Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Front Cell Infect Microbiol ; 13: 1112952, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36743301

RESUMO

Introduction: We developed a new simple method to assess the composition of proteinaceous components in the saliva of Ornithodoros moubata, the main vehicle for pathogen transmission and a likely source of bioactive molecules acting at the tick-vertebrate host interface. To collect naturally expectorated saliva from the ticks we employed an artificial membrane feeding technique using a simple, chemically defined diet containing phagostimulants and submitted native saliva samples collected in this way for liquid chromatography-mass spectrometry (LC-MS) analysis. These experiments were conducted with groups of uninfected ticks as well as with O. moubata infected with B. duttonii. The ticks exhibited a fair feeding response to the tested diet with engorgement rates reaching as high as 60-100% of ticks per feeding chamber. The LC-MS analysis identified a total of 17 and 15 proteins in saliva samples from the uninfected and infected O. moubata nymphs, respectively. Importantly, the analysis was sensitive enough to detect up to 9 different proteins in the samples of saliva containing diet upon which as few as 6 nymphal ticks fed during the experiments. Some of the proteins recognized in the analysis are well known for their immunomodulatory activity in a vertebrate host, whereas others are primarily thought of as structural or "housekeeping" proteins and their finding in the naturally expectorated tick saliva confirms that they can be secreted and might serve some functions at the tick-host interface. Most notably, some of the proteins that have long been suspected for their importance in the vector-pathogen interactions of Borrelia spirochetes were detected only in the samples from infected ticks, suggesting that their expression was altered by the persistent colonization of the tick's salivary glands by spirochetes. The simple method described herein is an important addition to the toolbox available to study the vector-host-pathogen interactions in the rapidly feeding soft ticks.


Assuntos
Argasidae , Borrelia , Ornithodoros , Animais , Saliva , Borrelia/fisiologia
2.
Mol Ecol ; 32(4): 786-799, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36461660

RESUMO

Vector-borne pathogens exist in obligate transmission cycles between vector and reservoir host species. Host and vector shifts can lead to geographic expansion of infectious agents and the emergence of new diseases in susceptible individuals. Three bacterial genospecies (Borrelia afzelii, Borrelia bavariensis, and Borrelia garinii) predominantly utilize two distinct tick species as vectors in Asia (Ixodes persulcatus) and Europe (Ixodes ricinus). Through these vectors, the bacteria can infect various vertebrate groups (e.g., rodents, birds) including humans where they cause Lyme borreliosis, the most common vector-borne disease in the Northern hemisphere. Yet, how and in which order the three Borrelia genospecies colonized each continent remains unclear including the evolutionary consequences of this geographic expansion. Here, by reconstructing the evolutionary history of 142 Eurasian isolates, we found evidence that the ancestors of each of the three genospecies probably have an Asian origin. Even so, each genospecies studied displayed a unique substructuring and evolutionary response to the colonization of Europe. The pattern of allele sharing between continents is consistent with the dispersal rate of the respective vertebrate hosts, supporting the concept that adaptation of Borrelia genospecies to the host is important for pathogen dispersal. Our results highlight that Eurasian Lyme borreliosis agents are all capable of geographic expansion with host association influencing their dispersal; further displaying the importance of host and vector association to the geographic expansion of vector-borne pathogens and potentially conditioning their capacity as emergent pathogens.


Assuntos
Distribuição Animal , Vetores Aracnídeos , Borrelia , Ixodes , Doença de Lyme , Animais , Humanos , Ásia , Borrelia/genética , Borrelia/fisiologia , Grupo Borrelia Burgdorferi/genética , Grupo Borrelia Burgdorferi/fisiologia , Ixodes/microbiologia , Ixodes/fisiologia , Doença de Lyme/microbiologia , Doença de Lyme/transmissão , Europa (Continente) , Vetores Aracnídeos/microbiologia , Vetores Aracnídeos/fisiologia , Distribuição Animal/fisiologia , Adaptação Biológica/genética , Adaptação Biológica/fisiologia
3.
mBio ; 13(5): e0116122, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36036625

