes are pathogenic bacteria that simultaneously inhabit the skin and cause inflammatory diseases of the skin through the activation of innate immune responses. Silkworms are useful invertebrate animal models for evaluating innate immune responses. In silkworms, phenoloxidase generates melanin as an indicator of innate immune activation upon the recognition of bacterial or fungal components. We hypothesized that S. aureus and C. acnes interact to increase the innate immunity-activating properties of S. aureus. In the present study, we showed that acidification is involved in the activation of silkworm hemolymph melanization by S. aureus. Autoclaved-killed S. aureus (S. aureus [AC]) alone does not greatly activate silkworm hemolymph melanization. On the other hand, applying S. aureus [AC] treated with C. acnes culture supernatant increased the silkworm hemolymph melanization. Adding C. acnes culture supernatant to the medium decreased the pH. S. aureus [AC] treated with propionic acid, acetic acid, or lactic acid induced higher silkworm hemolymph melanization activity than untreated S. aureus [AC]. S. aureus [AC] treated with hydrochloric acid also induced silkworm hemolymph melanization. The silkworm hemolymph melanization activity of S. aureus [AC] treated with hydrochloric acid was inhibited by protease treatment of S. aureus [AC]. These results suggest that acid treatment of S. aureus induces innate immune activation in silkworms and that S. aureus proteins are involved in the induction of innate immunity in silkworms.


Assuntos
Bombyx , Hemolinfa , Melaninas , Staphylococcus aureus , Animais , Hemolinfa/metabolismo , Hemolinfa/microbiologia , Hemolinfa/imunologia , Bombyx/microbiologia , Bombyx/imunologia , Staphylococcus aureus/imunologia , Melaninas/metabolismo , Imunidade Inata , Concentração de Íons de Hidrogênio , Monofenol Mono-Oxigenase/metabolismo
3.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731405

RESUMO

Chitin, a ubiquitous biopolymer, holds paramount scientific and economic significance. Historically, it has been primarily isolated from marine crustaceans. However, the surge in demand for chitin and the burgeoning interest in biopolymers have necessitated the exploration of alternative sources. Among these methods, the mulberry silkworm (Bombyx mori) has emerged as a particularly intriguing prospect. To isolate chitin from Bombyx mori, a chemical extraction methodology was employed. This process involved a series of meticulously orchestrated steps, including Folch extraction, demineralization, deproteinization, and decolorization. The resultant chitin was subjected to comprehensive analysis utilizing techniques such as attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), 13C nuclear magnetic resonance (NMR) spectroscopy, and wide-angle X-ray scattering (WAXS). The obtained results allow us to conclude that the Bombyx mori represents an attractive alternative source of α-chitin.


Assuntos
Bombyx , Quitina , Bombyx/química , Animais , Quitina/química , Quitina/isolamento & purificação , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Espectroscopia de Ressonância Magnética , Morus/química
4.
Arch Insect Biochem Physiol ; 116(1): e22118, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38713637

RESUMO

We detected enzymatic activity that generates 20-nucleotide (nt) RNA from double-stranded RNAs (dsRNAs) in crude extracts prepared from various silkworm (Bombyx mori) organs. The result using knocked-down cultured cells indicated that this dicing activity originated from B. mori Dicer-2 (BmDcr2). Biochemical analyses revealed that BmDcr2 preferentially cleaves 5'-phosphorylated dsRNAs at the 20-nt site-counted from the 5'-phosphorylated end-and required ATP and magnesium ions for the dicing reaction. This is the first report of the biochemical characterization of Dicer-2 in lepidopteran insects. This enzymatic property of BmDcr2 in vitro is consistent with the in vivo small interfering RNA profile in virus-infected silkworm cells.


