Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 80(9): 1169-77, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26555469

RESUMO

The effect of carotenoids on the assembly of LH2 complex in cells of the purple nonsulfur bacterium Rhodoblastus acidophilus was investigated. For this purpose, the bacterial culture was cultivated with an inhibitor of carotenoid biosynthesis - 71 µM diphenylamine (DPA). The inhibitor decreased the level of biosynthesis of the colored carotenoids in membranes by ~58%. It was found that a large amount of phytoene was accumulated in them. This carotenoid precursor was bound nonspecifically to LH2 complex and did not stabilize its structure. Thermostability testing of the isolated LH2 complex together with analysis of carotenoid composition revealed that the population of this complex was heterogeneous with respect to carotenoid composition. One fraction of the LH2 complex with carotenoid content around 90% remains stable and was not destroyed under heating for 15 min at 50°C. The other fraction of LH2 complex containing on average less than one molecule of carotenoid per complex was destroyed under heating, forming a zone of free pigments (and polypeptides). The data suggest that a certain part of the LH2 complexes is assembled without carotenoids in cells of the nonsulfur bacterium Rbl. acidophilus grown with DPA. These data contradict the fact that the LH2 complex from nonsulfur bacteria cannot be assembled without carotenoids, but on the other hand, they are in good agreement with the results demonstrated in our earlier studies of the sulfur bacteria Allochromatium minutissimum and Ectothiorhodospira haloalkaliphila. Carotenoidless LH2 complex was obtained from these bacteria with the use of DPA (Moskalenko, A. A., and Makhneva, Z. K. (2012) J. Photochem. Photobiol., 108, 1-7; Ashikhmin, A., et al. (2014) Photosynth. Res., 119, 291-303).


Assuntos
Alphaproteobacteria/fisiologia , Proteínas de Bactérias/fisiologia , Bradyrhizobiaceae/fisiologia , Carotenoides/fisiologia , Complexos de Proteínas Captadores de Luz/fisiologia , Proteínas de Bactérias/efeitos dos fármacos , Bradyrhizobiaceae/química , Bradyrhizobiaceae/citologia , Carotenoides/antagonistas & inibidores , Difenilamina/farmacologia , Complexos de Proteínas Captadores de Luz/efeitos dos fármacos
2.
Sci Rep ; 5: 10044, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-26067561

RESUMO

The development of biofilms in drinking water (DW) systems may cause various problems to water quality. To investigate the community structure of biofilms on different pipe materials and the global/specific metabolic functions of DW biofilms, PCR-based 454 pyrosequencing data for 16S rRNA genes and Illumina metagenomic data were generated and analysed. Considerable differences in bacterial diversity and taxonomic structure were identified between biofilms formed on stainless steel and biofilms formed on plastics, indicating that the metallic materials facilitate the formation of higher diversity biofilms. Moreover, variations in several dominant genera were observed during biofilm formation. Based on PCA analysis, the global functions in the DW biofilms were similar to other DW metagenomes. Beyond the global functions, the occurrences and abundances of specific protective genes involved in the glutathione metabolism, the SoxRS system, the OxyR system, RpoS regulated genes, and the production/degradation of extracellular polymeric substances were also evaluated. A near-complete and low-contamination draft genome was constructed from the metagenome of the DW biofilm, based on the coverage and tetranucleotide frequencies, and identified as a Bradyrhizobiaceae-like bacterium according to a phylogenetic analysis. Our findings provide new insight into DW biofilms, especially in terms of their metabolic functions.


