Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biologicals ; 85: 101740, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38217963

RESUMO

Whooping cough is a disease caused by Bordetella pertussis, whose morbidity has increased, motivating the improvement of current vaccines. Reverse vaccinology is a strategy that helps identify proteins with good characteristics fast and with fewer resources. In this work, we applied reverse vaccinology to study the B. pertussis proteome and pangenome with several in-silico tools. We analyzed the B. pertussis Tohama I proteome with NERVE software and compared 234 proteins with B. parapertussis, B. bronchiseptica, and B. holmessi. VaxiJen was used to calculate an antigenicity value; our threshold was 0.6, selecting 84 proteins. The candidates were depurated and grouped in eight family proteins to select representative candidates, according to bibliographic information and their immunological response predicted with ABCpred, Bcepred, IgPred, and C-ImmSim. Additionally, a pangenome study was conducted with 603 B. pertussis strains and PanRV software, identifying 3421 core proteins that were analyzed to select the best candidates. Finally, we selected 15 proteins from the proteome study and seven proteins from the pangenome analysis as good vaccine candidates.


Assuntos
Bordetella parapertussis , Coqueluche , Humanos , Bordetella pertussis/genética , Coqueluche/prevenção & controle , Proteoma/metabolismo , Vacinologia , Bordetella parapertussis/metabolismo , Vacina contra Coqueluche
2.
PLoS One ; 18(11): e0291331, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38011105

RESUMO

B. parapertussis is one of the etiological agents of whooping cough. Once inhaled, the bacteria bind to the respiratory epithelium and start the infection. Little is known about this first step of host colonization and the role of the human airway epithelial barrier on B. parapertussis infection. We here investigated the outcome of the interaction of B. parapertussis with a polarized monolayer of respiratory epithelial cells. Our results show that B. parapertussis preferentially attaches to the intercellular boundaries, and causes the disruption of the tight junction integrity through the action of adenylate cyclase toxin (CyaA). We further found evidence indicating that this disruption enables the bacterial access to components of the basolateral membrane of epithelial cells to which B. parapertussis efficiently attaches and gains access to the intracellular location, where it can survive and eventually spread back into the extracellular environment. Altogether, these results suggest that the adenylate cyclase toxin enables B. parapertussis to overcome the epithelial barrier and eventually establish a niche of persistence within the respiratory epithelial cells.


Assuntos
Bordetella parapertussis , Coqueluche , Humanos , Bordetella parapertussis/metabolismo , Toxina Adenilato Ciclase/metabolismo , Bordetella pertussis/metabolismo , Espaço Intracelular/metabolismo , Coqueluche/microbiologia , Células Epiteliais/metabolismo
3.
Virulence ; 12(1): 2608-2632, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34590541

RESUMO

The highly contagious whooping cough agent Bordetella pertussis has evolved as a human-restricted pathogen from a progenitor which also gave rise to Bordetella parapertussis and Bordetella bronchiseptica. While the latter colonizes a broad range of mammals and is able to survive in the environment, B. pertussis has lost its ability to survive outside its host through massive genome decay. Instead, it has become a highly successful human pathogen by the acquisition of tightly regulated virulence factors and evolutionary adaptation of its metabolism to its particular niche. By the deployment of an arsenal of highly sophisticated virulence factors it overcomes many of the innate immune defenses. It also interferes with vaccine-induced adaptive immunity by various mechanisms. Here, we review data from invitro, human and animal models to illustrate the mechanisms of adaptation to the human respiratory tract and provide evidence of ongoing evolutionary adaptation as a highly successful human pathogen.


