Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Braz J Microbiol ; 55(3): 2869-2877, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38995612

RESUMO

Brazil stands out in research, industrial development, and farmers' use of microbial inoculants, with an emphasis on getting benefits from the biological nitrogen fixation process with the soybean crop. Nowadays, about 140 million doses of inoculants are commercialized annually for the soybean in the country, and strain identification is achieved by rep-PCR, an effective but time-consuming method. Aiming to develop an easy, low-cost, and low-time-consuming method, we used a complete genome-based approach based on the unequivocal identification of unique genes present in the genomes of each of the four Bradyrhizobium strains used in commercial inoculants: Bradyrhizobium elkanii strains SEMIA 587 and SEMIA 5019, Bradyrhizobium japonicum SEMIA 5079, and Bradyrhizobium diazoefficiens SEMIA 5080. The unique pairs of primers able to amplify genomic regions of different sizes allowed the identification of the four strains in a simple multiplex polymerase chain reaction (PCR). Validation was confirmed by using single colonies, multiple cultures, and commercial inoculants. The number of labor hours of a technician was 3.08 times higher, and the final cost was 3.25 times higher in the rep-PCR than in the multiplex PCR. Most importantly, the results for multiplex PCR were obtained on the same day, in contrast with 15 days in the traditional methodology. The genomic approach developed can be easily applied to a variety of microbial inoculants worldwide, in addition to studies of ecology and evaluation of the competitiveness of the strains.


Assuntos
Bradyrhizobium , Glycine max , Reação em Cadeia da Polimerase Multiplex , Bradyrhizobium/genética , Bradyrhizobium/classificação , Bradyrhizobium/isolamento & purificação , Glycine max/microbiologia , Reação em Cadeia da Polimerase Multiplex/métodos , Genoma Bacteriano , Inoculantes Agrícolas/genética , Inoculantes Agrícolas/classificação , Genômica/métodos , Brasil , DNA Bacteriano/genética , Fixação de Nitrogênio
2.
Microbiol Spectr ; 12(7): e0026024, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38842312

RESUMO

Bradyrhizobium is known for fixing atmospheric nitrogen in symbiosis with agronomically important crops. This study focused on two groups of strains, each containing eight natural variants of the parental strains, Bradyrhizobium japonicum SEMIA 586 (=CNPSo 17) or Bradyrhizobium diazoefficiens SEMIA 566 (=CNPSo 10). CNPSo 17 and CNPSo 10 were used as commercial inoculants for soybean crops in Brazil at the beginning of the crop expansion in the southern region in the 1960s-1970s. Variants derived from these parental strains were obtained in the late 1980s through a strain selection program aimed at identifying elite strains adapted to a new cropping frontier in the central-western Cerrado region, with a higher capacity of biological nitrogen fixation (BNF) and competitiveness. Here, we aimed to detect genetic variations possibly related to BNF, competitiveness for nodule occupancy, and adaptation to the stressful conditions of the Brazilian Cerrado soils. High-quality genome assemblies were produced for all strains. The core genome phylogeny revealed that strains of each group are closely related, as confirmed by high average nucleotide identity values. However, variants accumulated divergences resulting from horizontal gene transfer, genomic rearrangements, and nucleotide polymorphisms. The B. japonicum group presented a larger pangenome and a higher number of nucleotide polymorphisms than the B. diazoefficiens group, possibly due to its longer adaptation time to the Cerrado soil. Interestingly, five strains of the B. japonicum group carry two plasmids. The genetic variability found in both groups is discussed considering the observed differences in their BNF capacity, competitiveness for nodule occupancy, and environmental adaptation.IMPORTANCEToday, Brazil is a global leader in the study and use of biological nitrogen fixation with soybean crops. As Brazilian soils are naturally void of soybean-compatible bradyrhizobia, strain selection programs were established, starting with foreign isolates. Selection searched for adaptation to the local edaphoclimatic conditions, higher efficiency of nitrogen fixation, and strong competitiveness for nodule occupancy. We analyzed the genomes of two parental strains of Bradyrhizobium japonicum and Bradyrhizobium diazoefficiens and eight variant strains derived from each parental strain. We detected two plasmids in five strains and several genetic differences that might be related to adaptation to the stressful conditions of the soils of the Brazilian Cerrado biome. We also detected genetic variations in specific regions that may impact symbiotic nitrogen fixation. Our analysis contributes to new insights into the evolution of Bradyrhizobium, and some of the identified differences may be applied as genetic markers to assist strain selection programs.