Assuntos
Biofilmes , Bradyrhizobiaceae , Água Potável/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Consórcios Microbianos/fisiologia , Microbiologia da Água , Bradyrhizobiaceae/classificação , Bradyrhizobiaceae/fisiologia , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
3.
Arch Microbiol ; 197(7): 889-98, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26013968

RESUMO

Eleven extra-slow-growing strains were isolated from nodules of the relict legume Vavilovia formosa growing in North Ossetia (Caucasus) and Armenia. All isolates formed a single rrs cluster together with the type strain Tardiphaga robiniae LMG 26467(T), while the sequencing of the 16S-23S rDNA intergenic region (ITS) and housekeeping genes glnII, atpD, dnaK, gyrB, recA and rpoB divided them into three groups. North Ossetian isolates (in contrast to the Armenian ones) were clustered separately from the type strain LMG 26467(T). However, all isolates were classified as T. robiniae because the DNA-DNA relatedness between them and the type strain LMG 26467(T) was 69.6% minimum. Two symbiosis-related genes (nodM and nodT) were amplified in all isolated Tardiphaga strains. It was shown that the nodM gene phylogeny is similar to that of ITS and housekeeping genes. The presence of the other symbiosis-related genes in described Tardiphaga strains, which is recently described genus of rhizobia, as well as their ability to form nodules on any plants are under investigation.


Assuntos
Bradyrhizobiaceae/classificação , Bradyrhizobiaceae/fisiologia , Fabaceae/microbiologia , Técnicas de Tipagem Bacteriana , Bradyrhizobiaceae/genética , Bradyrhizobiaceae/crescimento & desenvolvimento , Bradyrhizobiaceae/isolamento & purificação , DNA Bacteriano/genética , Filogenia , RNA Ribossômico 16S/genética , Simbiose/genética , Taiwan
4.
Appl Environ Microbiol ; 81(9): 3049-61, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25710371

RESUMO

Plant colonization by bradyrhizobia is found not only in leguminous plants but also in nonleguminous species such as rice. To understand the evolution of the endophytic symbiosis of bradyrhizobia, the effect of the ecosystems of rice plantations on their associations was investigated. Samples were collected from various rice (Oryza sativa) tissues and crop rotational systems. The rice endophytic bradyrhizobia were isolated on the basis of oligotrophic properties, selective medium, and nodulation on siratro (Macroptilium atropurpureum). Six bradyrhizobial strains were obtained exclusively from rice grown in a crop rotational system. The isolates were separated into photosynthetic bradyrhizobia (PB) and nonphotosynthetic bradyrhizobia (non-PB). Thai bradyrhizobial strains promoted rice growth of Thai rice cultivars better than the Japanese bradyrhizobial strains. This implies that the rice cultivars possess characteristics that govern rice-bacterium associations. To examine whether leguminous plants in a rice plantation system support the persistence of rice endophytic bradyrhizobia, isolates were tested for legume nodulation. All PB strains formed symbioses with Aeschynomene indica and Aeschynomene evenia. On the other hand, non-PB strains were able to nodulate Aeschynomene americana, Vigna radiata, and M. atropurpureum but unable to nodulate either A. indica or A. evenia. Interestingly, the nodABC genes of all of these bradyrhizobial strains seem to exhibit low levels of similarity to those of Bradyrhizobium diazoefficiens USDA110 and Bradyrhizobium sp. strain ORS285. From these results, we discuss the evolution of the plant-bradyrhizobium association, including nonlegumes, in terms of photosynthetic lifestyle and nod-independent interactions.


Assuntos
Bradyrhizobiaceae/crescimento & desenvolvimento , Bradyrhizobiaceae/isolamento & purificação , Endófitos/crescimento & desenvolvimento , Endófitos/isolamento & purificação , Oryza/microbiologia , Bradyrhizobiaceae/fisiologia , Endófitos/fisiologia , Fabaceae/microbiologia , Desenvolvimento Vegetal , Nodulação , Simbiose
5.
Antonie Van Leeuwenhoek ; 107(4): 911-20, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25603982