Assuntos
Bordetella bronchiseptica , Bordetella parapertussis , Animais , Bordetella bronchiseptica/genética , Bordetella parapertussis/metabolismo , Bordetella pertussis/genética , Bordetella pertussis/metabolismo , Humanos , Mamíferos , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
4.
J Proteomics ; 206: 103448, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31325608

RESUMO

Bordetella parapertussis is one of the pathogens that cause whooping cough. Even though its incidence has been rising in the last decades, this species remained poorly investigated. This study reports the first extensive proteome analysis of this bacterium. In an attempt to gain some insight into the infective phenotype, we evaluated the response of B. parapertussis to iron starvation, a critical stress the bacteria face during infection. Among other relevant findings, we observed that the adaptation to this condition involves significant changes in the abundance of two important virulence factors of this pathogen, namely, adenylate cyclase and the O-antigen. We further used the proteomic data to search for B. parapertussis proteins that are absent or classified as pseudogenes in the genome of Bordetella pertussis to unravel differences between both whooping cough causative agents. Among them, we identified proteins involved in stress resistance and virulence determinants that might help to explain the differences in the pathogenesis of these species and the lack of cross-protection of current acellular vaccines. Altogether, these results contribute to a better understanding of B. parapertussis biology and pathogenesis. SIGNIFICANCE: Whooping cough is a reemerging disease caused by both Bordetella pertussis and Bordetella parapertussis. Current vaccines fail to induce protection against B parapertussis and the incidence of this species has been rising over the years. The proteomic analysis of this study provided relevant insights into potential virulence determinants of this poorly-studied pathogen. It further identified proteins produced by B. parapertussis not present in B. pertussis, which might help to explain both the differences on their respective infectious process and the current vaccine failure. Altogether, the results of this study contribute to the better understanding of B. parapertussis pathogenesis and the eventual design of improved preventive strategies against whooping cough.


Assuntos
Bordetella parapertussis/metabolismo , Bordetella pertussis/metabolismo , Deficiências de Ferro , Proteômica/métodos , Fatores de Virulência/metabolismo , Proteínas de Bactérias/análise , Proteínas de Bactérias/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Bordetella parapertussis/efeitos dos fármacos , Bordetella parapertussis/patogenicidade , Bordetella pertussis/patogenicidade , Células Cultivadas , Meios de Cultura/química , Meios de Cultura/farmacologia , Humanos , Ferro/metabolismo , Ferro/farmacologia , Fenótipo , Proteoma/análise , Proteoma/metabolismo , Virulência/efeitos dos fármacos
5.
Toxins (Basel) ; 9(10)2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28954396

RESUMO

Bordetella pertussis and Bordetella parapertussis are the causal agents of whooping cough in humans. They produce diverse virulence factors, including adenylate cyclase-hemolysin (AC-Hly), a secreted toxin of the repeat in toxins (RTX) family with cyclase, pore-forming, and hemolytic activities. Post-translational modifications (PTMs) are essential for the biological activities of the toxin produced by B. pertussis. In this study, we compared AC-Hly toxins from various clinical isolates of B. pertussis and B. parapertussis, focusing on (i) the genomic sequences of cyaA genes, (ii) the PTMs of partially purified AC-Hly, and (iii) the cytotoxic activity of the various AC-Hly toxins. The genes encoding the AC-Hly toxins of B. pertussis and B. parapertussis displayed very limited polymorphism in each species. Most of the sequence differences between the two species were found in the C-terminal part of the protein. Both toxins harbored PTMs, mostly corresponding to palmitoylations of the lysine 860 residue and palmoylations and myristoylations of lysine 983 for B. pertussis and AC-Hly and palmitoylations of lysine 894 and myristoylations of lysine 1017 for B. parapertussis AC-Hly. Purified AC-Hly from B. pertussis was cytotoxic to macrophages, whereas that from B. parapertussis was not.