Assuntos
Bradyrhizobium , Genoma Bacteriano , Glycine max , Fixação de Nitrogênio , Filogenia , Simbiose , Bradyrhizobium/genética , Bradyrhizobium/classificação , Bradyrhizobium/isolamento & purificação , Fixação de Nitrogênio/genética , Brasil , Glycine max/microbiologia , Simbiose/genética , Variação Genética , Adaptação Fisiológica/genética , Nódulos Radiculares de Plantas/microbiologia , Microbiologia do Solo , Genômica
3.
Braz J Microbiol ; 55(2): 1853-1862, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38393616

RESUMO

The strain INPA03-11BT, isolated in the 1980s from nodules of Centrosema sp. collected in Manaus, Amazonas, Brazil, was approved by the Brazilian Ministry of Agriculture as a cowpea inoculant in 2004. Since then, several studies have been conducted regarding its phenotypic, genetic, and symbiotic characteristics under axenic and field conditions. Phenotypic features demonstrate its high adaptability to stressful soil conditions, such as tolerance to acidity, high temperatures, and 13 antibiotics, and, especially, its high symbiotic efficiency with cowpea and soybean, proven in the field. The nodC and nifH phylogenies placed the INPA strain in the same clade as the species B. macuxiense BR 10303T which was also isolated from the Amazon region. The sequencing of the 16S rRNA ribosomal gene and housekeeping genes, as well as BOX-PCR profiles, showed its potential as a new species, which was confirmed by a similarity percentage of 94.7% and 92.6% in Average Nucleotide Identity with the closest phylogenetically related species Bradyrhizobium tropiciagri CNPSo1112T and B. viridifuturi SEMIA690T, respectively. dDDH values between INPA03-11BT and both CNPSo 1112T and SEMIA690T were respectively 58.5% and 48.1%, which are much lower than the limit for species boundary (70%). Therefore, we propose the name Bradyrhizobium amazonense for INPA03-11BT (= BR3301 = SEMIA6463).


Assuntos
Bradyrhizobium , Filogenia , RNA Ribossômico 16S , Microbiologia do Solo , Vigna , Bradyrhizobium/genética , Bradyrhizobium/classificação , Bradyrhizobium/fisiologia , Bradyrhizobium/isolamento & purificação , Brasil , Vigna/microbiologia , RNA Ribossômico 16S/genética , Inoculantes Agrícolas/genética , Inoculantes Agrícolas/fisiologia , Inoculantes Agrícolas/classificação , DNA Bacteriano/genética , Simbiose , Nódulos Radiculares de Plantas/microbiologia , Adaptação Fisiológica , Glycine max/microbiologia , Estresse Fisiológico
4.
Sci. agric ; 79(02): 1-12, 2022. tab, ilus
Artigo em Inglês | VETINDEX | ID: biblio-1498030

RESUMO

Identification and selection of nitrogen-fixing bacterial strains for inoculation into native leguminous tree species can assist in the recovery of degraded areas. Additionally, native strains from these areas are genetic resources adapted to these conditions and are thus suitable for selection. The aim of this study was to symbiotically and genetically characterize 18 bacterial strains from the Rhizobium and Bradyrhizobium genera isolated from Machaerium nyctitans, Platypodium elegans, and Ormosia arborea grown in a nursery in an iron mining area. Three experiments were conducted under axenic conditions in a greenhouse. The nodulation capacity of the strains was evaluated by the number (NN) and dry matter (NDM) of nodules. Symbiotic efficiency was evaluated based on the following parameters: SPAD index (SPAD), shoot dry matter (SDM), root dry matter (RDM), and total dry matter (TDM) of the plants, relative efficiency (RE), shoot nitrogen content (SNC), and total nitrogen content in the plant (TNC). The atpD and gyrB housekeeping genes and the nifH gene were sequenced for phylogenetic analysis, and the nodC and nodD symbiotic genes of the strains were amplified. Out of the 18 strains, 16 were authenticated by nodulation capacity in the species of origin. The SPAD variable allowed for the detection of differences between treatments before the SDM. Additionally, the SPAD index showed correlation with TNC, and the strain Bradyrhizobium sp., UFLA01-839, which may represent a new species, was outstanding in Machaerium nyctitans. The nifH, nodD, and nodC genes were detected in UFLA01-839.