Assuntos
Bombyx , RNA de Cadeia Dupla , Ribonuclease III , Animais , Bombyx/genética , Bombyx/metabolismo , RNA de Cadeia Dupla/metabolismo , Ribonuclease III/metabolismo , Ribonuclease III/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , RNA Interferente Pequeno/metabolismo , Magnésio/metabolismo , Larva/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento
5.
Molecules ; 29(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38731513

RESUMO

The various wastes generated by silkworm silk textiles that are no longer in use are increasing, which is causing considerable waste and contamination. This issue has attracted widespread attention in countries that use a lot of silk. Therefore, enhancing the mechanical properties of regenerated silk fibroin (RSF) and enriching the function of silk are important directions to expand the comprehensive utilization of silk products. In this paper, the preparation of RSF/Al2O3 nanoparticles (NPs) hybrid fiber with different Al2O3 NPs contents by wet spinning and its novel performance are reported. It was found that the RSF/Al2O3 NPs hybrid fiber was a multifunctional fiber material with thermal insulation and UV resistance. Natural light tests showed that the temperature rise rate of RSF/Al2O3 NPs hybrid fibers was slower than that of RSF fibers, and the average temperature rose from 29.1 °C to about 35.4 °C in 15 min, while RSF fibers could rise to about 40.1 °C. UV absorption tests showed that the hybrid fiber was resistant to UV radiation. Furthermore, the addition of Al2O3 NPs may improve the mechanical properties of the hybrid fibers. This was because the blending of Al2O3 NPs promoted the self-assembly of ß-sheets in the RSF reaction mixture in a dose-dependent manner, which was manifested as the RSF/Al2O3 NPs hybrid fibers had more ß-sheets, crystallinity, and a smaller crystal size. In addition, RSF/Al2O3 NPs hybrid fibers had good biocompatibility and durability in micro-alkaline sweat environments. The above performance makes the RSF/Al2O3 NPs hybrid fibers promising candidates for application in heat-insulating and UV-resistant fabrics as well as military clothing.


Assuntos
Óxido de Alumínio , Fibroínas , Nanopartículas , Raios Ultravioleta , Fibroínas/química , Nanopartículas/química , Óxido de Alumínio/química , Animais , Bombyx , Temperatura Alta , Humanos , Seda/química
6.
J Gen Virol ; 105(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38767624

RESUMO

Naturally occurring isolates of baculoviruses, such as the Bombyx mori nucleopolyhedrovirus (BmNPV), usually consist of numerous genetically different haplotypes. Deciphering the different haplotypes of such isolates is hampered by the large size of the dsDNA genome, as well as the short read length of next generation sequencing (NGS) techniques that are widely applied for baculovirus isolate characterization. In this study, we addressed this challenge by combining the accuracy of NGS to determine single nucleotide variants (SNVs) as genetic markers with the long read length of Nanopore sequencing technique. This hybrid approach allowed the comprehensive analysis of genetically homogeneous and heterogeneous isolates of BmNPV. Specifically, this allowed the identification of two putative major haplotypes in the heterogeneous isolate BmNPV-Ja by SNV position linkage. SNV positions, which were determined based on NGS data, were linked by the long Nanopore reads in a Position Weight Matrix. Using a modified Expectation-Maximization algorithm, the Nanopore reads were assigned according to the occurrence of variable SNV positions by machine learning. The cohorts of reads were de novo assembled, which led to the identification of BmNPV haplotypes. The method demonstrated the strength of the combined approach of short- and long-read sequencing techniques to decipher the genetic diversity of baculovirus isolates.


Assuntos
Bombyx , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Sequenciamento por Nanoporos , Nucleopoliedrovírus , Polimorfismo de Nucleotídeo Único , Nucleopoliedrovírus/genética , Nucleopoliedrovírus/classificação , Nucleopoliedrovírus/isolamento & purificação , Animais , Sequenciamento por Nanoporos/métodos , Bombyx/virologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genoma Viral
7.
Mol Biol Rep ; 51(1): 666, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777963