Assuntos
Toxina Adenilato Ciclase , Bordetella parapertussis , Bordetella pertussis , Toxina Adenilato Ciclase/genética , Toxina Adenilato Ciclase/metabolismo , Toxina Adenilato Ciclase/toxicidade , Bordetella parapertussis/genética , Bordetella parapertussis/metabolismo , Bordetella pertussis/genética , Bordetella pertussis/metabolismo , Linhagem Celular , Macrófagos/efeitos dos fármacos , Processamento de Proteína Pós-Traducional
6.
PLoS One ; 7(10): e47635, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23112828

RESUMO

Sensing the environment allows pathogenic bacteria to coordinately regulate gene expression to maximize survival within or outside of a host. Here we show that Bordetella species regulate virulence factor expression in response to carbon dioxide levels that mimic in vivo conditions within the respiratory tract. We found strains of Bordetella bronchiseptica that did not produce adenylate cyclase toxin (ACT) when grown in liquid or solid media with ambient air aeration, but produced ACT and additional antigens when grown in air supplemented to 5% CO(2). Transcriptome analysis and quantitative real time-PCR analysis revealed that strain 761, as well as strain RB50, increased transcription of genes encoding ACT, filamentous hemagglutinin (FHA), pertactin, fimbriae and the type III secretion system in 5% CO(2) conditions, relative to ambient air. Furthermore, transcription of cyaA and fhaB in response to 5% CO(2) was increased even in the absence of BvgS. In vitro analysis also revealed increases in cytotoxicity and adherence when strains were grown in 5% CO(2). The human pathogens B. pertussis and B. parapertussis also increased transcription of several virulence factors when grown in 5% CO(2), indicating that this response is conserved among the classical bordetellae. Together, our data indicate that Bordetella species can sense and respond to physiologically relevant changes in CO(2) concentrations by regulating virulence factors important for colonization, persistence and evasion of the host immune response.


Assuntos
Infecções por Bordetella/microbiologia , Bordetella/genética , Bordetella/metabolismo , Dióxido de Carbono/metabolismo , Regulação Bacteriana da Expressão Gênica , Fatores de Virulência de Bordetella/metabolismo , Toxina Adenilato Ciclase/genética , Toxina Adenilato Ciclase/metabolismo , Animais , Bordetella/patogenicidade , Bordetella bronchiseptica/genética , Bordetella bronchiseptica/metabolismo , Bordetella bronchiseptica/patogenicidade , Bordetella parapertussis/genética , Bordetella parapertussis/metabolismo , Bordetella parapertussis/patogenicidade , Bordetella pertussis/genética , Bordetella pertussis/metabolismo , Bordetella pertussis/patogenicidade , Linhagem Celular , Perfilação da Expressão Gênica , Humanos , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Virulência de Bordetella/genética
7.
Clin Microbiol Infect ; 18(9): E340-6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22717007

RESUMO

Bordetella pertussis and Bordetella parapertussis are closely related bacterial agents of whooping cough. Whole-cell pertussis (wP) vaccine was introduced in France in 1959. Acellular pertussis (aP) vaccine was introduced in 1998 as an adolescent booster and was rapidly generalized to the whole population, changing herd immunity by specifically targeting the virulence of the bacteria. We performed a temporal analysis of all French B. pertussis and B. parapertussis isolates collected since 2000 under aP vaccine pressure, using pulsed-field gel electrophoresis (PFGE), genotyping and detection of expression of virulence factors. Particular isolates were selected according to their different phenotype and PFGE type and their characteristics were analysed using the murine model of respiratory infection and in vitro cell cytotoxic assay. Since the introduction of the aP vaccines there has been a steady increase in the number of B. pertussis and B. parapertussis isolates collected that are lacking expression of pertactin. These isolates seem to be as virulent as those expressing all virulence factors according to animal and cellular models of infection. Whereas wP vaccine-induced immunity led to a monomorphic population of B. pertussis, aP vaccine-induced immunity enabled the number of circulating B. pertussis and B. parapertussis isolates not expressing virulence factors to increase, sustaining our previous hypothesis.