RESUMO

The Gram-negative, rod-shaped slow-growing strains Vaf-17, Vaf-18(T) and Vaf-43 were isolated from the nodules of Vavilovia formosa plants growing in the hard-to-reach mountainous region of the North Ossetian State Natural Reserve (north Caucasus, Russian Federation). The sequencing of 16S rDNA (rrs), ITS region and five housekeeping genes (atpD, dnaK, recA, gyrB and rpoB) showed that the isolated strains were most closely related to the species Bosea lathyri (class Alphaproteobacteria, family Bradyrhizobiaceae) which was described for isolates from root nodules of Lathyrus latifolius. However the sequence similarity between the isolated strains and the type strain B. lathyri LMG 26379(T) for the ITS region was 90 % and for the housekeeping genes it was ranged from 92 to 95 %. All phylogenetic trees, except for the rrs-dendrogram showed that the isolates from V. formosa formed well-separated clusters within the Bosea group. Differences in phenotypic properties of the B. lathyri type strain and the isolates from V. formosa were studied using the microassay system GENIII MicroPlate BioLog. Whole-cell fatty acid analysis showed that the strains Vaf-17, Vaf-18(T) and Vaf-43 had notable amounts of C16:0 (4.8-6.0 %), C16:0 3-OH (6.4-6.6 %), C16:1 ω5c (8.8-9.0 %), C17:0 cyclo (13.5-13.9 %), C18:1 ω7c (43.4-45.4 %), C19:0 cyclo ω8c (10.5-12.6 %) and Summed Feature (SF) 3 (6.4-8.0 %). The DNA-DNA relatedness between the strains Vaf-18(T) and B. lathyri LMG 26379(T) was 24.0 %. On the basis of genotypic and phenotypic analysis a new species Bosea vaviloviae sp. nov. (type strain RCAM 02129(T) = LMG 28367(T) = Vaf-18(T)) is proposed.


Assuntos
Bradyrhizobiaceae/classificação , Bradyrhizobiaceae/isolamento & purificação , Fabaceae/microbiologia , Técnicas de Tipagem Bacteriana , Bradyrhizobiaceae/genética , Bradyrhizobiaceae/fisiologia , Análise por Conglomerados , Citosol/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Ácidos Graxos/análise , Genes Essenciais , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Nódulos Radiculares de Plantas , Federação Russa , Análise de Sequência de DNA
6.
Syst Appl Microbiol ; 35(4): 205-14, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22444281

RESUMO

Gram-negative, rod-shaped bacteria were isolated from Robinia pseudoacacia root nodules. On the basis of the 16S rRNA gene phylogeny, they are closely related to Bradyrhizobium, Rhodopseudomonas and Nitrobacter species (97% sequence similarity), belonging to the class Alphaproteobacteria and family Bradyrhizobiaceae. The results of physiological and biochemical tests together with sequence analysis of housekeeping genes (atpD, dnaK, gyrB, recA and rpoB) allowed differentiation of this group from other validly published Bradyrhizobiaceae genera. NodA, nodC and nifH genes could not be amplified. On the basis of genotypic and phenotypic data, these organisms represent a novel genus and species for which the name Tardiphaga robiniae gen. nov., sp. nov. (LMG 26467(T)=CCUG 61473(T)), is proposed.


Assuntos
Bradyrhizobiaceae/classificação , Bradyrhizobiaceae/isolamento & purificação , Robinia/microbiologia , Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana , Bélgica , Bradyrhizobiaceae/genética , Bradyrhizobiaceae/fisiologia , Análise por Conglomerados , Citosol/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Dados de Sequência Molecular , Fosfolipídeos/análise , Filogenia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
Arch Microbiol ; 194(7): 567-74, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22286926

RESUMO

Norbert Pfennig isolated the first acidophilic purple bacterium over 40 years ago and named the organism Rhodopseudomonas acidophila (now Rhodoblastusacidophilus). Since the original work of Pfennig, no systematic study has been conducted on the phylogeny and carbon nutrition of a collection of strains of Rbl. acidophilus. We have isolated six new strains of Rbl. acidophilus from a Canadian peat bog. These strains, three of the original Pfennig strains and two additional putative R. acidophilus strains isolated several years ago in this laboratory,were characterized as to their pigments, phylogeny, and carbon sources supporting photoheterotrophic growth. Phototrophic cultures were either purple or orange in color,and the color of a particular strain was linked to phylogeny. As for the Pfennig strains of Rbl. acidophilus, all new strains grew photoheterotrophically at pH 5 on a variety of organic and fatty acids. However, in addition to methanol and ethanol, the new strains as well as the Pfennig strains grew on several other primary alcohols, results not reported in the original species description. Our work shows that some phylogenetic and physiological diversity exists within the species Rbl. acidophilus and supports the observation that few species of acidophilic purple bacteria appear to exist in nature.