RESUMO

BACKGROUND: Insect gut microbiomes play a fundamental role in various aspects of insect physiology, including digestion, nutrient metabolism, detoxification, immunity, growth and development. The wild Muga silkworm, Antheraea assamensis Helfer holds significant economic importance, as it produces golden silk. METHODS AND RESULTS: In the current investigation, we deciphered its intricate gut bacteriome through high-throughput 16S rRNA amplicon sequencing. Further, to understand bacterial community dynamics among silkworms raised under outdoor environmental conditions, we compared its gut bacteriomes with those of the domesticated mulberry silkworm, Bombyx mori L. Most abundant bacterial phyla identified in the gut of A. assamensis were Proteobacteria (78.1%), Bacteroidetes (8.0%) and Firmicutes (6.6%), whereas the most-abundant phyla in B. mori were Firmicutes (49-86%) and Actinobacteria (10-36%). Further, Gammaproteobacteria (57.1%), Alphaproteobacteria (10.47%) and Betaproteobacteria (8.28%) were the dominant bacterial classes found in the gut of A. assamensis. The predominant bacterial families in A. assamensis gut were Enterobacteriaceae (27.7%), Comamonadaceae (9.13%), Pseudomonadaceae (9.08%) Flavobacteriaceae (7.59%) Moraxellaceae (7.38%) Alteromonadaceae (6.8%) and Enterococcaceae (4.46%). In B. mori, the most-abundant bacterial families were Peptostreptococcaceae, Enterococcaceae, Lactobacillaceae and Bifidobacteriaceae, though all showed great variability among the samples. The core gut bacteriome of A. assamensis consisted of Pseudomonas, Acinetobacter, Variovorax, Myroides, Alteromonas, Enterobacter, Enterococcus, Sphingomonas, Brevundimonas, Oleispira, Comamonas, Oleibacter Vagococcus, Aminobacter, Marinobacter, Cupriavidus, Aeromonas, and Bacillus. Comparative gut bacteriome analysis revealed a more complex gut bacterial diversity in wild A. assamensis silkworms than in domesticated B. mori silkworms, which contained a relatively simple gut bacteriome as estimated by OTU richness. Predictive functional profiling of the gut bacteriome suggested that gut bacteria in A. assamensis were associated with a wide range of physiological, nutritional, and metabolic functions, including biodegradation of xenobiotics, lipid, amino acid, carbohydrate metabolism, and biosynthesis of secondary metabolites and amino acids. CONCLUSIONS: These results showed great differences in the composition and diversity of gut bacteria between the two silkworm species. Both insect species harbored core bacterial taxa commonly found in insects, but the relative abundance and composition of these taxa varied markedly.


Assuntos
Bactérias , Bombyx , Microbioma Gastrointestinal , RNA Ribossômico 16S , Animais , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Bombyx/microbiologia , Bombyx/genética , Bactérias/genética , Bactérias/classificação , Filogenia , Mariposas/microbiologia
8.
Bioresour Technol ; 402: 130821, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735341

RESUMO

Probiotics have attracted considerable attention in animal husbandry due to their positive effect on animal growth and health. This study aimed to screen candidate probiotic strain promoting the growth and health of silkworm and reveal the potential mechanisms. A novel probiotic Pediococcus pentosaceus strain (ZZ61) substantially promoted body weight gain, feed efficiency, and silk yield. These effects were likely mediated by changes in the intestinal digestive enzyme activity and nutrient provisioning (e.g., B vitamins) of the host, improving nutrient digestion and assimilation. Additionally, P. pentosaceus produced antimicrobial compounds and increased the antioxidant capacity to protect the host against pathogenic infection. Furthermore, P. pentosaceus affected the gut microbiome and altered the levels of gut metabolites (e.g., glycine and glycerophospholipids), which in turn promotes host nutrition and health. This study contributes to an improved understanding of the interactions between probiotic and host and promotes probiotic utilization in sericulture.


