Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 15032, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929136

RESUMO

SQUAMOSA-promoter binding like proteins (SBPs/SPLs) are plant specific transcription factors targeted by miR156 and involved in various biological pathways, playing multi-faceted developmental roles. This gene family is not well characterized in Brachypodium. We identified a total of 18 SBP genes in B. distachyon genome. Phylogenetic analysis revealed that SBP gene family in Brachypodium expanded through large scale duplication. A total of 10 BdSBP genes were identified as targets of miR156. Transcript cleavage analysis of selected BdSBPs by miR156 confirmed their antagonistic connection. Alternative splicing was observed playing an important role in BdSBPs and miR156 interaction. Characterization of T-DNA Bdsbp9 mutant showed reduced plant growth and spike length, reflecting its involvement in the spike development. Expression of a majority of BdSBPs elevated during spikelet initiation. Specifically, BdSBP1 and BdSBP3 differentially expressed in response to vernalization. Differential transcript abundance of BdSBP1, BdSBP3, BdSBP8, BdSBP9, BdSBP14, BdSBP18 and BdSBP23 genes was observed during the spike development under high temperature. Co-expression network, protein-protein interaction and biological pathway analysis indicate that BdSBP genes mainly regulate transcription, hormone, RNA and transport pathways. Our work reveals the multi-layered control of SBP genes and demonstrates their association with spike development and temperature sensitivity in Brachypodium.


Assuntos
Brachypodium/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Brachypodium/classificação , Brachypodium/crescimento & desenvolvimento , Família Multigênica , Filogenia , Desenvolvimento Vegetal , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
2.
Genome ; 61(8): 559-565, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29883550

RESUMO

Brachypodium distachyon (n = 5) is a diploid and has been widely used as a genetic model. Brachypodium stacei (n = 10) and B. hybridum (n = 15) are species that are related to B. distachyon, leading to an hypothesis that they are part of a polyploid series based on x = 5. Several lines of evidence suggest that this hypothesis is incorrect and that the genomes of the three taxa may have evolved by a more complex process. We constructed an optical whole-genome BioNano genome (BNG) map for each species and did pairwise alignment of the BNG maps. The maps showed that B. distachyon and B. stacei are both diploid, in spite of B. stacei having twice as many chromosomes as B. distachyon, and that B. hybridum is an allopolyploid formed from hybridization between B. distachyon and B. stacei. This study also demonstrated the use of BNG maps in the detection and quantification of structural variants among the genomes.


Assuntos
Brachypodium/genética , Evolução Molecular , Genoma/genética , Filogenia , Brachypodium/classificação , Cromossomos de Plantas/genética , Diploide , Poliploidia , Especificidade da Espécie
3.
Plant Mol Biol ; 96(3): 305-314, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29322303

RESUMO

KEY MESSAGE: We studied the salt stress tolerance of two accessions isolated from different areas of the world (Norway and Tunisia) and characterized the mechanism(s) regulating salt stress in Brachypodium sylvaticum Osl1 and Ain1. Perennial grasses are widely grown in different parts of the world as an important feedstock for renewable energy. Their perennial nature that reduces management practices and use of energy and agrochemicals give these biomass crops advantages when dealing with modern agriculture challenges such as soil erosion, increase in salinized marginal lands and the runoff of nutrients. Brachypodium sylvaticum is a perennial grass that was recently suggested as a suitable model for the study of biomass plant production and renewable energy. However, its plasticity to abiotic stress is not yet clear. We studied the salt stress tolerance of two accessions isolated from different areas of the world and characterized the mechanism(s) regulating salt stress in B. sylvaticum Osl1, originated from Oslo, Norway and Ain1, originated from Ain-Durham, Tunisia. Osl1 limited sodium transport from root to shoot, maintaining a better K/Na homeostasis and preventing toxicity damage in the shoot. This was accompanied by higher expression of HKT8 and SOS1 transporters in Osl1 as compared to Ain1. In addition, Osl1 salt tolerance was accompanied by higher abundance of the vacuolar proton pump pyrophosphatase and Na+/H+ antiporters (NHXs) leading to a better vacuolar pH homeostasis, efficient compartmentation of Na+ in the root vacuoles and salt tolerance. Although preliminary, our results further support previous results highlighting the role of Na+ transport systems in plant salt tolerance. The identification of salt tolerant and sensitive B. sylvaticum accessions can provide an experimental system for the study of the mechanisms and regulatory networks associated with stress tolerance in perennials grass.