Assuntos
Bradyrhizobiaceae/classificação , Bradyrhizobiaceae/fisiologia , Filogenia , Álcoois/metabolismo , Bradyrhizobiaceae/genética , Bradyrhizobiaceae/crescimento & desenvolvimento , Bradyrhizobiaceae/metabolismo , Canadá , Carbono/metabolismo , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Processos Fototróficos/fisiologia , Pigmentos Biológicos/metabolismo , RNA Ribossômico 16S/genética , Especificidade da Espécie , Áreas Alagadas
8.
J Bacteriol ; 193(18): 5057, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21742875

RESUMO

Strain SG-6C (DSM 23264, CCM 7827) is a chemolithoautotrophic bacterium of the family Bradyrhizobiaceae. It can also grow heterotrophically under appropriate environmental conditions. Here we report the annotated genome sequence of this strain in a single 4.3-Mb circular scaffold.


Assuntos
Bradyrhizobiaceae/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Análise de Sequência de DNA , Austrália , Bradyrhizobiaceae/isolamento & purificação , Bradyrhizobiaceae/fisiologia , Crescimento Quimioautotrófico , Processos Heterotróficos , Dados de Sequência Molecular , Microbiologia do Solo
9.
J Bacteriol ; 193(18): 5043, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21742883

RESUMO

We report on genome sequencing of Oligotropha carboxidovorans strain OM4 and resequencing of strain OM5. The genomes of both are composed of one chromosome and two plasmids. The presence of two plasmids in the OM5 genome is inconsistent with the previously published sequence, for which only one plasmid was described (D. Paul, S. Bridges, S. Burgess, Y. Dandass, and M. Lawrence, BMC Genomics 11:511, 2010).


Assuntos
Bradyrhizobiaceae/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Análise de Sequência de DNA , Bradyrhizobiaceae/isolamento & purificação , Bradyrhizobiaceae/fisiologia , Crescimento Quimioautotrófico , Dados de Sequência Molecular , Plasmídeos
10.
Crit Rev Biochem Mol Biol ; 46(1): 67-88, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21250783

RESUMO

Phytochromes are environmental sensors, historically thought of as red/far-red photoreceptors in plants. Their photoperception occurs through a covalently linked tetrapyrrole chromophore, which undergoes a light-dependent conformational change propagated through the protein to a variable output domain. The phytochrome composition is modular, typically consisting of a PAS-GAF-PHY architecture for the N-terminal photosensory core. A collection of three-dimensional structures has uncovered key features, including an unusual figure-of-eight knot, an extension reaching from the PHY domain to the chromophore-binding GAF domain, and a centrally located, long α-helix hypothesized to be crucial for intramolecular signaling. Continuing identification of phytochromes in microbial systems has expanded the assigned sensory abilities of this family out of the red and into the yellow, green, blue, and violet portions of the spectrum. Furthermore, phytochromes acting not as photoreceptors but as redox sensors have been recognized. In addition, architectures other than PAS-GAF-PHY are known, thus revealing phytochromes to be a varied group of sensory receptors evolved to utilize their modular design to perceive a signal and respond accordingly. This review focuses on the structures of bacterial phytochromes and implications for signal transmission. We also discuss the small but growing set of bacterial phytochromes for which a physiological function has been ascertained.