Assuntos
Bradyrhizobium/genética , Bradyrhizobium/isolamento & purificação , Fabaceae , Micorrizas , Rhizobium/genética , Rhizobium/isolamento & purificação , Simbiose/genética
5.
Sci. agric ; 79(2): e20200238, 2022. tab, ilus
Artigo em Inglês | VETINDEX | ID: biblio-1290179

RESUMO

Identification and selection of nitrogen-fixing bacterial strains for inoculation into native leguminous tree species can assist in the recovery of degraded areas. Additionally, native strains from these areas are genetic resources adapted to these conditions and are thus suitable for selection. The aim of this study was to symbiotically and genetically characterize 18 bacterial strains from the Rhizobium and Bradyrhizobium genera isolated from Machaerium nyctitans, Platypodium elegans, and Ormosia arborea grown in a nursery in an iron mining area. Three experiments were conducted under axenic conditions in a greenhouse. The nodulation capacity of the strains was evaluated by the number (NN) and dry matter (NDM) of nodules. Symbiotic efficiency was evaluated based on the following parameters: SPAD index (SPAD), shoot dry matter (SDM), root dry matter (RDM), and total dry matter (TDM) of the plants, relative efficiency (RE), shoot nitrogen content (SNC), and total nitrogen content in the plant (TNC). The atpD and gyrB housekeeping genes and the nifH gene were sequenced for phylogenetic analysis, and the nodC and nodD symbiotic genes of the strains were amplified. Out of the 18 strains, 16 were authenticated by nodulation capacity in the species of origin. The SPAD variable allowed for the detection of differences between treatments before the SDM. Additionally, the SPAD index showed correlation with TNC, and the strain Bradyrhizobium sp., UFLA01-839, which may represent a new species, was outstanding in Machaerium nyctitans. The nifH, nodD, and nodC genes were detected in UFLA01-839.


Assuntos
Rhizobium/isolamento & purificação , Bradyrhizobium/isolamento & purificação , Fabaceae , Bactérias Fixadoras de Nitrogênio
6.
Syst Appl Microbiol ; 44(4): 126228, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34265499

RESUMO

The isolation of rhizobial strains from the root and stem nodules remains a commonly used method despite its limitations as it enables the identification of mainly dominant symbiotic groups within rhizobial communities. To overcome these limitations, we used genus-specific nifD primers in a culture-independent assessment of Bradyrhizobium communities inhabiting soils in southern Brazil. The majority of nifD sequences were generated from DNA isolated from tropical-lowland pasture soils, although some soil samples originated from the Campos de Cima da Serra volcanic plateau. In the nifD tree, all the bradyrhizobial sequences comprised 38 clades, including 18 new clades. The sequences generated in this study were resolved into 22 clades and 21 singletons. The nifD bradyrhizobial assemblage contained Azorhizobium and α-proteobacterial methylotrophic genera, suggesting that these genera may have acquired their nif loci from Bradyrhizobium donors. The most common in the lowland pasture soils subclade III.3D branch comprises the isolates of mainly an American origin. On the other hand, subclade III.4, which was earlier detected in Brazil among Bradyrhizobium isolates nodulating native lupins, appears more common in the Campos de Cima da Serra soils. The second-largest group, Clade XXXVIII, has not yet been reported in culture-dependent studies, while another common group called Clade I represents a symbiovar predominating in Australia. The identification of the diverse nifD Clade I haplotypes in the tropical-lowland pastures infested by Australian Acacia spp implies that the introduction of these legumes to southern Brazil has resulted in the dissemination of their bradyrhizobial symbionts.