RESUMO

Relapsing fever, caused by diverse Borrelia spirochetes, is prevalent in many parts of the world and causes significant morbidity and mortality. To investigate the pathoetiology of relapsing fever, we performed a high-throughput screen of Borrelia-binding host factors using a library of human extracellular and secretory proteins and identified CD55 as a novel host binding partner of Borrelia crocidurae and Borrelia persica, two agents of relapsing fever in Africa and Eurasia. CD55 is present on the surface of erythrocytes, carries the Cromer blood group antigens, and protects cells from complement-mediated lysis. Using flow cytometry, we confirmed that both human and murine CD55 bound to B. crocidurae and B. persica. Given the expression of CD55 on erythrocytes, we investigated the role of CD55 in pathological B. crocidurae-induced erythrocyte aggregation (rosettes), which enables spirochete immune evasion. We showed that rosette formation was partially dependent on host cell CD55 expression. Pharmacologically, soluble recombinant CD55 inhibited erythrocyte rosette formation. Finally, CD55-deficient mice infected with B. crocidurae had a lower pathogen load and elevated proinflammatory cytokine and complement factor C5a levels. In summary, our results indicate that CD55 is a host factor that is manipulated by the causative agents of relapsing fever for immune evasion. IMPORTANCE Borrelia species are causative agents of Lyme disease and relapsing fever infections in humans. B. crocidurae causes one of the most prevalent relapsing fever infections in parts of West Africa. In the endemic regions, B. crocidurae is present in ~17% of the ticks and ~11% of the rodents that serve as reservoirs. In Senegal, ~7% of patients with acute febrile illness were found to be infected with B. crocidurae. There is little information on host-pathogen interactions and how B. crocidurae manipulates host immunity. In this study, we used a high-throughput screen to identify host proteins that interact with relapsing fever-causing Borrelia species. We identified CD55 as one of the host proteins that bind to B. crocidurae and B. persica, the two causes of relapsing fever in Africa and Eurasia. We show that the interaction of B. crocidurae with CD55, present on the surface of erythrocytes, is key to immune evasion and successful infection in vivo. Our study further shows the role of CD55 in complement regulation, regulation of inflammatory cytokine levels, and innate immunity during relapsing fever infection. Overall, this study sheds light on host-pathogen interactions during relapsing fever infection in vivo.


Assuntos
Antígenos de Grupos Sanguíneos , Borrelia , Febre Recorrente , Humanos , Animais , Camundongos , Febre Recorrente/epidemiologia , Evasão da Resposta Imune , Borrelia/fisiologia , Roedores , Citocinas
4.
Front Immunol ; 13: 886733, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693799

RESUMO

Pathogens that traffic in the blood of their hosts must employ mechanisms to evade the host innate immune system, including the complement cascade. The Lyme disease spirochete, Borreliella burgdorferi, has evolved numerous outer membrane lipoproteins that interact directly with host proteins. Compared to Lyme disease-associated spirochetes, relatively little is known about how an emerging tick-borne spirochetal pathogen, Borrelia miyamotoi, utilizes surface lipoproteins to interact with a human host. B. burgdorferi expresses the multifunctional lipoprotein, BBK32, that inhibits the classical pathway of complement through interaction with the initiating protease C1r, and also interacts with fibronectin using a separate intrinsically disordered domain. B. miyamotoi encodes two separate bbk32 orthologs denoted fbpA and fbpB; however, the activities of these proteins are unknown. Here, we show that B. miyamotoi FbpA binds human fibronectin in a manner similar to B. burgdorferi BBK32, whereas FbpB does not. FbpA and FbpB both bind human complement C1r and protect a serum-sensitive B. burgdorferi strain from complement-mediated killing, but surprisingly, differ in their ability to recognize activated C1r versus zymogen states of C1r. To better understand the observed differences in C1r recognition and inhibition properties, high-resolution X-ray crystallography structures were solved of the C1r-binding regions of B. miyamotoi FbpA and FbpB at 1.9Å and 2.1Å, respectively. Collectively, these data suggest that FbpA and FbpB have partially overlapping functions but are functionally and structurally distinct. The data presented herein enhances our overall understanding of how bloodborne pathogens interact with fibronectin and modulate the complement system.


Assuntos
Proteínas de Bactérias/metabolismo , Borrelia burgdorferi , Borrelia , Doença de Lyme , Borrelia/fisiologia , Proteínas do Sistema Complemento/metabolismo , Fibronectinas , Humanos , Lipoproteínas
5.
Infect Immun ; 90(5): e0068321, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35384689

RESUMO

Borrelia recurrentis is the causative agent of louse-borne relapsing fever and the only Borrelia species transmitted by an insect rather than a tick vector. While bed bugs (Cimex lectularius L.) are not established vectors of any human pathogens, a recent study reported that they may be competent vectors of B. recurrentis. However, many aspects of infection and transmission remain unclear in this possible secondary vector. Here, we carried out several quantitative laboratory studies to gain a better understanding of the host suitability of bed bugs relative to the established body louse vector as well as the factors that may affect the ability of bed bugs to transmit the pathogen. We fed bed bugs B. recurrentis and estimated the level and duration of infection in the hemolymph using live imaging. We performed quantitative PCR (qPCR) to examine whole-body spirochete levels and the occurrence of vertical transmission to progeny. We also developed an assay to compare the amounts of force required to release infectious hemolymph from recently engorged bed bugs and body lice. Finally, we analyzed humoral antibacterial activity in the hemolymph, hemolymph pH, and hemocyte activity in both insect species. Our results confirm that within 24 h of ingestion, B. recurrentis can penetrate the midgut epithelium of bed bugs and enter the hemolymph, overcoming a major host barrier, as in body lice. Once in the hemolymph, spirochetes remain visible for at least 4 days. Moreover, we show that bed bugs are more physically susceptible to crushing than body lice, suggesting that crushing is a feasible route for the natural dissemination of B. recurrentis from the hemolymph of bed bugs, as for body lice. Nonetheless, our data also indicate that bed bugs are suboptimal hosts for B. recurrentis, as the bacterium does not appear to proliferate to high levels or stably colonize the hemolymph and exhibits pleomorphism in this environment. In particular, our data suggest that hemolymph pH and unique cellular immune responses, rather than humoral effectors, may be involved in limiting spirochete survival in bed bugs. Notably, we document the formation of extracellular DNA traps by bed bug hemocytes for the first time. For these reasons, while bed bugs may be capable of limited transmission given their ecology, vector competence is probably minimal relative to body lice. Additional mechanistic studies of human pathogen infection of bed bugs may provide much-needed insight into the biological factors that restrict their ability to act as vectors and may reveal novel mechanisms of immunity.