Assuntos
Brachypodium/fisiologia , Tolerância ao Sal/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Brachypodium/classificação , Brachypodium/efeitos dos fármacos , Plantas Tolerantes a Sal/efeitos dos fármacos , Plantas Tolerantes a Sal/fisiologia , Estresse Fisiológico/efeitos dos fármacos
4.
Plant J ; 93(6): 1088-1101, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29381236

RESUMO

Brachypodium distachyon is a well-established model monocot plant, and its small and compact genome has been used as an accurate reference for the much larger and often polyploid genomes of cereals such as Avena sativa (oats), Hordeum vulgare (barley) and Triticum aestivum (wheat). Centromeres are indispensable functional units of chromosomes and they play a core role in genome polyploidization events during evolution. As the Brachypodium genus contains about 20 species that differ significantly in terms of their basic chromosome numbers, genome size, ploidy levels and life strategies, studying their centromeres may provide important insight into the structure and evolution of the genome in this interesting and important genus. In this study, we isolated the centromeric DNA of the B. distachyon reference line Bd21 and characterized its composition via the chromatin immunoprecipitation of the nucleosomes that contain the centromere-specific histone CENH3. We revealed that the centromeres of Bd21 have the features of typical multicellular eukaryotic centromeres. Strikingly, these centromeres contain relatively few centromeric satellite DNAs; in particular, the centromere of chromosome 5 (Bd5) consists of only ~40 kb. Moreover, the centromeric retrotransposons in B. distachyon (CRBds) are evolutionarily young. These transposable elements are located both within and adjacent to the CENH3 binding domains, and have similar compositions. Moreover, based on the presence of CRBds in the centromeres, the species in this study can be grouped into two distinct lineages. This may provide new evidence regarding the phylogenetic relationships within the Brachypodium genus.


Assuntos
Brachypodium/genética , Centrômero/genética , DNA de Plantas/genética , Genoma de Planta/genética , Sequência de Aminoácidos , Brachypodium/classificação , Brachypodium/metabolismo , Centrômero/metabolismo , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , DNA de Plantas/metabolismo , Evolução Molecular , Histonas/genética , Histonas/metabolismo , Hibridização in Situ Fluorescente , Nucleossomos/genética , Nucleossomos/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poliploidia , Ligação Proteica , Homologia de Sequência de Aminoácidos
5.
New Phytol ; 218(4): 1631-1644, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29206296

RESUMO

Few pan-genomic studies have been conducted in plants, and none of them have focused on the intraspecific diversity and evolution of their plastid genomes. We address this issue in Brachypodium distachyon and its close relatives B. stacei and B. hybridum, for which a large genomic data set has been compiled. We analyze inter- and intraspecific plastid comparative genomics and phylogenomic relationships within a family-wide framework. Major indel differences were detected between Brachypodium plastomes. Within B. distachyon, we detected two main lineages, a mostly Extremely Delayed Flowering (EDF+) clade and a mostly Spanish (S+) - Turkish (T+) clade, plus nine chloroplast capture and two plastid DNA (ptDNA) introgression and micro-recombination events. Early Oligocene (30.9 million yr ago (Ma)) and Late Miocene (10.1 Ma) divergence times were inferred for the respective stem and crown nodes of Brachypodium and a very recent Mid-Pleistocene (0.9 Ma) time for the B. distachyon split. Flowering time variation is a main factor driving rapid intraspecific divergence in B. distachyon, although it is counterbalanced by repeated introgression between previously isolated lineages. Swapping of plastomes between the three different genomic groups, EDF+, T+, S+, probably resulted from random backcrossing followed by stabilization through selection pressure.