Assuntos
Proteínas da Membrana Bacteriana Externa/biossíntese , Infecções por Bordetella/microbiologia , Bordetella parapertussis/metabolismo , Bordetella pertussis/metabolismo , Vacina contra Coqueluche/administração & dosagem , Fatores de Virulência de Bordetella/biossíntese , Animais , Proteínas da Membrana Bacteriana Externa/genética , Western Blotting , Infecções por Bordetella/imunologia , Infecções por Bordetella/prevenção & controle , Bordetella parapertussis/genética , Bordetella parapertussis/isolamento & purificação , Bordetella parapertussis/patogenicidade , Bordetella pertussis/genética , Bordetella pertussis/isolamento & purificação , Bordetella pertussis/patogenicidade , Modelos Animais de Doenças , Eletroforese em Gel de Campo Pulsado , Evolução Molecular , Genótipo , Humanos , Macrófagos/microbiologia , Camundongos , Fatores de Virulência de Bordetella/genética , Coqueluche/imunologia , Coqueluche/microbiologia , Coqueluche/prevenção & controle
8.
Vaccine ; 28(27): 4362-8, 2010 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-20438876

RESUMO

Bordetella parapertussis causes typical whooping cough, as does Bordetella pertussis. However, current commercial vaccines are ineffective against B. parapertussis. In an effort to develop vaccines that are effective in protecting against both B. pertussis and B. parapertussis, we examined the protective effects of vaccines prepared from whole-cells and from recombinant proteins derived from B. parapertussis in a mouse intranasal challenge model. We confirmed current pertussis vaccines did not induce protective immunity against B. parapertussis in the mouse model. A whole-cell vaccine prepared from B. parapertussis induced protective immunity against B. parapertussis but not against B. pertussis, suggesting a combination of a current pertussis vaccine with a whole-cell parapertussis vaccine might prevent whooping cough caused by both species of Bordetella. We also found that filamentous hemagglutinin was a protective antigen of B. parapertussis. Our observations should lead to the development of new pertussis vaccines that can control the two prevalent forms of whooping cough.


Assuntos
Bordetella parapertussis/imunologia , Bordetella pertussis/imunologia , Vacina contra Coqueluche/imunologia , Testes de Aglutinação , Animais , Western Blotting , Bordetella parapertussis/metabolismo , Bordetella parapertussis/fisiologia , Bordetella pertussis/metabolismo , Bordetella pertussis/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Coqueluche/imunologia , Coqueluche/prevenção & controle
9.
Org Biomol Chem ; 7(6): 1203-10, 2009 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-19262941

RESUMO

In connection with studies on lipopolysaccharide biosynthesis in respiratory pathogens we had a need to access potential biosynthetic intermediate sugar nucleotides. Herein we report the chemical synthesis of uridine 5'-diphospho 2,3-diacetamido-2,3-dideoxy-alpha-D-glucuronic acid (UDP-Glc-2,3-diNAcA) (1) from N-acetyl-D-glucosamine in 17 steps and approximately 9% overall yield. This compound has proved invaluable in the elucidation of biosynthetic pathways leading to the formation of 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid-containing polysaccharides.


Assuntos
Bordetella parapertussis/metabolismo , Lipopolissacarídeos/biossíntese , Pseudomonas aeruginosa/metabolismo , Uridina Difosfato Ácido Glucurônico/análogos & derivados , Bordetella parapertussis/patogenicidade , Configuração de Carboidratos , Humanos , Lipopolissacarídeos/química , Pseudomonas aeruginosa/patogenicidade , Estereoisomerismo , Uridina Difosfato Ácido Glucurônico/síntese química , Uridina Difosfato Ácido Glucurônico/metabolismo
10.
PLoS One ; 4(1): e4280, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19169359