Assuntos
Percevejos-de-Cama , Borrelia , Pediculus , Febre Recorrente , Animais , Percevejos-de-Cama/microbiologia , Borrelia/fisiologia , Humanos , Pediculus/microbiologia , Febre Recorrente/microbiologia
6.
PLoS Negl Trop Dis ; 16(2): e0010212, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35171908

RESUMO

Tick borne relapsing fever (TBRF) is a zoonosis caused by various Borrelia species transmitted to humans by both soft-bodied and (more recently recognized) hard-bodied ticks. In recent years, molecular diagnostic techniques have allowed to extend our knowledge on the global epidemiological picture of this neglected disease. Nevertheless, due to the patchy occurrence of the disease and the lack of large clinical studies, the knowledge on several clinical aspects of the disease remains limited. In order to shed light on some of these aspects, we have systematically reviewed the literature on TBRF and summarized the existing data on epidemiology and clinical aspects of the disease. Publications were identified by using a predefined search strategy on electronic databases and a subsequent review of the reference lists of the obtained publications. All publications reporting patients with a confirmed diagnosis of TBRF published in English, French, Italian, German, and Hungarian were included. Maps showing the epidemiogeographic mosaic of the different TBRF Borrelia species were compiled and data on clinical aspects of TBRF were analysed. The epidemiogeographic mosaic of TBRF is complex and still continues to evolve. Ticks harbouring TBRF Borrelia have been reported worldwide, with the exception of Antarctica and Australia. Although only molecular diagnostic methods allow for species identification, microscopy remains the diagnostic gold standard in most clinical settings. The most suggestive symptom in TBRF is the eponymous relapsing fever (present in 100% of the cases). Thrombocytopenia is the most suggestive laboratory finding in TBRF. Neurological complications are frequent in TBRF. Treatment is with beta-lactams, tetracyclines or macrolids. The risk of Jarisch-Herxheimer reaction (JHR) appears to be lower in TBRF (19.3%) compared to louse-borne relapsing fever (LBRF) (55.8%). The overall case fatality rate of TBRF (6.5%) and LBRF (4-10.2%) appears to not differ. Unlike LBRF, where perinatal fatalities are primarily attributable to abortion, TBRF-related perinatal fatalities appear to primarily affect newborns.


Assuntos
Borrelia/fisiologia , Febre Recorrente/microbiologia , Doenças Transmitidas por Carrapatos/microbiologia , Animais , Antibacterianos/uso terapêutico , Borrelia/efeitos dos fármacos , Borrelia/genética , Borrelia/isolamento & purificação , Humanos , Febre Recorrente/diagnóstico , Febre Recorrente/tratamento farmacológico , Febre Recorrente/epidemiologia , Doenças Transmitidas por Carrapatos/diagnóstico , Doenças Transmitidas por Carrapatos/tratamento farmacológico , Doenças Transmitidas por Carrapatos/epidemiologia , Carrapatos/classificação , Carrapatos/microbiologia , Carrapatos/fisiologia
7.
mSphere ; 6(5): e0068221, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34585963

RESUMO

Tick-borne diseases have expanded over the last 2 decades as a result of shifts in tick and pathogen distributions. These shifts have significantly increased the need for accurate portrayal of real-time pathogen distributions and prevalence in hopes of stemming increases in human morbidity. Traditionally, pathogen distribution and prevalence have been monitored through case reports or scientific collections of ticks or reservoir hosts, both of which have challenges that impact the extent, availability, and accuracy of these data. Citizen science tick collections and testing campaigns supplement these data and provide timely estimates of pathogen prevalence and distributions to help characterize and understand tick-borne disease threats to communities. We utilized our national citizen science tick collection and testing program to describe the distribution and prevalence of four Ixodes-borne pathogens, Borrelia burgdorferi sensu lato, Borrelia miyamotoi, Anaplasma phagocytophilum, and Babesia microti, across the continental United States. IMPORTANCE In the 21st century, zoonotic pathogens continue to emerge, while previously discovered pathogens continue to have changes within their distribution and prevalence. Monitoring these pathogens is resource intensive, requiring both field and laboratory support; thus, data sets are often limited within their spatial and temporal extents. Citizen science collections provide a method to harness the general public to collect samples, enabling real-time monitoring of pathogen distribution and prevalence.