Assuntos
Bombyx , Microbioma Gastrointestinal , Pediococcus pentosaceus , Probióticos , Animais , Bombyx/microbiologia , Probióticos/farmacologia , Ração Animal
9.
Ecotoxicol Environ Saf ; 278: 116434, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38728944

RESUMO

The growing use of nanomaterials has sparked significant interest in assessing the insect toxicities of nanoparticles. The silkworm, as an economically important insect, serves as a promising model for studying how insects respond to harmful substances. Here, we conducted a comprehensive investigation on the impact of graphene oxide (GO) on silkworms using a combination of physiological and transcriptome analyses. GO can enter the midguts and posterior silk glands of silkworms. High GO concentrations (> 25 mg/L) significantly (P < 0.01) inhibited larval growth. Additionally, GO (> 5 mg/L) significantly reduced the cocooning rate, and GO (> 15 mg/L) hindered oviduct development and egg laying in silkworms. GO increased the reactive oxygen species content and regulated catalase activity, suggesting that it may affect insect growth by regulating reactive oxygen detoxification. The transcriptome data analysis showed that 35 metabolism-related genes and 20 ribosome biogenesis-related genes were differentially expressed in response to GO, and their expression levels were highly correlated. Finally, we propose that a Ribosome biogenesis-Metabolic signaling network is involved in responses to GO. The research provides a new perspective on the molecular responses of insects to GO.


Assuntos
Bombyx , Grafite , Larva , Espécies Reativas de Oxigênio , Transcriptoma , Animais , Grafite/toxicidade , Bombyx/efeitos dos fármacos , Bombyx/genética , Bombyx/crescimento & desenvolvimento , Transcriptoma/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/genética , Espécies Reativas de Oxigênio/metabolismo , Feminino , Perfilação da Expressão Gênica
10.
Nat Commun ; 15(1): 4160, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755128

RESUMO

The regeneration of critical-size bone defects, especially those with irregular shapes, remains a clinical challenge. Various biomaterials have been developed to enhance bone regeneration, but the limitations on the shape-adaptive capacity, the complexity of clinical operation, and the unsatisfied osteogenic bioactivity have greatly restricted their clinical application. In this work, we construct a mechanically robust, tailorable and water-responsive shape-memory silk fibroin/magnesium (SF/MgO) composite scaffold, which is able to quickly match irregular defects by simple trimming, thus leading to good interface integration. We demonstrate that the SF/MgO scaffold exhibits excellent mechanical stability and structure retention during the degradative process with the potential for supporting ability in defective areas. This scaffold further promotes the proliferation, adhesion and migration of osteoblasts and the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro. With suitable MgO content, the scaffold exhibits good histocompatibility, low foreign-body reactions (FBRs), significant ectopic mineralisation and angiogenesis. Skull defect experiments on male rats demonstrate that the cell-free SF/MgO scaffold markedly enhances bone regeneration of cranial defects. Taken together, the mechanically robust, personalised and bioactive scaffold with water-responsive shape-memory may be a promising biomaterial for clinical-size and irregular bone defect regeneration.


Assuntos
Materiais Biocompatíveis , Regeneração Óssea , Fibroínas , Magnésio , Células-Tronco Mesenquimais , Osteogênese , Alicerces Teciduais , Fibroínas/química , Fibroínas/farmacologia , Regeneração Óssea/efeitos dos fármacos , Animais , Alicerces Teciduais/química , Masculino , Osteogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Ratos , Magnésio/química , Magnésio/farmacologia , Materiais Biocompatíveis/química , Osteoblastos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Ratos Sprague-Dawley , Água/química , Proliferação de Células/efeitos dos fármacos , Engenharia Tecidual/métodos , Crânio/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Bombyx
11.
ACS Biomater Sci Eng ; 10(5): 2827-2840, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38690985

RESUMO

Silk fibroin, extracted from the silk of the Bombyx mori silkworm, stands out as a biomaterial due to its nontoxic nature, excellent biocompatibility, and adjustable biodegradability. Porous scaffolds, a type of biomaterial, are crucial for creating an optimal microenvironment that supports cell adhesion and proliferation, thereby playing an essential role in tissue remodeling and repair. Therefore, this review focuses on 3D porous silk fibroin-based scaffolds, first summarizing their preparation methods and then detailing their regenerative effects on bone, cartilage, tendon, vascular, neural, skin, hepatic, and tracheal epithelial tissue engineering in recent years.