Assuntos
Brachypodium/classificação , Brachypodium/genética , Ecótipo , Flores/fisiologia , Genomas de Plastídeos , Genômica , Filogenia , Recombinação Genética/genética , Sequência de Bases , Evolução Molecular , Genes de Plantas , Variação Genética , Geografia , Haplótipos/genética , Região do Mediterrâneo , Fatores de Tempo
6.
PLoS One ; 12(7): e0180352, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28683139

RESUMO

The heat shock protein 70s (Hsp70s) and heat shock factors (Hsfs) play key roles in protecting plant cells or tissues from various abiotic stresses. Brachypodium distachyon, recently developed an excellent model organism for functional genomics research, is related to the major cereal grain species. Although B. distachyon genome has been fully sequenced, the information of Hsf and Hsp70 genes and especially the regulatory network between Hsfs and Hsp70s remains incomplete. Here, a total of 24 BdHsfs and 29 BdHsp70s were identified in the genome by bioinformatics analysis and the regulatory network between Hsfs and Hsp70s were performed in this study. Based on highly conserved domain and motif analysis, BdHsfs were grouped into three classes, and BdHsp70s divided into six groups, respectively. Most of Hsf proteins contain five conserved domains: DBD, HR-A/B region, NLS and NES motifs and AHA domain, while Hsp70 proteins have three conserved domains: N-terminal nucleotide binding domain, peptide binding domain and a variable C-terminal lid region. Expression data revealed a large number of BdHsfs and BdHsp70s were induced by HS challenge, and a previous heat acclimation could induce the acquired thermotolerance to help seedling suffer the severe HS challenge, suggesting that the BdHsfs and BdHsp70s played a role in alleviating the damage by HS. The comparison revealed that, most BdHsfs and BdHsp70s genes responded to multiple abiotic stresses in an overlapping relationship, while some of them were stress specific response genes. Moreover, co-expression relationships and predicted protein-protein interaction network implied that class A and B Hsfs played as activator and repressors, respectively, suggesting that BdHsp70s might be regulated by both the activation and the repression mechanisms under stress condition. Our genomics analysis of BdHsfs and BdHsp70s provides important evolutionary and functional characterization for further investigation of the accurate regulatory mechanisms among Hsfs and Hsp70s in herbaceous plants.


Assuntos
Brachypodium/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Proteínas de Choque Térmico HSP70/genética , Resposta ao Choque Térmico/genética , Proteínas de Plantas/genética , Brachypodium/classificação , Brachypodium/efeitos dos fármacos , Brachypodium/metabolismo , Mapeamento Cromossômico , Secas , Duplicação Gênica , Perfilação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Proteínas de Choque Térmico HSP70/metabolismo , Temperatura Alta , Anotação de Sequência Molecular , Família Multigênica , Filogenia , Proteínas de Plantas/metabolismo , Domínios Proteicos , Mapeamento de Interação de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Salinidade , Cloreto de Sódio/farmacologia , Estresse Fisiológico
7.
Mol Phylogenet Evol ; 114: 111-121, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28603035