Assuntos
Anaplasma phagocytophilum/fisiologia , Babesia microti/fisiologia , Borrelia/fisiologia , Ixodes/fisiologia , Anaplasma phagocytophilum/isolamento & purificação , Distribuição Animal , Animais , Babesia microti/isolamento & purificação , Borrelia/isolamento & purificação , Ciência do Cidadão , Interações Hospedeiro-Patógeno , Ixodes/microbiologia , Ixodes/parasitologia , Doenças Transmitidas por Carrapatos/transmissão , Estados Unidos
8.
Ann Agric Environ Med ; 28(3): 397-403, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34558260

RESUMO

OBJECTIVES: The aim of the study was to analyze some metalloproteinases, cytokines, and chemokines in LB patients and healthy seropositive subjects. The presence of IgM/IgG antibodies against specific Borreliella antigens was analyzed in the presence or absence of clinical manifestations of LB. MATERIAL AND METHODS: The study involved 38 patients diagnosed with LB and arthralgia and/or arthritis symptoms, and 57 foresters presenting no clinical symptoms of LB. The ELISA test was applied for general screening of anti-Borreliella IgM/IgG. Western blot was used for confirmatory diagnosis of LB for the positive and borderline results. Serum IL-2, IL-4, IL-6, IL-10, IL-17A, IFN-γ, TNF, IL-8, CCL5, CXCL9/MIG, CCL2/MCP-1, CXCL10/IP-10 concentrations were measured with the use of the Human Cytometric CBA test. The concentration of MMP-2 and MMP-9 in the serum was determined with the use of ELISA tests. RESULTS: Analysis of the cytokines and chemokines revealed that only the concentration of IL-2 was significantly higher (2.4 pg/m; p=0.00641) in patients with LB symptoms than in the seropositive individuals (0.4 pg/ml). The MMP2 concentration was significantly higher (233.3 ng/ml; p=0.00294) in patients with clinical manifestations of LB than in those occupationally exposed to tick bites, but did not have anti-Borreliella antibodies (192.0 ng/ml). CONCLUSIONS: The presence of IgG antibodies against a number of Borreliella antigens and the differences in the IL-2 and MMP2 levels in seropositive or seronegative individuals and symptomatic LB patients, may indicate differences in the intensity of the immune response to the infection and, consequently, may induce development of clinical manifestations of the disease in seropositive and seronegative individuals.


Assuntos
Doença de Lyme/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Anticorpos Antibacterianos/sangue , Infecções Assintomáticas , Borrelia/imunologia , Borrelia/fisiologia , Quimiocinas/sangue , Citocinas/sangue , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Doença de Lyme/diagnóstico , Doença de Lyme/microbiologia , Masculino , Metaloproteinase 2 da Matriz/sangue , Metaloproteinase 9 da Matriz/sangue , Pessoa de Meia-Idade , Picadas de Carrapatos/sangue , Picadas de Carrapatos/diagnóstico , Picadas de Carrapatos/microbiologia , Carrapatos/fisiologia , Adulto Jovem
9.
Parasit Vectors ; 14(1): 451, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488849

RESUMO

Complement has been considered as an important factor impacting the host-pathogen association of spirochetes belonging to the Borrelia burgdorferi sensu lato complex, and may play a role in the spirochete's ecology. Birds are known to be important hosts for ticks and in the maintenance of borreliae. Recent field surveys and laboratory transmission studies indicated that certain avian species act as reservoir hosts for different Borrelia species. Nevertheless, our current understanding of the molecular mechanisms determining host tropism of Borrelia is still in its fledgling stage. Concerning the role of complement in avian-host tropism, only a few bird species and Borrelia species have been analysed so far. Here, we performed in vitro serum bactericidal assays with serum samples collected from four bird species including the European robin Erithacus rubecula, the great tit Parus major, the Eurasian blackbird Turdus merula, and the racing pigeon Columba livia, as well as four Borrelia species (B. afzelii, B. garinii, B. valaisiana, and B. burgdorferi sensu stricto). From July to September 2019, juvenile wild birds were caught using mist nets in Portugal. Racing pigeons were sampled in a loft in October 2019. Independent of the bird species analysed, all Borrelia species displayed an intermediate serum-resistant or serum-resistant phenotype except for B. afzelii challenged with serum from blackbirds. This genospecies was efficiently killed by avian complement, suggesting that blackbirds served as dead-end hosts for B. afzelii. In summary, these findings suggest that complement contributes in the avian-spirochete-tick infection cycle and in Borrelia-host tropism.