Assuntos
Fibroínas , Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Porosidade , Animais , Humanos , Fibroínas/química , Bombyx , Materiais Biocompatíveis/química , Seda/química
12.
Sci Rep ; 14(1): 11553, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773312

RESUMO

Knee osteoarthritis is a chronic joint disease mainly characterized by cartilage degeneration. The treatment is challenging due to the lack of blood vessels and nerve supplies in cartilaginous tissue, causing a prominent limitation of regenerative capacity. Hence, we investigated the cellular promotional and anti-inflammatory effects of sericin, Bombyx mori-derived protein, on three-dimensional chondrogenic ATDC5 cell models. The results revealed that a high concentration of sericin promoted chondrogenic proliferation and differentiation and enhanced matrix production through the increment of glycosaminoglycans, COL2A1, COL X, and ALP expressions. SOX-9 and COL2A1 gene expressions were notably elevated in sericin treatment. The proteomic analysis demonstrated the upregulation of phosphoglycerate mutase 1 and triosephosphate isomerase, a glycolytic enzyme member, reflecting the proliferative enhancement of sericin. The differentiation capacity of sericin was indicated by the increased expressions of procollagen12a1, collagen10a1, rab1A, periostin, galectin-1, and collagen6a3 proteins. Sericin influenced the differentiation capacity via the TGF-ß signaling pathway by upregulating Smad2 and Smad3 while downregulating Smad1, BMP2, and BMP4. Importantly, sericin exhibited an anti-inflammatory effect by reducing IL-1ß, TNF-α, and MMP-1 expressions and accelerating COL2A1 production in the early inflammatory stage. In conclusion, sericin demonstrates potential in promoting chondrogenic proliferation and differentiation, enhancing cartilaginous matrix synthesis through glycolysis and TGF-ß signaling pathways, and exhibiting anti-inflammatory properties.


Assuntos
Diferenciação Celular , Proliferação de Células , Condrogênese , Glicólise , Inflamação , Sericinas , Transdução de Sinais , Proteína Smad2 , Proteína Smad3 , Fator de Crescimento Transformador beta , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteína Smad2/metabolismo , Animais , Transdução de Sinais/efeitos dos fármacos , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Condrogênese/efeitos dos fármacos , Sericinas/farmacologia , Glicólise/efeitos dos fármacos , Camundongos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/tratamento farmacológico , Condrócitos/metabolismo , Condrócitos/efeitos dos fármacos , Linhagem Celular , Bombyx/metabolismo
13.
Int J Biol Macromol ; 269(Pt 2): 131954, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697424

RESUMO

Silk fibroin (SF) from the cocoon of silkworm has exceptional mechanical properties and biocompatibility and is used as a biomaterial in a variety of fields. Sustainable, affordable, and scalable manufacturing of SF would enable its large-scale use. We report for the first time the high-level secretory production of recombinant SF peptides in engineered Pichia pastoris cell factories and the processing thereof to nanomaterials. Two SF peptides (BmSPR3 and BmSPR4) were synthesized and secreted by P. pastoris using signal peptides and appropriate spacing between hydrophilic sequences. By strain engineering to reduce protein degradation, increase glycyl-tRNA supply, and improve protein secretion, we created the optimized P. pastoris chassis PPGSP-8 to produce BmSPR3 and BmSPR4. The SF fed-batch fermentation titers of the resulting two P. pastoris cell factories were 11.39 and 9.48 g/L, respectively. Protein self-assembly was inhibited by adding Tween 80 to the medium. Recombinant SF peptides were processed to nanoparticles (NPs) and nanofibrils. The physicochemical properties of nanoparticles R3NPs and R4NPs from the recombinant SFs synthesized in P. pastoris cell factories were similar or superior to those of RSFNPs (Regenerated Silk Fibroin NanoParticles) originating from commercially available SF. Our work will facilitate the production by microbial fermentation of functional SF for use as a biomaterial.