Assuntos
Fenômenos Fisiológicos Bacterianos , Bradyrhizobiaceae/fisiologia , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/fisiologia , Fitocromo/química , Fitocromo/fisiologia , Ritmo Circadiano , Conformação Proteica , Transdução de Sinais , Tetrapirróis
11.
Syst Appl Microbiol ; 33(7): 374-82, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20663625

RESUMO

Bacterial strains from inoculated soybean field soil in Thailand were directly isolated using Bradyrhizobium japonicum selective medium (BJSM), on the basis of Zn(2+) and Co(2+) resistance of B. japonicum and B. elkanii. The isolates were classified into symbiotic and non-symbiotic groups by inoculation assays and Southern hybridization of nod and nif genes. In this study, a nearly full-length 16S rRNA gene sequence showed that the non-symbiotic isolates were more closely related to members of Rhodopseudomonas and to a number of uncultured bacterial clones than to members of Bradyrhizobium. Therefore, a polyphasic study was performed to determine the taxonomic positions of four representatives of the non-symbiotic isolates. Multilocus phylogenetic analysis of individual genes and a combination of the 16S rRNA and three housekeeping genes (atpD, recA and glnII) supported the placement of the non-symbiotic isolates in a different genus. The ability of heavy metal resistance in conjunction with phenotypic analyses, including cellular fatty acid content and biochemical characteristics, showed that the non-symbiotic isolates were differentiated from the other related genera in the family Bradyrhizobiaceae. Therefore, the non-symbiotic isolates represented a novel genus and species, for which the name Metalliresistens boonkerdii gen. nov., sp. nov. is proposed. The type strain is NS23 (= NBRC 106595(T)=BCC 40155(T)).


Assuntos
Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana , Bradyrhizobiaceae/classificação , Metais Pesados/farmacologia , RNA Ribossômico 16S/genética , Microbiologia do Solo , Composição de Bases , Sequência de Bases , Bradyrhizobiaceae/genética , Bradyrhizobiaceae/isolamento & purificação , Bradyrhizobiaceae/fisiologia , Cobalto/farmacologia , Meios de Cultura , DNA Bacteriano/análise , DNA Bacteriano/genética , Farmacorresistência Bacteriana , Ácidos Graxos/química , Genes de RNAr , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Fenótipo , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Glycine max/microbiologia , Especificidade da Espécie , Simbiose , Tailândia , Zinco/farmacologia
12.
Environ Microbiol ; 12(8): 2152-64, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21966910

RESUMO

Tropical aquatic legumes of the genus Aeschynomene are unique in that they can be stem-nodulated by photosynthetic bradyrhizobia. Moreover, a recent study demonstrated that two Aeschynomene indica symbionts lack canonical nod genes, thereby raising questions about the distribution of such atypical symbioses among rhizobial-legume interactions. Population structure and genomic diversity were compared among stem-nodulating bradyrhizobia isolated from various Aeschynomene species of Central America and Tropical Africa. Phylogenetic analyses based on the recA gene and whole-genome amplified fragment length polymorphism (AFLP) fingerprints on 110 bacterial strains highlighted that all the photosynthetic strains form a separate cluster among bradyrhizobia, with no obvious structuring according to their geographical or plant origins. Nod-independent symbiosis was present in all sampling areas and seemed to be linked to Aeschynomene host species. However, it was not strictly dependent on photosynthetic ability, as exemplified by a newly identified cluster of strains that lacked canonical nod genes and efficiently stem-nodulated A. indica, but were not photosynthetic. Interestingly, the phenotypic properties of this new cluster of bacteria were reflected by their phylogenetical position, as being intermediate in distance between classical root-nodulatingBradyrhizobium spp. and photosynthetic ones. This result opens new prospects about stem-nodulating bradyrhizobial evolution.