Assuntos
Aves/sangue , Aves/microbiologia , Borrelia/efeitos dos fármacos , Proteínas do Sistema Complemento/farmacologia , Reservatórios de Doenças/veterinária , Animais , Animais Selvagens , Doenças das Aves/microbiologia , Aves/classificação , Borrelia/classificação , Borrelia/fisiologia , Reservatórios de Doenças/microbiologia , Interações entre Hospedeiro e Microrganismos , Doença de Lyme/transmissão , Portugal
10.
Infect Immun ; 89(6)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33846120

RESUMO

Relapsing fever (RF), caused by spirochetes of the genus Borrelia, is a globally distributed, vector-borne disease with high prevalence in developing countries. To date, signaling pathways required for infection and virulence of RF Borrelia spirochetes are unknown. Cyclic di-AMP (c-di-AMP), synthesized by diadenylate cyclases (DACs), is a second messenger predominantly found in Gram-positive organisms that is linked to virulence and essential physiological processes. Although Borrelia is Gram-negative, it encodes one DAC (CdaA), and its importance remains undefined. To investigate the contribution of c-di-AMP signaling in the RF bacterium Borrelia turicatae, a cdaA mutant was generated. The mutant was significantly attenuated during murine infection, and genetic complementation reversed this phenotype. Because c-di-AMP is essential for viability in many bacteria, whole-genome sequencing was performed on cdaA mutants, and single-nucleotide polymorphisms identified potential suppressor mutations. Additionally, conditional mutation of cdaA confirmed that CdaA is important for normal growth and physiology. Interestingly, mutation of cdaA did not affect expression of homologs of virulence regulators whose levels are impacted by c-di-AMP signaling in the Lyme disease bacterium Borrelia burgdorferi Finally, the cdaA mutant had a significant growth defect when grown with salts, at decreased osmolarity, and without pyruvate. While the salt treatment phenotype was not reversed by genetic complementation, possibly due to suppressor mutations, growth defects at decreased osmolarity and in media lacking pyruvate could be attributed directly to cdaA inactivation. Overall, these results indicate CdaA is critical for B. turicatae pathogenesis and link c-di-AMP to osmoregulation and central metabolism in RF spirochetes.


Assuntos
Proteínas de Bactérias/metabolismo , Borrelia/fisiologia , Fósforo-Oxigênio Liases/metabolismo , Febre Recorrente/microbiologia , Animais , Proteínas de Bactérias/genética , Borrelia/patogenicidade , AMP Cíclico/metabolismo , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno , Camundongos , Mutação , Fósforo-Oxigênio Liases/genética , Febre Recorrente/metabolismo , Sistemas do Segundo Mensageiro , Virulência/genética
11.
Infect Immun ; 89(7): e0004821, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33875475

RESUMO

The spirochetal bacterium Borrelia recurrentis causes louse-borne relapsing fever (LBRF). B. recurrentis is unique because, as opposed to other Borrelia spirochetes, this strictly human pathogen is transmitted by lice. Despite the high mortality and historically proven epidemic potential and current outbreaks in African countries and Western Europe, research on LBRF has been obstructed by the lack of suitable animal models. The previously used grivet monkey model is associated with ethical concerns, among other issues. An existing immunodeficient mouse model does not limit bacteremia due to its impaired immune system. In this study, we used genetically diverse Collaborative Cross (CC) lines to develop the first LBRF immunocompetent mouse model. Out of 12 CC lines tested, CC046 mice consistently developed B. recurrentis-induced spirochetemia during the first 3 days postchallenge as concordantly detected by dark-field microscopy, culture, and quantitative PCR. However, spirochetemia was not detected from day 4 through day 10 postchallenge. The high-level spirochetemia (>107 cells/ml of blood) observed in CC046 mice was similar to that recorded in LBRF patients as well as immunocompetent mouse strains experimentally infected by tick-borne relapsing fever (RF) spirochetes, Borrelia hermsii and Borrelia persica. In contrast to the Old World and New World RF spirochetes, which develop multiple relapses (n = 3 to 9), B. recurrentis produced only single culture-detectable spirochetemia in CC046 mice. The lack of relapses may not be surprising, as LBRF patients and the grivet monkey model usually develop no or only 1 to 2 spirochetemic relapses. The novel model will now allow scientists to study B. recurrentis in the context of intact immunity.


Assuntos
Infecções por Borrelia/microbiologia , Borrelia/fisiologia , Modelos Animais de Doenças , Animais , Bacteriemia , Carga Bacteriana , Infecções por Borrelia/diagnóstico , Humanos , Camundongos , Microscopia , Reação em Cadeia da Polimerase , Febre Recorrente/microbiologia
12.
Appl Environ Microbiol ; 87(11)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33741637