RESUMO

Flowering time is a carefully regulated trait controlled primarily through the action of the central genetic regulator, FLOWERING LOCUS T (FT). Recently it was demonstrated that a microRNA, miR5200, targets the end of the second exon of FT under short-day photoperiods in the grass subfamily Pooideae, thus preventing FT transcripts from reaching threshold levels under non-inductive conditions. Pooideae are an interesting group in that they rapidly diversified from the tropics into the northern temperate region during a major global cooling event spanning the Eocene-Oligocene transition. We hypothesize that miR5200 photoperiod-sensitive regulation of Pooideae flowering time networks assisted their transition into northern seasonal environments. Here, we test predictions derived from this hypothesis that miR5200, originally found in bread wheat and later identified in Brachypodium distachyon, (1) was present in the genome of the Pooideae common ancestor, (2) is transcriptionally regulated by photoperiod, and (3) is negatively correlated with FT transcript abundance, indicative of miR5200 regulating FT. Our results demonstrate that miR5200 did evolve at or around the base of Pooideae, but only acquired photoperiod-regulated transcription within the Brachypodium lineage. Based on expression profiles and previous data, we posit that the progenitor of miR5200 was co-regulated with FT by an unknown mechanism.


Assuntos
Evolução Molecular , MicroRNAs/genética , Poaceae/genética , Sequência de Bases , Brachypodium/classificação , Brachypodium/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , MicroRNAs/classificação , Fotoperíodo , Filogenia , Poaceae/classificação , Regulon/genética , Alinhamento de Sequência , Transcriptoma
8.
PLoS One ; 11(12): e0167171, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27936041

RESUMO

Brachypodium hybridum (2n = 30) is a natural allopolyploid with highly divergent sub-genomes derived from two extant diploid species, B. distachyon (2n = 10) and B. stacei (2n = 20) that differ in chromosome evolution and number. We created synthetic B. hybridum allotetraploids by hybridizing various lines of B. distachyon and B. stacei. The initial amphihaploid F1 interspecific hybrids were obtained at low frequencies when B. distachyon was used as the maternal parent (0.15% or 0.245% depending on the line used) and were sterile. No hybrids were obtained from reciprocal crosses or when autotetraploids of the parental species were crossed. Colchicine treatment was used to double the genome of the F1 amphihaploid lines leading to allotetraploids. The genome-doubled F1 plants produced a few S1 (first selfed generation) seeds after self-pollination. S1 plants from one parental combination (Bd3-1×Bsta5) were fertile and gave rise to further generations whereas those of another parental combination (Bd21×ABR114) were sterile, illustrating the importance of the parental lineages crossed. The synthetic allotetraploids were stable and resembled the natural B. hybridum at the phenotypic, cytogenetic and genomic levels. The successful creation of synthetic B. hybridum offers the possibility to study changes in genome structure and regulation at the earliest stages of allopolyploid formation in comparison with the parental species and natural B. hybridum.


Assuntos
Brachypodium/genética , Genoma de Planta/genética , Melhoramento Vegetal/métodos , Tetraploidia , Brachypodium/classificação , Cromossomos de Plantas/efeitos dos fármacos , Cromossomos de Plantas/genética , Colchicina/farmacologia , Diploide , Engenharia Genética/métodos , Variação Genética , Modelos Genéticos , Fenótipo , Reprodutibilidade dos Testes , Especificidade da Espécie , Moduladores de Tubulina/farmacologia
9.
PLoS One ; 10(3): e0122027, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25815771

RESUMO

Plant-specific NAC proteins are one of the largest families of transcription factors in plants, and members of this family have been characterized with roles in the regulation of diverse biological processes, including development and stress responses. In the present study, we identified 101 putative NAC domain-encoding genes (BdNACs) through systematic sequence analysis in Brachypodium distachyon, a new model plant of family Poaceae. BdNAC proteins were phylogenetically clustered into 13 groups, and each group possesses similar motif compositions. Phylogenetic analysis using known stress-related NACs from Arabidopsis and rice as query sequences identified 18 BdNACs as putative stress-responsive genes. In silico promoter analysis showed that almost all BdNAC genes contain putative stress-related cis-elements in their promoter regions. Expression profile of BdNAC genes in response to abiotic stresses and phytohormones was analyzed by quantitative real-time RT-PCR. Several putative stress-responsive BdNAC genes, including BdNAC003 and BdNAC044 which is ortholog of known stress-responsive rice gene SNAC1 and SNAC2, respectively, were highly regulated by multiple abiotic stresses and stress-related phytohormone treatments. Taken together, our results presented here would be helpful in laying the foundation for understanding of the complex mechanisms of NAC mediated abiotic stress signaling transduction pathways in B. distachyon.