Assuntos
Bradyrhizobiaceae/classificação , Fabaceae/microbiologia , Filogenia , Caules de Planta/microbiologia , Simbiose , África , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Evolução Biológica , Bradyrhizobiaceae/genética , Bradyrhizobiaceae/fisiologia , América Central , DNA Bacteriano/genética , Genoma Bacteriano , Dados de Sequência Molecular , Fenótipo , Fotossíntese
13.
Mol Plant Microbe Interact ; 23(1): 58-66, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19958139

RESUMO

Formation of functional nodules is a complex process depending on host-microsymbiont compatibility in all developmental stages. This report uses the contrasting symbiotic phenotypes of Lotus japonicus and L. pedunculatus, inoculated with Mesorhizobium loti or the Bradyrhizobium sp. (Lotus), to investigate the role of Nod factor structure and Nod factor receptors (NFR) for rhizobial recognition, infection thread progression, and bacterial persistence within nodule cells. A key contribution was the use of 800 MHz nuclear magnetic resonance spectroscopy and ultrahigh-performance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry for Nod factor analysis. The Nod factor decorations at the nonreducing end differ between Bradyrhizobium sp. (Lotus) and M. loti, and the NFR1/NFR5 extracellular regions of L. pedunculatus and L. japonicus were found to vary in amino acid composition. Genetic transformation experiments using chimeric and wild-type receptors showed that both receptor variants recognize the structurally different Nod factors but the later symbiotic phenotype remained unchanged. These results highlight the importance of additional checkpoints during nitrogen-fixing symbiosis and define several amino acids in the LysM domains as expendable for perception of the two differentially carbamoylated Nod factors.


Assuntos
Alphaproteobacteria/fisiologia , Aminoácidos/metabolismo , Bradyrhizobiaceae/fisiologia , Lotus/microbiologia , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Simbiose/fisiologia , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bradyrhizobiaceae/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Receptores de Lipopolissacarídeos/química , Receptores de Lipopolissacarídeos/genética , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Lotus/genética , Modelos Moleculares , Dados de Sequência Molecular , Fixação de Nitrogênio/genética , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Estrutura Terciária de Proteína , Nódulos Radiculares de Plantas/citologia , Nódulos Radiculares de Plantas/metabolismo , Alinhamento de Sequência
14.
ISME J ; 3(3): 326-39, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18971963

RESUMO

Comparative genomic hybridization (CGH) was performed with nine strains of Bradyrhizobium japonicum (a symbiotic nitrogen-fixing bacterium associated with soybean) and eight other members of the Bradyrhizobiaceae by DNA macroarray of B. japonicum USDA110. CGH clearly discriminated genomic variations in B. japonicum strains, but similar CGH patterns were observed in other members of the Bradyrhizobiaceae. The most variable regions were 14 genomic islands (4-97 kb) and low G+C regions on the USDA110 genome, some of which were missing in several strains of B. japonicum and other members of the Bradyrhizobiaceae. The CGH profiles of B. japonicum were classified into three genome types: 110, 122 and 6. Analysis of DNA sequences around the boundary regions showed that at least seven genomic islands were missing in genome type 122 as compared with type 110. Phylogenetic analysis for internal transcribed sequences revealed that strains belonging to genome types 110 and 122 formed separate clades. Thus genomic islands were horizontally inserted into the ancestor genome of type 110 after divergence of the type 110 and 122 strains. To search for functional relationships of variable genomic islands, we conducted linear models of the correlation between the existence of genomic regions and the parameters associated with symbiotic nitrogen fixation in soybean. Variable genomic regions including genomic islands were associated with the enhancement of symbiotic nitrogen fixation in B. japonicum USDA110.


Assuntos
Bradyrhizobiaceae/fisiologia , DNA Bacteriano/genética , Genoma Bacteriano , Fixação de Nitrogênio , Simbiose , Técnicas de Tipagem Bacteriana , Composição de Bases , Bradyrhizobiaceae/genética , Análise por Conglomerados , Hibridização Genômica Comparativa , DNA Bacteriano/química , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Evolução Molecular , Ilhas Genômicas , Genótipo , Análise em Microsséries , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Glycine max/microbiologia
15.
Curr Microbiol ; 51(4): 244-9, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16132456