Assuntos
Bradyrhizobium , Lupinus , Filogenia , Bradyrhizobium/classificação , Bradyrhizobium/isolamento & purificação , Brasil , DNA Bacteriano/genética , Florestas , Lupinus/microbiologia , RNA Ribossômico 16S/genética , Nódulos Radiculares de Plantas , Análise de Sequência de DNA , Microbiologia do Solo , Simbiose
7.
Syst Appl Microbiol ; 44(3): 126203, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33857759

RESUMO

In this work, we investigated Bradyrhizobium strains isolated from soils collected from the rhizosphere of native and exotic legumes species inhabiting two ecoclimatic zones - asubtropical-lowland pasture (Pampa Biome) and a volcanic plateau covered by Araucaria Moist Forests (Atlantic Forest Biome). The rhizobial strains were isolated from the nodules of seven native and one exotic legume species used as rhizobium traps. Single-gene (recA, glnII, dnaK) and combined-gene MLSA analyses (dnaK-glnII-gyrB-recA-rpoB) revealed that nearly 85% of the isolates clustered in B. elkanii supergroup, while the remaining (except for two isolates) in B. japonicum supergroup, albeit, in most cases, separately from the type strains of Bradyrhizobium species. As a symbiotic gene marker, a portion of nifD gene was sequenced for 194 strains. In the nifD-tree, an American branch III.3D (104 isolates), was the most numerous among the isolates. A significant portion of the isolates clustered in American groups; subclade III.4 (40 strains), Clade VII (3 strains), and a new Clade XX (4 strains). Most of the remaining strains belonged to a pantropical III.3C branch (39 isolates). On the other hand, identification of isolates belonging, respectively, to Clade I and Clade II may result of spreading of the Australian (Clade I) and European (Clade II) bradyrhizobia following the introduction of their legume hosts. Our study indicated that the American groups predominated in the symbiotic Bradyrhizobium communities in southern Brazil. However, there is a significant component of exotic lineages, resulting from the dispersal of pantropical Fabaceae taxa and the introduction of exotic legumes.


Assuntos
Bradyrhizobium , Fabaceae , Florestas , Pradaria , Filogenia , Bradyrhizobium/classificação , Bradyrhizobium/isolamento & purificação , Brasil , DNA Bacteriano/genética , Fabaceae/microbiologia , Genes Bacterianos , RNA Ribossômico 16S/genética , Rizosfera , Nódulos Radiculares de Plantas/microbiologia , Análise de Sequência de DNA , Simbiose
8.
Braz J Microbiol ; 52(2): 639-649, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33447935

RESUMO

The aim of this work was to characterize and identify some bacteria isolated from the root nodules of Retama monosperma grown in Sidi Boubker lead and zinc mine tailings. Very few root nodules were obtained on the root nodules of R. monosperma grown in these soils. The three bacteria isolated from the root nodules were tolerant in vitro to different concentrations of heavy metals, including lead and zinc. The rep-PCR experiments showed that the three isolates have different molecular fingerprints and were considered as three different strains. The analysis of their 16S rRNA gene sequences proved their affiliation to the genus Bradyrhizobium. The analysis and phylogeny of the housekeeping genes atpD, glnII, gyrB, recA, and rpoB confirmed that the closest species was B. valentinum with similarity percentages of 95.61 to 95.82%. The three isolates recovered from the root nodules were slow-growing rhizobia capable to renodulate their original host plant in the presence of Pb-acetate. They were able to nodulate R. sphaerocarpa and Lupinus luteus also but not Glycine max or Phaseolus vulgaris. The phylogeny of the nodA and nodC nodulation genes as well as the nifH gene of the three strains showed that they belong to the symbiovar retamae of the genus Bradyrhizobium. The three strains isolated could be considered for use as inoculum for Retama plants before use in phytoremediation experiments.