RESUMO

The recognition of bacterial lipopolysaccharide (LPS) by host Toll-like receptor (TLR)4 is a crucial step in developing protective immunity against several gram negative bacterial pathogens. Bordetella bronchiseptica and B. pertussis stimulate robust TLR4 responses that are required to control the infection, but a close relative, B. parapertussis, poorly stimulates this receptor, and TLR4 deficiency does not affect its course of infection. This led us to hypothesize that inefficient TLR4 stimulation enables B. parapertussis to evade host immunity. In a mouse model of infection, B. parapertussis grew rapidly in the lungs, but no measurable increase in TLR4-mediated cytokine, chemokine, or leukocyte responses were observed over the first few days of infection. Delivery of a TLR4 stimulant in the inoculum resulted in a robust inflammatory response and a 10- to 100-fold reduction of B. parapertussis numbers. As we have previously shown, B. parapertussis grows efficiently during the first week of infection even in animals passively immunized with antibodies. We show that this evasion of antibody-mediated clearance is dependent on the lack of TLR4 stimulation by B. parapertussis as co-inoculation with a TLR4 agonist resulted in 10,000-fold lower B. parapertussis numbers on day 3 in antibody-treated wild type, but not TLR4-deficient, mice. Together, these results indicate that inefficient TLR4 stimulation by B. parapertussis enables it to avoid host immunity and grow to high numbers in the respiratory tract of naïve and immunized hosts.


Assuntos
Infecções por Bordetella/patologia , Bordetella parapertussis/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Infecções por Bordetella/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Sistema Imunitário , Inflamação , Leucócitos/metabolismo , Lipopolissacarídeos/metabolismo , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Modelos Biológicos
11.
J Immunol ; 181(1): 208-16, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18566386

RESUMO

Bordetella pertussis and B. parapertussis are the etiological agents of pertussis, yet the former has a higher incidence and is the cause of a more severe disease, in part due to pertussis toxin. To identify other factors contributing to the different pathogenicity of the two species, we analyzed the capacity of structurally different lipooligosaccharide (LOS) from B. pertussis and LPS from B. parapertussis to influence immune functions regulated by dendritic cells. Either B. pertussis LOS and B. parapertussis LPS triggered TLR4 signaling and induced phenotypic maturation and IL-10, IL-12p40, IL-23, IL-6, and IL-1beta production in human monocyte-derived dendritic cells (MDDC). B. parapertussis LPS was a stronger inducer of all these activities as compared with B. pertussis LOS, with the notable exception of IL-1beta, which was equally produced. Only B. parapertussis LPS was able to induce IL-27 expression. In addition, although MDDC activation induced by B. parapertussis LPS was greatly dependent on soluble CD14, B. pertussis LOS activity was CD14-independent. The analysis of the intracellular pathways showed that B. parapertussis LPS and B. pertussis LOS equally induced IkappaBalpha and p38 MAPK phosphorylation, but B. pertussis LOS triggered ERK1/2 phosphorylation more rapidly and at higher levels than B. parapertussis LPS. Furthermore, B. pertussis LOS was unable to induce MyD88-independent gene induction, which was instead activated by B. parapertussis LPS, witnessed by STAT1 phosphorylation and induction of the IFN-dependent genes, IFN regulatory factor-1 and IFN-inducible protein-10. These differences resulted in a divergent regulation of Th cell responses, B. pertussis LOS MDDC driving a predominant Th17 polarization. Overall, the data observed reflect the different structure of the two LPS and the higher Th17 response induced by B. pertussis LOS may contribute to the severity of pertussis in humans.


Assuntos
Bordetella parapertussis , Bordetella pertussis , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Lipopolissacarídeos/farmacologia , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/imunologia , Bordetella parapertussis/metabolismo , Bordetella pertussis/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Linhagem Celular , Células Dendríticas/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Receptores de Lipopolissacarídeos/imunologia , Lipopolissacarídeos/biossíntese , Monócitos/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/metabolismo , Ativação Transcricional
12.
Infect Immun ; 76(4): 1774-80, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18285500

RESUMO

Bordetella pertussis, a causative agent of whooping cough, expresses BrkA, which confers serum resistance, but the closely related human pathogen that also causes whooping cough, Bordetella parapertussis, does not. Interestingly, B. parapertussis, but not B. pertussis, produces an O antigen, a factor shown in other models to confer serum resistance. Using a murine model of infection, we determined that O antigen contributes to the ability of B. parapertussis to colonize the respiratory tract during the first week of infection, but not thereafter. Interestingly, an O antigen-deficient strain of B. parapertussis was not defective in colonizing mice lacking the complement cascade. O antigen prevented both complement component C3 deposition on the surface and complement-mediated killing of B. parapertussis. In addition, O antigen was required for B. parapertussis to systemically spread in complement-sufficient mice, but not complement-deficient mice. These data indicate that O antigen enables B. parapertussis to efficiently colonize the lower respiratory tract by protecting against complement-mediated control and clearance.