Assuntos
Brachypodium/genética , Genes de Plantas , Proteínas de Plantas/genética , Elementos de Resposta , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Sequência de Bases , Brachypodium/classificação , Dados de Sequência Molecular , Motivos de Nucleotídeos , Filogenia
10.
PLoS One ; 9(3): e93503, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24675822

RESUMO

Paleogenomic studies based on bioinformatic analyses of DNA sequences have enabled unprecedented insight into the evolution of grass genomes. They have revealed that nested chromosome fusions played an important role in the divergence of modern grasses. Nowadays, studies on karyotype evolution based on the sequence analysis can also be effectively complemented by the fine-scale cytomolecular approach. In this work, we studied the karyotype evolution of small genome grasses using BAC-FISH based comparative chromosome barcoding in four Brachypodium species: diploid B. distachyon (2n = 10) and B. sylvaticum (2n = 18), diploid (2n = 18) and allopolyploid (2n = 28) B. pinnatum as well as B. phoenicoides (2n = 28). Using BAC clones derived from the B. distachyon genomic libraries for the chromosomes Bd2 and Bd3, we identified the descending dysploidy events that were common for diploids with x = 9 and B. distachyon as well as two nested chromosome fusions that were specific only for B. distachyon. We suggest that dysploidy events that are shared by different lineages of the genus had already appeared in their common ancestor. We also show that additional structural rearrangements, such as translocations and duplications, contributed to increasing genome diversification in the species analysed. No chromosomes structured exactly like Bd2 and Bd3 were found in B. pinnatum (2n = 28) and B. phoenicoides. The structure of Bd2 and Bd3 homeologues belonging to the two genomes in the allopolyploids resembled the structure of their counterparts in the 2n = 18 diploids. These findings reinforce the hypothesis which excludes B. distachyon as a potential parent for Eurasian perennial Brachypodium allopolyploids. Our cytomolecular data elucidate some mechanisms of the descending dysploidy in monocots and enable reconstructions of the evolutionary events which shaped the extant karyotypes in both the genus Brachypodium and in grasses as a whole.


Assuntos
Brachypodium , Cromossomos de Plantas/química , DNA de Plantas/genética , Genoma de Planta , Cariótipo , Filogenia , Evolução Biológica , Brachypodium/classificação , Brachypodium/genética , Cromossomos Artificiais Bacterianos , Código de Barras de DNA Taxonômico , DNA de Plantas/classificação , Biblioteca Genômica , Hibridização in Situ Fluorescente , Cariotipagem , Ploidias
11.
BMC Plant Biol ; 14: 25, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24423101

RESUMO

BACKGROUND: The model grass Brachypodium distachyon is increasingly used to study various aspects of grass biology. A large and genotypically diverse collection of B. distachyon germplasm has been assembled by the research community. The natural variation in this collection can serve as a powerful experimental tool for many areas of inquiry, including investigating biomass traits. RESULTS: We surveyed the phenotypic diversity in a large collection of inbred lines and then selected a core collection of lines for more detailed analysis with an emphasis on traits relevant to the use of grasses as biofuel and grain crops. Phenotypic characters examined included plant height, growth habit, stem density, flowering time, and seed weight. We also surveyed differences in cell wall composition using near infrared spectroscopy (NIR) and comprehensive microarray polymer profiling (CoMPP). In all cases, we observed extensive natural variation including a two-fold variation in stem density, four-fold variation in ferulic acid bound to hemicellulose, and 1.7-fold variation in seed mass. CONCLUSION: These characterizations can provide the criteria for selecting diverse lines for future investigations of the genetic basis of the observed phenotypic variation.