Assuntos
Bradyrhizobium/metabolismo , Fabaceae/microbiologia , Chumbo/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Zinco/metabolismo , Bradyrhizobium/classificação , Bradyrhizobium/genética , Bradyrhizobium/isolamento & purificação , Mineração , Marrocos , Filogenia , Nodulação , Glycine max/microbiologia
9.
Int J Syst Evol Microbiol ; 70(8): 4623-4636, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32667875

RESUMO

The genus Bradyrhizobium is considered as the probable ancestor lineage of all rhizobia, broadly spread in a variety of ecosystems and with remarkable diversity. A polyphasic study was performed to characterize and clarify the taxonomic position of eight bradyrhizobial strains isolated from indigenous legumes to Western Australia. As expected for the genus, the 16S rRNA gene sequences were highly conserved, but the results of multilocus sequence analysis with four housekeeping genes (dnaK, glnII, gyrB and recA) confirmed three new distinct clades including the following strains: (1) WSM 1744T, WSM 1736 and WSM 1737; (2) WSM 1791T and WSM 1742; and (3) WSM 1741T, WSM 1735 and WSM 1790. The highest ANI values of the three groups in relation to the closest type strains were 92.4, 92.3 and 93.3 %, respectively, below the threshold of species circumscription. The digital DNA-DNA hybridization analysis also confirmed new species descriptions, with less than 52 % relatedness with the closest type strains. The phylogeny of the symbiotic gene nodC clustered the eight strains into the symbiovar retamae, together with seven Bradyrhizobium type strains, sharing from 94.2-98.1 % nucleotide identity (NI), and less than 88.7 % NI with other related strains and symbiovars. Morpho-physiological, phylogenetics, genomic and symbiotic traits were determined for the new groups and our data support the description of three new species, Bradyrhizobium archetypum sp. nov., Bradyrhizobium australiense sp. nov. and Bradyrhizobium murdochi sp. nov., with WSM 1744T (=CNPSo 4013T=LMG 31646T), WSM 1791T (=CNPSo 4014T=LMG 31647T) and WSM 1741T (=CNPSo 4020T=LMG 31651T) designated as type strains, respectively.


Assuntos
Bradyrhizobium/classificação , Fabaceae/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Bradyrhizobium/isolamento & purificação , DNA Bacteriano/genética , Genes Bacterianos , Tipagem de Sequências Multilocus , Fixação de Nitrogênio , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Austrália Ocidental
10.
Curr Microbiol ; 77(8): 1746-1755, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32322907

RESUMO

Soybean (Glycine max L.) is an important legume that greatly benefits from inoculation with nitrogen-fixing bacteria. In a previous study, five efficient nitrogen-fixing bacterial strains, isolated from nodules of soybean inoculated with soil from semi-arid region, Northeast Brazil, were identified as a new group within the genus Bradyrhizobium. The taxonomic status of these strains was evaluated in this study. The phylogenetic analysis of the 16S rRNA gene showed the high similarity of the five strains to Bradyrhizobium brasilense UFLA03-321T (100%), B. pachyrhizi PAC48T (100%), B. ripae WR4T (100%), B. elkanii USDA 76T (99.91%), and B. macuxiense BR 10303T (99.91%). However, multilocus sequence analysis of the housekeeping genes atpD, dnaK, gyrB, recA, and rpoB, average nucleotide identity, and digital DNA-DNA hybridization analyses supported the classification of the group as B. brasilense. Some phenotypic characteristics allowed differentiating the five strains and the type strain of B. brasilense from the two neighboring species (B. pachyrhizi PAC48T and B. elkanii USDA 76T). The nodC and nifH genes' analyses showed that these strains belong to symbiovar sojae, together with B. elkanii (USDA 76T) and B. ferriligni (CCBAU 51502T). The present results support the classification of these five strains as Bradyrhizobium brasilense (symbiovar sojae).