RESUMO

Borrelia persica, transmitted by the argasid tick Ornithodoros tholozani, causes human tick-borne relapsing fever in the Middle East and Central Asia. Infection is acquired often when visiting tick-infested caves and reported to be transmitted mainly transovarially between ticks, occasionally infecting humans. To study the epidemiology of this infection, ticks were trapped in 24 caves in 12 geographic zones covering all of Israel and identified morphologically. DNA was extracted from larvae, nymphs, and adult stages from each location and PCR followed by DNA sequencing was performed to identify Borrelia infection, tick species, and tick blood meal sources. We collected 51,472 argasid ticks from 16 of 24 caves surveyed. We analyzed 2,774 O. tholozani ticks, and 72 (2.6%) from nine caves were PCR positive for B. persica Infection rates in male, female, and nymphal ticks (4.4%, 3%, and 3.2%, respectively) were higher than in larva (P < 0.001), with only 3 (0.04%) positive larvae. Presence of blood meal was associated with B. persica infection in ticks (P = 0.003), and blood meals of golden jackals, red foxes, and Cairo spiny mouse were associated with infection (P ≤ 0.043). PCR survey of 402 wild mammals revealed B. persica infection with the highest rates in social voles (22%), red foxes (16%), golden jackals (8%), and Cairo spiny mice (3%). In conclusion, although transovarial tick transmission of B. persica occurs at low levels, ticks apparently acquire infection mainly from wildlife canid and rodents and may eventually transmit relapsing fever borreliosis to humans who enter their habitat.IMPORTANCEBorrelia persica is a spirochete that causes tick-borne relapsing fever in humans in an area that spans from India to the Mediterranean. Until now, it was thought that the soft tick vector of this infection, Ornithodoros tholozani, is also its main reservoir and it transmits B. persica mostly transovarially between tick generations. This study showed that tick infection with B. persica is associated with feeding blood from wild jackals, foxes, and rodents and that transovarial transmission is minimal. Since O. tholozani ticks are found in isolated caves and ruins, it is assumed that wild canids who migrate over long distances have a major role in the transmission of B. persica between remote tick populations, and it is then maintained locally also by rodents and eventually transferred to humans during tick bites. Prevention of human infection could be achieved by restricting entrance of canines and humans to habitats with O. tholozani populations.


Assuntos
Zoonoses Bacterianas/transmissão , Borrelia/fisiologia , Reservatórios de Doenças/veterinária , Ornithodoros/fisiologia , Febre Recorrente/transmissão , Animais , Animais Selvagens/microbiologia , Zoonoses Bacterianas/microbiologia , Aves/microbiologia , Cavernas/parasitologia , Dieta , Reservatórios de Doenças/microbiologia , Comportamento Alimentar , Feminino , Israel , Masculino , Mamíferos/microbiologia , Ninfa/crescimento & desenvolvimento , Ninfa/microbiologia , Ninfa/fisiologia , Ornithodoros/crescimento & desenvolvimento , Ornithodoros/microbiologia , Febre Recorrente/microbiologia
13.
Parasit Vectors ; 14(1): 51, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446237

RESUMO

Borrelia miyamotoi, a bacterium that causes relapsing fever, is found in ixodid ticks throughout the northern hemisphere. The first cases of human infection with B. miyamotoi were identified in 2011. In the eastern USA, blacklegged ticks (Ixodes scapularis) become infected by feeding on an infected vertebrate host, or through transovarial transmission. We surveyed B. miyamotoi prevalence in ticks within forested habitats in Dutchess County, New York, and identified possible reservoir hosts. To assess spatial variation in infection, we collected questing nymphal ticks at > 150 sites. To assess temporal variation in infection, we collected questing nymphs for 8 years at a single study site. We collected questing larval ticks from nine plots to estimate the amount of transovarial transmission. To evaluate potential reservoir hosts, we captured 14 species of mammal and bird hosts naturally infested with larval blacklegged ticks and held these hosts in the laboratory until ticks fed to repletion and molted to nymphs. We determined infection for all ticks using quantitative polymerase chain reaction. The overall infection prevalence of questing nymphal ticks across all sites was ~ 1%, but prevalence at individual sites was as high as 9.1%. We detected no significant increase in infection through time. Only 0.4% of questing larval ticks were infected. Ticks having fed as larvae from short-tailed shrews, red squirrels, and opossums tended to have higher infection prevalence than did ticks having fed on other hosts. Further studies of the role of hosts in transmission are warranted. The locally high prevalence of B. miyamotoi in the New York/New England landscape suggests the importance of vigilance by health practitioners and the public.


Assuntos
Borrelia/fisiologia , Ixodes/microbiologia , Análise Espaço-Temporal , Animais , Borrelia/isolamento & purificação , Borrelia/patogenicidade , Ecossistema , Florestas , Larva/microbiologia , New York , Ninfa/microbiologia , Febre Recorrente/microbiologia , Febre Recorrente/transmissão
14.
Curr Issues Mol Biol ; 42: 385-408, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33310914

RESUMO

Being able to vizualize a pathogen at a site of interaction with a host is an aesthetically appealing idea and the resulting images can be both informative as well as enjoyable to view. Moreover, the approaches used to derive these images can be powerful in terms of offering data unobtainable by other methods. In this article, we review three primary modalities for live imaging Borrelia spirochetes: whole animal imaging, intravital microscopy and live cell imaging. Each method has strengths and weaknesses, which we review, as well as specific purposes for which they are optimally utilized. Live imaging borriliae is a relatively recent development and there was a need of a review to cover the area. Here, in addition to the methods themselves, we also review areas of spirochete biology that have been significantly impacted by live imaging and present a collection of images associated with the forward motion in the field driven by imaging studies.