RESUMO

Four virulent phages--PhiDl, PhiTl, PhiCYT21, and PhiOS6, infective on Sarothamnus scoparius rhizobia--were isolated from the soil and characterized for morphology, host range, rate of adsorption to bacterial cells, and genome size. New phages were separated into two morphological families: Siphoviridae with long, noncontractile tails (PhiDl, PhiTl) and Myoviridae with long, contractile tails (PhiCYT21, PhiOS6). They were also classified into two groups by a host specificity. One of them included viruses (PhiDl and PhiTl) that lysed S. scoparius bradyrhizobia and Bradyrhizobium sp. (Lupinus) strain Dl, and the second one comprised phages (PhiCYT21 and PhiOS6) that parasitized only Scotch broom native microsymbionts. Phages specific for S. scoparius rhizobia were differentiated not only by morphology and host range but also by a genome size that was in the range from 47,583 to 60,098 b.p.


Assuntos
Bradyrhizobiaceae/virologia , Cytisus/microbiologia , Myoviridae/patogenicidade , Siphoviridae/patogenicidade , Bradyrhizobiaceae/fisiologia , DNA Viral/análise , Microscopia Eletrônica , Myoviridae/isolamento & purificação , Myoviridae/ultraestrutura , Siphoviridae/isolamento & purificação , Siphoviridae/ultraestrutura , Microbiologia do Solo , Virulência
16.
Water Sci Technol ; 46(1-2): 215-22, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12216627

RESUMO

The production of gaseous nitrogen compounds, particularly the greenhouse gas nitrous oxide, was investigated in a novel process for ammonium removal from wastewater. The process is based on the adsorption of ammonium on zeolite followed by bioregeneration. The zeolite serves the dual purpose of an ion exchanger and a physical carrier for nitrifying bacteria which bio-regenerate the ammonium saturated mineral. An analysis of the nitrifying population composition in the reactor fed with simulated secondary effluent (NH4+ = 50 mg/l) revealed that about half of the bacteria in the biofilm were common ammonium oxidizers Nitrosococcus mobilis and Nitrosomonas, while the other half were nitrite oxidizers. The amount of nitrogen losses, under different conditions, and the identification of the emitted gases (N2 or N2O) were investigated in two sets of experiments: (I) batch experiments using biomass originating from the ion exchange reactor with and without the addition of nitrite, and (II) continuous experiments using the ion exchange reactor with zeolite as the biomass carrier. In the batch experiments, nitrite and oxygen concentrations were determined as the major parameters responsible for the formation of gaseous nitrogen gas during ammonia oxidation by autotrophic bacteria. Continuous experiments showed that the major parameter significantly affecting nitrogen losses was the amount of ammonium adsorbed by the zeolite during the ion exchange phase. The amount of ammonium adsorbed determines the ammonium concentration during the initial period of bioregeneration, which in turn directly influences oxygen demand and the resulting concentrations of oxygen and nitrite. It was concluded that the formation of nitrogen gas compounds in the ion exchange/bioregeneration process can be eliminated by adjusting the operational regime to have a shorter adsorption phase resulting in smaller amounts of ammonium adsorbed per cycle.


Assuntos
Reatores Biológicos , Bradyrhizobiaceae/fisiologia , Compostos de Nitrogênio/análise , Óxido Nitroso/análise , Compostos de Amônio Quaternário/metabolismo , Adsorção , Biodegradação Ambiental , Biomassa , Compostos de Nitrogênio/química , Óxido Nitroso/química , Oxirredução , Compostos de Amônio Quaternário/química , Volatilização , Eliminação de Resíduos Líquidos , Zeolitas/química
17.
Water Sci Technol ; 46(1-2): 267-72, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12216635