Assuntos
Bradyrhizobium/classificação , Glycine max/microbiologia , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Bradyrhizobium/isolamento & purificação , Brasil , DNA Bacteriano/genética , Clima Desértico , Genes Bacterianos , Tipagem de Sequências Multilocus , Fixação de Nitrogênio , Bactérias Fixadoras de Nitrogênio/classificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Simbiose
11.
Arch Microbiol ; 202(5): 1135-1141, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32062690

RESUMO

This study describes two Bradyrhizobium strains, UFLA03-164T and UFLA03-153, which share more than 99% sequence similarity of the 16S rRNA with the type strains of 15 species in this genus. The concatenation of three housekeeping genes (recA, gyrB, and dnaK) indicated that both strains formed a single clade separate from known Bradyrhizobium species. B. viridifuturi, represented by SEMIA 690T, is the closest neighboring species (96.2%). Low (< 92%) average nucleotide identity (ANI) was observed between strain UFLA03-164T and any of the closest species on the phylogenetic trees based on concatenated housekeeping genes. The DNA G+C content of UFLA03-164T is 63.25%. Phenotypic characteristics were determined for both UFLA strains. Based on the data, the two strains represent a new species for which the name Bradyrhizobium uaiense is proposed, with UFLA03-164T (= LMG 31509T) as type strain.


Assuntos
Bradyrhizobium/classificação , Bradyrhizobium/genética , Genes Essenciais/genética , Vigna/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases/genética , Bradyrhizobium/isolamento & purificação , DNA Bacteriano/genética , Genes Bacterianos/genética , Tipagem de Sequências Multilocus , Fixação de Nitrogênio/fisiologia , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Nódulos Radiculares de Plantas/microbiologia , Análise de Sequência de DNA
12.
Int J Syst Evol Microbiol ; 69(12): 3863-3877, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31486763

RESUMO

The symbioses between legumes and nitrogen-fixing rhizobia make the greatest contribution to the global nitrogen input via the process of biological nitrogen fixation (BNF). Bradyrhizobium stands out as the main genus nodulating basal Caesalpinioideae. We performed a polyphasic study with 11 strains isolated from root nodules of Chamaecristafasciculata, an annual multi-functional native legume of the USA. In the 16S rRNA gene phylogeny the strains were clustered in the Bradyrhizobium japonicumsuperclade. The results of analysis of the intergenic transcribed spacer (ITS) indicated less than 89.9 % similarity to other Bradyrhizobium species. Multilocus sequence analysis (MLSA) with four housekeeping genes (glnII, gyrB, recA and rpoB) confirmed the new group, sharing less than 95.2 % nucleotide identity with other species. The MLSA with 10 housekeeping genes (atpD, dnaK, gap, glnII, gltA, gyrB, pnp, recA, rpoB and thrC) indicated Bradyrhizobium daqingense as the closest species. Noteworthy, high genetic diversity among the strains was confirmed in the analyses of ITS, MLSA and BOX-PCR. Average nucleotide identity and digital DNA-DNA hybridization values were below the threshold of described Bradyrhizobium species, of 89.7 and 40 %, respectively. In the nifH and nodC phylogenies, the strains were grouped together, but with an indication of horizontal gene transfer, showing higher similarity to Bradyrhizobium arachidis and Bradyrhizobium forestalis. Other phenotypic, genotypic and symbiotic properties were evaluated, and the results altogether support the description of the CNPSo strains as representatives of the new species Bradyrhizobiumfrederickii sp. nov., with CNPSo 3426T (=USDA 10052T=U686T=CL 20T) as the type strain.


Assuntos
Bradyrhizobium/classificação , Chamaecrista/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Bradyrhizobium/isolamento & purificação , DNA Bacteriano/genética , Transferência Genética Horizontal , Genes Bacterianos , Missouri , Tipagem de Sequências Multilocus , Nebraska , Fixação de Nitrogênio , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Simbiose , Temperatura
13.
Int J Syst Evol Microbiol ; 69(11): 3448-3459, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31429819