Assuntos
Borrelia/citologia , Microscopia , Animais , Fenômenos Fisiológicos Bacterianos , Borrelia/fisiologia , Humanos , Microscopia/métodos , Imagem Óptica/métodos
15.
Ticks Tick Borne Dis ; 12(1): 101587, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33074149

RESUMO

Borrelia miyamotoi is a tick-borne spirochete of the relapsing fever borrelia group and an emerging pathogen of public health significance. The genomes of relapsing fever borreliae and Lyme disease borreliae consist of multiple linear and circular plasmids in addition to the chromosome. Previous work with B. burgdorferi sensu lato found diminished infectivity upon continuous in vitro culture passage that was attributable to plasmid loss. The effect of long-term culture passage on B. miyamotoi is not known. We generated a series of plasmid-specific primer sets and developed a multiplex PCR assay to detect the 14 known plasmids of B. miyamotoi North American strains LB-2001 and CT13-2396. We assessed the plasmid content of B. miyamotoi LB-2001 over 64 culture passages spanning 15 months and determined that strain LB-2001 retained all plasmids upon prolonged in vitro cultivation and remained infectious in mice. We also found that strain LB-2001 lacks plasmid lp20-1 which is present in strain CT13-2396. These results suggest that B. miyamotoi remains genetically stable when cultured and passaged in vitro.


Assuntos
Técnicas Bacteriológicas , Borrelia/fisiologia , Reação em Cadeia da Polimerase Multiplex/métodos , Fenótipo , Febre Recorrente/microbiologia , Animais , Feminino , Camundongos , Plasmídeos/fisiologia
16.
Infect Genet Evol ; 85: 104570, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32998077

RESUMO

The bacterial genus, Borrelia, is comprised of vector-borne spirochete species that infect and are transmitted from multiple host species. Some Borrelia species cause highly-prevalent diseases in humans and domestic animals. Evolutionary, ecological, and molecular research on many Borrelia species have resulted in tremendous progress toward understanding the biology and natural history of these species. Yet, many outstanding questions, such as how Borrelia populations will be impacted by climate and land-use change, will require an interdisciplinary approach. The evolutionary ecology research framework incorporates theory and data from evolutionary, ecological, and molecular studies while overcoming common assumptions within each field that can hinder integration across these disciplines. Evolutionary ecology offers a framework to evaluate the ecological consequences of evolved traits and to predict how present-day ecological processes may result in further evolutionary change. Studies of microbes with complex transmission cycles, like Borrelia, which interact with multiple vertebrate hosts and arthropod vectors, are poised to leverage the power of the evolutionary ecology framework to identify the molecular interactions involved in ecological processes that result in evolutionary change. Using existing data, we outline how evolutionary ecology theory can delineate how interactions with other species and the physical environment create selective forces or impact migration of Borrelia populations and result in micro-evolutionary changes. We further discuss the ecological and molecular consequences of those micro-evolutionary changes. While many of the currently outstanding questions will necessitate new experimental designs and additional empirical data, many others can be addressed immediately by integrating existing molecular and ecological data within an evolutionary ecology framework.


Assuntos
Evolução Biológica , Borrelia , Ecologia , Interações Hospedeiro-Patógeno , Doença de Lyme/microbiologia , Animais , Vetores Artrópodes/microbiologia , Borrelia/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Ixodes/microbiologia , Doença de Lyme/transmissão
17.
Parasit Vectors ; 13(1): 191, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32312278

RESUMO

BACKGROUND: Borrelia burgdorferi is a tick-borne spirochete that causes Lyme borreliosis (LB). After an initial tick bite, it spreads from the deposition site in the dermis to distant tissues of the host. It is generally believed that this spirochete disseminates via the hematogenous route. Borrelia persica causes relapsing fever and is able to replicate in the blood stream. Currently the exact dissemination pathway of LB pathogens in the host is not known and controversially discussed. METHODS: In this study, we established a strict intravenous infection murine model using host-adapted spirochetes. Survival capacity and infectivity of host-adapted B. burgdorferi sensu stricto (Bbss) were compared to those of B. persica (Bp) after either intradermal (ID) injection into the dorsal skin of immunocompetent mice or strict intravenous (IV) inoculation via the jugular vein. By in vitro culture and PCR, viable spirochetes and their DNA load in peripheral blood were periodically monitored during a 49/50-day course post-injection, as well as in various tissue samples collected at day 49/50. Specific antibodies in individual plasma/serum samples were detected with serological methods. RESULTS: Regardless of ID or IV injection, DNA of Bp was present in blood samples up to day 24 post-challenge, while no Bbss was detectable in the blood circulation during the complete observation period. In contrast to the brain tropism of Bp, Bbss spirochetes were found in ear, skin, joint, bladder, and heart tissue samples of only ID-inoculated mice. All tested tissues collected from IV-challenged mice were negative for traces of Bbss. ELISA testing of serum samples showed that Bp induced gradually increasing antibody levels after ID or IV inoculation, while Bbss did so only after ID injection but not after IV inoculation. CONCLUSIONS: This study allows us to draw the following conclusions: (i) Bp survives in the blood and disseminates to the host's brain via the hematogenous route; and (ii) Bbss, in contrast, is cleared rapidly from the blood stream and is a tissue-bound spirochete.