Assuntos
Fibroínas , Proteínas Recombinantes , Fibroínas/química , Fibroínas/biossíntese , Fibroínas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/biossíntese , Nanoestruturas/química , Fermentação , Saccharomycetales/metabolismo , Saccharomycetales/genética , Seda/química , Seda/biossíntese , Animais , Bombyx/metabolismo , Bombyx/genética
14.
Arch Insect Biochem Physiol ; 116(1): e22117, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38706214

RESUMO

More and more evidence shows that small noncoding RNAs (ncRNAs) play diverse roles in development, stress response and other cellular processes, but functional study of intermediate-size ncRNAs is still rare. Here, the expression profile of 16 intermediate-size ncRNAs in ovary and testis of silkworm Bombyx mori were analyzed. Twelve ncRNAs, including 5 small nucleolar RNAs (snoRNAs) and 7 unclassified ncRNAs, accumulated more in the testis than in the ovary of silkworm, especially Bm-163, Bm-51 and Bm-68. Four ncRNAs (including three orphan snoRNAs and one unclassified ncRNA) had higher expression level in the ovary than in the testis, especially Bm-86. Overexpression of the testis-enriched snoRNA Bm-68 in the female led to the accumulation of male-specific isoform of doublesex (BmdsxM) and increased the expression ratio of BmdsxM: BmdsxF. While overexpression of ovary-enriched snoRNA Bm-86 in the male decreased the expression ratio of BmdsxM: BmdsxF, indicating the roles of the two snoRNAs played in the alternative splicing of Bmdsx of silkworm, which will provide new clues for the functional study of snoRNAs in insects.


Assuntos
Processamento Alternativo , Bombyx , Proteínas de Ligação a DNA , Proteínas de Insetos , RNA Nucleolar Pequeno , Animais , Feminino , Masculino , Bombyx/genética , Bombyx/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Ovário/metabolismo , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Testículo/metabolismo
15.
BMC Genomics ; 25(1): 321, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556880

RESUMO

Congenital infection caused by vertical transmission of microsporidia N. bombycis can result in severe economic losses in the silkworm-rearing industry. Whole-transcriptome analyses have revealed non-coding RNAs and their regulatory networks in N. bombycis infected embryos and larvae. However, transcriptomic changes in the microsporidia proliferation and host responses in congenitally infected embryos and larvae remains unclear. Here, we simultaneously compared the transcriptomes of N. bombycis and its host B. mori embryos of 5-day and larvae of 1-, 5- and 10-day during congenital infection. For the transcriptome of N. bombycis, a comparison of parasite expression patterns between congenital-infected embryos and larva showed most genes related to parasite central carbon metabolism were down-regulated in larvae during infection, whereas the majority of genes involved in parasite proliferation and growth were up-regulated. Interestingly, a large number of distinct or shared differentially expressed genes (DEGs) were revealed by the Venn diagram and heat map, many of them were connected to infection related factors such as Ricin B lectin, spore wall protein, polar tube protein, and polysaccharide deacetylase. For the transcriptome of B. mori infected with N. bombycis, beyond numerous DEGs related to DNA replication and repair, mRNA surveillance pathway, RNA transport, protein biosynthesis, and proteolysis, with the progression of infection, a large number of DEGs related to immune and infection pathways, including phagocytosis, apoptosis, TNF, Toll-like receptor, NF-kappa B, Fc epsilon RI, and some diseases, were successively identified. In contrast, most genes associated with the insulin signaling pathway, 2-oxacarboxylic acid metabolism, amino acid biosynthesis, and lipid metabolisms were up-regulated in larvae compared to those in embryos. Furthermore, dozens of distinct and three shared DEGs that were involved in the epigenetic regulations, such as polycomb, histone-lysine-specific demethylases, and histone-lysine-N-methyltransferases, were identified via the Venn diagram and heat maps. Notably, many DEGs of host and parasite associated with lipid-related metabolisms were verified by RT-qPCR. Taken together, simultaneous transcriptomic analyses of both host and parasite genes lead to a better understanding of changes in the microsporidia proliferation and host responses in embryos and larvae in N. bombycis congenital infection.