Assuntos
Brachypodium/metabolismo , Biomassa , Brachypodium/classificação , Ácidos Cumáricos/metabolismo , Filogenia , Caules de Planta/metabolismo , Polissacarídeos/metabolismo , Sementes/classificação , Sementes/metabolismo , Espectrofotometria Infravermelho
12.
BMC Genet ; 13: 73, 2012 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-22900499

RESUMO

BACKGROUND: The Pi2/9 locus contains multiple nucleotide binding site-leucine-rich repeat (NBS-LRR) genes in the rice genome. Although three functional R-genes have been cloned from this locus, little is known about the origin and evolutionary history of these genes. Herein, an extensive genome-wide survey of Pi2/9 homologs in rice, sorghum, Brachypodium and Arabidopsis, was conducted to explore this theme. RESULTS: In our study, 1, 1, 5 and 156 Pi2/9 homologs were detected in Arabidopsis, Brachypodium, sorghum and rice genomes, respectively. Two distinct evolutionary patterns of Pi2/9 homologs, Type I and Type II, were observed in rice lines. Type I Pi2/9 homologs showed evidence of rapid gene diversification, including substantial copy number variations, obscured orthologous relationships, high levels of nucleotide diversity or/and divergence, frequent sequence exchanges and strong positive selection, whereas Type II Pi2/9 homologs exhibited a fairly slow evolutionary rate. Interestingly, the three cloned R-genes from the Pi2/9 locus all belonged to the Type I genes. CONCLUSIONS: Our data show that the Pi2/9 locus had an ancient origin predating the common ancestor of gramineous species. The existence of two types of Pi2/9 homologs suggest that diversifying evolution should be an important strategy of rice to cope with different types of pathogens. The relationship of cloned Pi2/9 genes and Type I genes also suggests that rapid gene diversification might facilitate rice to adapt quickly to the changing spectrum of the fungal pathogen M. grisea. Based on these criteria, other potential candidate genes that might confer novel resistance specificities to rice blast could be predicted.


Assuntos
Evolução Molecular , Loci Gênicos , Oryza/genética , Proteínas de Plantas/genética , Arabidopsis/classificação , Arabidopsis/genética , Brachypodium/classificação , Brachypodium/genética , Análise por Conglomerados , Variações do Número de Cópias de DNA , Genes de Plantas/genética , Variação Genética , Oryza/classificação , Filogenia , Sorghum/classificação , Sorghum/genética
13.
BMC Genomics ; 13: 270, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22726208

RESUMO

BACKGROUND: A complete assembled genome sequence of wheat is not yet available. Therefore, model plant systems for wheat are very valuable. Brachypodium distachyon (Brachypodium) is such a system. The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators with members regulating important agronomic traits. Studies of WRKY transcription factors in Brachypodium and wheat therefore promise to lead to new strategies for wheat improvement. RESULTS: We have identified and manually curated the WRKY transcription factor family from Brachypodium using a pipeline designed to identify all potential WRKY genes. 86 WRKY transcription factors were found, a total higher than all other current databases. We therefore propose that our numbering system (BdWRKY1-BdWRKY86) becomes the standard nomenclature. In the JGI v1.0 assembly of Brachypodium with the MIPS/JGI v1.0 annotation, nine of the transcription factors have no gene model and eleven gene models are probably incorrectly predicted. In total, twenty WRKY transcription factors (23.3%) do not appear to have accurate gene models. To facilitate use of our data, we have produced The Database of Brachypodium distachyon WRKY Transcription Factors. Each WRKY transcription factor has a gene page that includes predicted protein domains from MEME analyses. These conserved protein domains reflect possible input and output domains in signaling. The database also contains a BLAST search function where a large dataset of WRKY transcription factors, published genes, and an extensive set of wheat ESTs can be searched. We also produced a phylogram containing the WRKY transcription factor families from Brachypodium, rice, Arabidopsis, soybean, and Physcomitrella patens, together with published WRKY transcription factors from wheat. This phylogenetic tree provides evidence for orthologues, co-orthologues, and paralogues of Brachypodium WRKY transcription factors. CONCLUSIONS: The description of the WRKY transcription factor family in Brachypodium that we report here provides a framework for functional genomics studies in an important model system. Our database is a resource for both Brachypodium and wheat studies and ultimately projects aimed at improving wheat through manipulation of WRKY transcription factors.