Assuntos
Bordetella parapertussis/imunologia , Antígenos O/metabolismo , Animais , Infecções por Bordetella/imunologia , Infecções por Bordetella/microbiologia , Bordetella parapertussis/metabolismo , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Complemento C3/genética , Complemento C3/metabolismo , Complemento C5/genética , Complemento C5/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Knockout
14.
Genome Biol ; 7(9): R81, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16956413

RESUMO

BACKGROUND: The respiratory pathogen Bordetella parapertussis is a valuable model in which to study the complex phenotype of host specificity because of its unique two-species host range. One subset of strains, including the sequenced representative, causes whooping cough in humans, while other strains infect only sheep. The disease process in sheep is not well understood, nor are the genetic and transcriptional differences that might provide the basis for host specificity among ovine and human strains. RESULTS: We found 40 previously unknown genomic regions in an ovine strain of B. parapertussis using subtractive hybridization, including unique lipopolysaccharide genes. A microarray survey of the gene contents of 71 human and ovine strains revealed further differences, with 47 regions of difference distinguishing the host-restricted subgroups. In addition, sheep and human strains displayed distinct whole-genome transcript abundance profiles. We developed an animal model in which sheep were inoculated with a sheep strain, human strain, or mixture of the two. We found that the ovine strain persisted in the nasal cavity for 12 to 14 days, while the human strain colonized at lower levels and was no longer detected by 7 days post-inoculation. The ovine strain induced less granulocyte infiltration of the nasal mucosa. CONCLUSION: Several factors may play a role in determining host range of B. parapertussis. Human- and ovine-associated strains have differences in content and sequence of genes encoding proteins that mediate host-pathogen contact, such as lipopolysaccharide and fimbriae, as well as variation in regulation of toxins, type III secretion genes, and other virulence-associated genes.


Assuntos
Infecções por Bordetella/microbiologia , Bordetella parapertussis/genética , Genoma Bacteriano , Animais , Bordetella parapertussis/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Regulação Bacteriana da Expressão Gênica , Variação Genética , Humanos , Lipopolissacarídeos/metabolismo , Especificidade de Órgãos , Ovinos , Especificidade da Espécie
15.
J Biol Chem ; 281(26): 18135-44, 2006 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-16632471

RESUMO

The structures of the lipopolysaccharide (LPS) core and O antigen of Bordetella bronchiseptica and Bordetella parapertussis are known, but how these two regions are linked to each other had not been determined. We have studied LPS from several strains of these microorganisms to determine the complete carbohydrate structure of the LPS. LPS was analyzed using different chemical degradations, NMR spectroscopy, and mass spectrometry. This identified a novel pentasaccharide fragment that links the O chain to the core in all the LPS studied. In addition, although the O chain of these bacteria was reported as a homopolymer of 1,4-linked 2,3-diacetamido-2,3-dideoxy-alpha-galacturonic acid, we discovered that the polymer contains several amidated uronic acids, the number of which varies between strains. These new data describe the complete structure of the LPS carbohydrate backbone for both Bordetella species and help to explain the complex genetics of LPS biosynthesis in these bacteria.


Assuntos
Bordetella bronchiseptica/metabolismo , Bordetella parapertussis/metabolismo , Lipopolissacarídeos/biossíntese , Lipopolissacarídeos/química , Sequência de Carboidratos , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Especificidade da Espécie , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...