Assuntos
Infecções por Borrelia/sangue , Infecções por Borrelia/microbiologia , Borrelia burgdorferi/fisiologia , Borrelia/fisiologia , Animais , Infecções por Borrelia/fisiopatologia , Modelos Animais de Doenças , Feminino , Imunocompetência , Injeções Intradérmicas , Injeções Intravenosas , Camundongos , Organismos Livres de Patógenos Específicos
18.
Ticks Tick Borne Dis ; 11(3): 101377, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32005628

RESUMO

The relapsing fever spirochete Borrelia hermsii and the Lyme disease spirochete Borrelia burgdorferi sensu stricto each produces an abundant, orthologous, outer membrane protein, Vtp and OspC, respectively, when transmitted by tick bite. Gene inactivation studies have shown that both proteins are essential for spirochete infectivity when transmitted by their respective tick vectors. Therefore, we transformed a vtp-minus mutant of B. hermsii with ospC from B. burgdorferi and examined the behavior of this transgenic spirochete in its soft tick vector Ornithodoros hermsi. IFA staining indicated up to 97.8 % of the transgenic B. hermsii upregulated OspC in the ticks' salivary glands compared to no more than 12.8 % in the midgut, similar to our previous findings with wild-type B. hermsii producing Vtp. Transformation with ospC also restored B. hermsii infectivity to mice when fed upon by infected ticks. Previous sequence analysis of Vtp for 79 isolates and DNA samples of B. hermsii in our laboratory showed this protein is highly polymorphic with 9 divergent amino acid types, yet strikingly the signal peptide is identical among all samples and the same for all OspC signal peptides for B. burgdorferi and related species examined to date. Searches in multiple genome sequences for other species of relapsing fever spirochetes failed to find the same signal peptide sequence to help identify potential transmission-associated proteins. However, some candidate signal peptides with highly similar sequences were found and worthy of future efforts with other species. While OspC of B. burgdorferi restored infectivity to a Vtp-minus mutant of B. hermsii, the functions of these proteins are not known. Our results should stimulate investigators to search for orthologous transmission-associated proteins in other tick-borne spirochetes to better understand how this group of pathogens has coevolved with diverse tick vectors.


Assuntos
Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Borrelia/fisiologia , Ornithodoros/microbiologia , Animais , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Borrelia/genética , Borrelia burgdorferi/genética , Feminino , Masculino , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/fisiologia , Ninfa/crescimento & desenvolvimento , Ninfa/microbiologia , Ornithodoros/crescimento & desenvolvimento
19.
Trends Parasitol ; 36(3): 304-314, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32007396

RESUMO

The skin plays a key role in vector-borne diseases because it is the site where the arthropod coinoculates pathogens and its saliva. Lyme borreliosis, particularly well investigated in this context, is a multisystemic infectious disease caused by Borrelia burgdorferi sensu lato and transmitted by the hard tick Ixodes. Numerous in vitro studies were conducted to better understand the role of specific skin cells and tick saliva in host defense, vector feeding, and pathogen transmission. The skin was also evidenced in various animal models as the site of bacterial multiplication and persistence. We present the achievements in this field as well as the gaps that impede comprehensive knowledge of the disease pathophysiology and the development of efficient diagnostic tools and vaccines in humans.


Assuntos
Borrelia/fisiologia , Doença de Lyme/microbiologia , Pele/microbiologia , Animais , Borrelia/imunologia , Humanos , Ixodes/microbiologia , Doença de Lyme/diagnóstico , Doença de Lyme/imunologia , Doença de Lyme/prevenção & controle , Pele/imunologia
20.
Ticks Tick Borne Dis ; 11(2): 101335, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31836459

RESUMO

In this paper we survey key issues in bacterial taxonomy and review the literature regarding the recent genus separation proposed for the genus Borrelia. We discuss how information on members of the genus Borrelia is increasing but detailed knowledge on the relevant features is available only for a small subset of species. The data accumulated here show that there is considerable overlap in ecology, clinical aspects and molecular features between clades that argue against splitting of the genus Borrelia.


Assuntos
Infecções por Borrelia/microbiologia , Borrelia/classificação , Classificação , Características de História de Vida , Borrelia/genética , Borrelia/fisiologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...