RESUMO

Chemical analytical data has long been used to monitor the performance of activated sludge plants even though the process relies on the performance of microorganisms. It is now evident that a rapid and reliable quantitative method is required, to be able to monitor the organisms responsible for nutrient transformation and their activities, allowing avenues for more efficient nutrient removal. The development of real-time or quantitative polymerase chain reaction (PCR) also known as TaqMan or 5'-nuclease assay has allowed the rapid, quantitative analysis of DNA templates, eliminating some of the variability traditionally associated with other quantitative techniques. In this study analysis of Nitrospira spp., one of the key organisms in nitrite oxidation in wastewater treatment, was used to validate real-time PCR for the their quantification in activated sludge. A probe and primer set, targeting the 16S rRNA gene of Nitrospira spp. was designed according to the constraints of the TaqMan specifications. Samples used to evaluate the method included DNA from the sludge from full-scale wastewater treatment plants and laboratory scale systems. The reproducibility, quantitative efficiency and specificity were assessed in the evaluation. It was concluded that the method is sensitive and reproducible but has some constraints on the quantitative efficiency. A survey of full-scale systems for Nitrospira spp. was carried out and the results are presented here.


Assuntos
DNA Bacteriano/análise , Nitrogênio/metabolismo , Reação em Cadeia da Polimerase/métodos , Esgotos/microbiologia , Eliminação de Resíduos Líquidos , Automação , Reatores Biológicos , Bradyrhizobiaceae/genética , Bradyrhizobiaceae/fisiologia , Primers do DNA , Eutrofização , Controle de Qualidade , RNA Ribossômico 16S/genética , Sensibilidade e Especificidade , Esgotos/química
18.
Microbiol Rev ; 53(1): 68-84, 1989 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-2496288

RESUMO

Ammonia oxidizers (family Nitrobacteraceae) and methanotrophs (family Methylococcaceae) oxidize CO and CH4 to CO2 and NH4+ to NO2-. However, the relative contributions of the two groups of organisms to the metabolism of CO, CH4, and NH4+ in various environments are not known. In the ammonia oxidizers, ammonia monooxygenase, the enzyme responsible for the conversion of NH4+ to NH2OH, also catalyzes the oxidation of CH4 to CH3OH. Ammonia monooxygenase also mediates the transformation of CH3OH to CO2 and cell carbon, but the pathway by which this is done is not known. At least one species of ammonia oxidizer, Nitrosococcus oceanus, exhibits a Km for CH4 oxidation similar to that of methanotrophs. However, the highest rate of CH4 oxidation recorded in an ammonia oxidizer is still five times lower than rates in methanotrophs, and ammonia oxidizers are apparently unable to grow on CH4. Methanotrophs oxidize NH4+ to NH2OH via methane monooxygenase and NH4+ to NH2OH via methane monooxygenase and NH2OH to NO2- via an NH2OH oxidase which may resemble the enzyme found in ammonia oxidizers. Maximum rates of NH4+ oxidation are considerably lower than in ammonia oxidizers, and the affinity for NH4+ is generally lower than in ammonia oxidizers. NH4+ does not apparently support growth in methanotrophs. Both ammonia monooxygenase and methane monooxygenase oxidize CO to CO2, but CO cannot support growth in either ammonia oxidizers or methanotrophs. These organisms have affinities for CO which are comparable to those for their growth substrates and often higher than those in carboxydobacteria. The methane monooxygenases of methanotrophs exist in two forms: a soluble form and a particulate form. The soluble form is well characterized and appears unrelated to the particulate. Ammonia monooxygenase and the particulate methane monooxygenase share a number of similarities. Both enzymes contain copper and are membrane bound. They oxidize a variety of inorganic and organic compounds, and their inhibitor profiles are similar. Inhibitors thought to be specific to ammonia oxidizers have been used in environmental studies of nitrification. However, almost all of the numerous compounds found to inhibit ammonia oxidizers also inhibit methanotrophs, and most of the inhibitors act upon the monooxygenases. Many probably exert their effect by chelating copper, which is essential to the proper functioning of some monooxygenases. The lack of inhibitors specific for one or the other of the two groups of bacteria hampers the determination of their relative roles in nature.


Assuntos
Amônia/metabolismo , Bradyrhizobiaceae/fisiologia , Monóxido de Carbono/metabolismo , Metano/metabolismo , Methylococcaceae/fisiologia , Bradyrhizobiaceae/metabolismo , Methylococcaceae/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...