Assuntos
Bombyx , Nosema , Animais , Transcriptoma , Larva/genética , Larva/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Nosema/fisiologia , Perfilação da Expressão Gênica , Proliferação de Células , Lipídeos , Bombyx/genética
16.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1225-1236, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658159

RESUMO

Phospholipase A2 (PLA2) is widely distributed in animals, plants, and microorganisms, and it plays an important role in many physiological activities. In a previous study, we have identified a secretory PLA2 in Bombyx mori (BmsPLA2-1-1). In this study, we further identified four new sPLA2 genes (BmsPLA2-1-2, BmsPLA2-2, BmsPLA2-3, and BmsPLA2-4) in B. mori genome. All four genes exhibits the characteristic features of sPLA2, including the sPLA2 domain, metal binding sites, and highly conserved catalytic domain. This study completed the cloning, in vitro expression, and expression pattern analysis of the BmsPLA2-4 gene in B. mori. The full length of BmsPLA2-4 is 585 bp, and the recombinant protein obtained through prokaryotic expression has an estimated size of 25 kDa. qRT-PCR analysis revealed that the expression level of BmsPLA2-4 reached its peak on the first day of the fifth instar larval stage. Tissue expression profiling analysis showed that BmsPLA2-4 had the highest expression level in the midgut, followed by the epidermis and fat body. Western blotting analysis results were consistent with those of qRT-PCR. Furthermore, after infecting fifth instar 1-day-old larvae with Escherichia coli and Staphylococcus aureus, the expression level of the BmsPLA2-4 gene significantly increased in 24 h. The findings of this study provides a theoretical basis and valuable experimental data for future related research.


Assuntos
Bombyx , Fosfolipases A2 Secretórias , Bombyx/genética , Bombyx/enzimologia , Animais , Fosfolipases A2 Secretórias/genética , Fosfolipases A2 Secretórias/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Larva/genética , Clonagem Molecular , Staphylococcus aureus/genética , Staphylococcus aureus/enzimologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/biossíntese , Sequência de Aminoácidos , Perfilação da Expressão Gênica
17.
ACS Biomater Sci Eng ; 10(5): 2784-2804, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38597279

RESUMO

Flexible electronics, applicable to enlarged health, AI big data medications, etc., have been one of the most important technologies of this century. Due to its particular mechanical properties, biocompatibility, and biodegradability, cocoon silk (or SF, silk fibroin) plays a key role in flexible electronics/photonics. The review begins with an examination of the hierarchical meso network structures of SF materials and introduces the concepts of meso reconstruction, meso doping, and meso hybridization based on the correlation between the structure and performance of silk materials. The SF meso functionalization was developed according to intermolecular nuclear templating. By implementation of the techniques of meso reconstruction and functionalization in the refolding of SF materials, extraordinary performance can be achieved. Relying on this strategy, particularly designed flexible electronic and photonic components can be developed. This review covers the latest ideas and technologies of meso flexible electronics and photonics based on SF materials/meso functionalization. As silk materials are biocompatible and human skin-friendly, SF meso flexible electronic/photonic components can be applied to wearable or implanted devices. These devices are applicable in human physiological signals and activities sensing/monitoring. In the case of human-machine interaction, the devices can be applicable in in-body information transmission, computation, and storage, with the potential for the combination of artificial intelligence and human intelligence.