Assuntos
Brachypodium/genética , Genômica , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Brachypodium/classificação , Bases de Dados de Proteínas , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Estrutura Terciária de Proteína , Homologia de Sequência do Ácido Nucleico , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
14.
Ann Bot ; 109(2): 385-405, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22213013

RESUMO

BACKGROUND AND AIMS: Brachypodium distachyon is being widely investigated across the world as a model plant for temperate cereals. This annual plant has three cytotypes (2n = 10, 20, 30) that are still regarded as part of a single species. Here, a multidisciplinary study has been conducted on a representative sampling of the three cytotypes to investigate their evolutionary relationships and origins, and to elucidate if they represent separate species. METHODS: Statistical analyses of 15 selected phenotypic traits were conducted in individuals from 36 lines or populations. Cytogenetic analyses were performed through flow cytometry, fluorescence in situ hybridization (FISH) with genomic (GISH) and multiple DNA sequences as probes, and comparative chromosome painting (CCP). Phylogenetic analyses were based on two plastid (ndhF, trnLF) and five nuclear (ITS, ETS, CAL, DGAT, GI) genes from different Brachypodium lineages, whose divergence times and evolutionary rates were estimated. KEY RESULTS: The phenotypic analyses detected significant differences between the three cytotypes and demonstrated stability of characters in natural populations. Genome size estimations, GISH, FISH and CCP confirmed that the 2n = 10 and 2n = 20 cytotypes represent two different diploid taxa, whereas the 2n = 30 cytotype represents the allotetraploid derived from them. Phylogenetic analysis demonstrated that the 2n = 20 and 2n = 10 cytotypes emerged from two independent lineages that were, respectively, the maternal and paternal genome donors of the 2n = 30 cytotype. The 2n = 20 lineage was older and mutated significantly faster than the 2n = 10 lineage and all the core perennial Brachypodium species. CONCLUSIONS: The substantial phenotypic, cytogenetic and molecular differences detected among the three B. distachyon sensu lato cytotypes are indicative of major speciation processes within this complex that allow their taxonomic separation into three distinct species. We have kept the name B. distachyon for the 2n = 10 cytotype and have described two novel species as B. stacei and B. hybridum for, respectively, the 2n = 20 and 2n = 30 cytotypes.


Assuntos
Brachypodium/classificação , Brachypodium/genética , Especiação Genética , Evolução Biológica , Citogenética/métodos , DNA de Plantas/análise , Grão Comestível/genética , Evolução Molecular , Variação Genética , Genoma de Planta , Fenótipo , Filogenia , Análise de Sequência de DNA
15.
Chromosoma ; 120(2): 199-212, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21191797

RESUMO

The temperate annual grass Brachypodium distachyon is a diploid species with a chromosome base number of 5. It is strikingly different from other Eurasian species of the genus, which are perennial and often polyploid, with the diploids typically having base numbers of 8 or 9. Previously, phylogenies indicated that B. distachyon split from the other species early in the evolution of the genus, while its genome sequence revealed that extensive synteny on a chromosomal scale had been maintained with rice, a tropical grass with a base number of 12. Here we show evidence that B. distachyon may have a homoploid origin, involving ancestral interspecific hybridisation, although it does not appear to be a component of any of the perennial Eurasian allopolyploids. Using a cytogenetic approach, we show that dysploidy in Brachypodium has not followed a simple progression.


Assuntos
Brachypodium/genética , Evolução Molecular , Genoma de Planta , Brachypodium/classificação , Cromossomos de Plantas/genética , Dados de Sequência Molecular , Filogenia , Poliploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...