Assuntos
Eletrônica , Humanos , Animais , Materiais Biocompatíveis/química , Seda/química , Fibroínas/química , Dispositivos Eletrônicos Vestíveis , Óptica e Fotônica , Bombyx
18.
Int J Biol Macromol ; 268(Pt 2): 131819, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38688334

RESUMO

The Notch signaling pathway is important in cell cycle regulation and cell proliferation. The transcriptional repressor Suppressor of Hairless [Su(H)] is a molecular switch for downstream target genes of the Notch signaling pathway but the regulatory mechanism of the Su(H) gene in the cell cycle is unclear. We determined the function of the Notch signaling pathway and Bombyx mori Su(H) [BmSu(H)] in the regulation of the silkworm cell cycle. Inhibition of Notch signaling promoted the replication of DNA in silkworm gland cells and expression of the BmSu(H) gene was significantly reduced. Overexpression of the BmSu(H) gene inhibited DNA replication and cell proliferation of silkworm cells, whereas knockout of the BmSu(H) gene promoted DNA replication and cell proliferation. Knockout of the BmSu(H) in silkworms improved the efficiency of silk gland cell endoreplication and increased important economic traits. We demonstrated that BmSu(H) protein can directly bind to the promoters of BmCyclinA, BmCyclinE and BmCDK1 genes, inhibiting or promoting their transcription at the cell and individual level. This study identified molecular targets for genetic improvement of the silkworm and also provided insights into the regulatory mechanism of the cell cycle.


Assuntos
Bombyx , Ciclo Celular , Proteínas de Insetos , Animais , Bombyx/genética , Bombyx/metabolismo , Ciclo Celular/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , Transdução de Sinais , Seda/genética , Proliferação de Células/genética , Replicação do DNA , Regiões Promotoras Genéticas/genética , Endorreduplicação , Regulação da Expressão Gênica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
19.
EMBO Rep ; 25(5): 2239-2257, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632376

RESUMO

The PIWI-interacting RNA (piRNA) pathway plays a crucial role in silencing transposons in the germline. piRNA-guided target cleavage by PIWI proteins triggers the biogenesis of new piRNAs from the cleaved RNA fragments. This process, known as the ping-pong cycle, is mediated by the two PIWI proteins, Siwi and BmAgo3, in silkworms. However, the detailed molecular mechanism of the ping-pong cycle remains largely unclear. Here, we show that Spindle-E (Spn-E), a putative ATP-dependent RNA helicase, is essential for BmAgo3-dependent production of Siwi-bound piRNAs in the ping-pong cycle and that this function of Spn-E requires its ATPase activity. Moreover, Spn-E acts to suppress homotypic Siwi-Siwi ping-pong, but this function of Spn-E is independent of its ATPase activity. These results highlight the dual role of Spn-E in facilitating proper heterotypic ping-pong in silkworms.


Assuntos
Bombyx , RNA Interferente Pequeno , Bombyx/genética , Bombyx/metabolismo , Animais , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , RNA Helicases/metabolismo , RNA Helicases/genética , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , RNA de Interação com Piwi
20.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612767

RESUMO

Diseases that occur in silkworms include soft rot, hardening disease, digestive diseases, and sepsis. However, research on the causes of bacterial diseases occurring in silkworms and the resulting changes in the microbial community is lacking. Therefore, we examined the morphological characteristics of sepsis and changes in the microbial community between silkworms that exhibit a unique odor and healthy silkworms; thus, we established a relationship between disease-causing microorganisms and sepsis. After producing a 16S rRNA amplicon library for samples showing sepsis, we obtained information on the microbial community present in silkworms using next-generation sequencing. Compared to that in healthy silkworms, in silkworms with sepsis, the abundance of the Firmicutes phylum was significantly reduced, while that of Proteobacteria was increased. Serratia sp. was dominant in silkworms with sepsis. After bacterial isolation, identification, and reinfection through the oral cavity, we confirmed this organism as the disease-causing agent; its mortality rate was 1.8 times higher than that caused by Serratia marcescens. In summary, we identified a new causative bacterium of silkworm sepsis through microbial community analysis and confirmed that the microbial community balance was disrupted by the aberrant proliferation of certain bacteria.


Assuntos
Bombyx , Microbiota , Sepse , Animais , Serratia/genética , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...