RESUMO

Information about the symbionts of legumes of the Caesalpinioideae subfamily is still limited, and we performed a polyphasic approach with three Bradyrhizobium strains-CNPSo 3448T, CNPSo 3394 and CNPSo 3442-isolated from Chamaecrista fasciculata, a native legume broadly distributed in the USA. In the phylogenetic analysis of both the 16S rRNA gene and the intergenic transcribed spacer, the CNPSo strains were clustered within the Bradyrhizobium japonicumsuperclade. Multilocus sequence analysis with six housekeeping genes-glnII, gyrB, recA, rpoB, atpD and dnaK-indicated that Bradyrhizobium diazoefficiens is the closest species, with 83 % of nucleotide identity. In the genome analyses of CNPSo 3448T, average nucleotide identity and digital DNA-DNA hybridization results confirmed higher similarity with B. diazoefficiens, with values estimated of 93.35 and 51.50 %, respectively, both below the threshold of the same species, confirming that the CNPSo strains represent a new lineage. BOX-PCR profiles indicated high intraspecific genetic diversity between the CNPSo strains. In the analyses of the symbiotic genes nodC and nifH the CNPSo strains were clustered with Bradyrhizobium arachidis, Bradyrhizobium forestalis, Bradyrhizobium cajani, Bradyrhizobium kavangense and Bradyrhizobium vignae, indicating a different phylogenetic history compared to the conserved core genes. Other physiological (C utilization, tolerance to antibiotics and abiotic stresses), chemical (fatty acid profile) and symbiotic (nodulation host range) properties were evaluated and are described. The data from our study support the description of the CNPSo strains as the novel species Bradyrhizobiumniftali sp. nov., with CNPSo 3448T (=USDA 10051T=U687T=CL 40T) designated as the type strain.


Assuntos
Bradyrhizobium/classificação , Chamaecrista/microbiologia , Fixação de Nitrogênio , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Bradyrhizobium/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Missouri , Tipagem de Sequências Multilocus , Nitrogênio , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Simbiose
14.
Braz J Microbiol ; 50(4): 905-914, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31236871

RESUMO

Biological nitrogen fixation (BNF) with the soybean crop probably represents the major sustainable technology worldwide, saving billions of dollars in N fertilizers and decreasing water pollution and the emission of greenhouse gases. Accordingly, the identification of strains occupying nodules under field conditions represents a critical step in studies that are aimed at guaranteeing increased BNF contribution. Current methods of identification are mostly based on serology, or on DNA profiles. However, the production of antibodies is restricted to few laboratories, and to obtain DNA profiles of hundreds of isolates is costly and time-consuming. Conversely, the matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS technique might represent a golden opportunity for replacing serological and DNA-based methods. However, MALDI-TOF databases of environmental microorganisms are still limited, and, most importantly, there are concerns about the discrimination of protein profiles at the strain level. In this study, we investigated four soybean rhizobial strains carried in commercial inoculants used in over 35 million hectares in Brazil and also in other countries of South America and Africa. A supplementary MALDI-TOF database with the protein profiles of these rhizobial strains was built and allowed the identification of unique profiles statistically supported by multivariate analysis and neural networks. To test this new database, the nodule occupancy by Bradyrhizobium strains in symbiosis with soybean was characterized in a field experiment and the results were compared with serotyping of bacteria by immuno-agglutination. The results obtained by both techniques were highly correlated and confirmed the viability of using the MALDI-TOF MS technique to effectively distinguish bacteria at the strain level.


Assuntos
Inoculantes Agrícolas/isolamento & purificação , Bradyrhizobium/isolamento & purificação , Glycine max/microbiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Inoculantes Agrícolas/química , Inoculantes Agrícolas/classificação , Inoculantes Agrícolas/fisiologia , Bradyrhizobium/química , Bradyrhizobium/classificação , Bradyrhizobium/fisiologia , Brasil , Fixação de Nitrogênio , Glycine max/fisiologia , Simbiose
15.
Braz J Microbiol ; 50(3): 759-767, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31144269

RESUMO

The genus Bradyrhizobium harbors many endosymbionts of legumes, but recent research has shown their widespread presence in soils and in non-legumes, notably in roots of sugarcane. This study aimed to investigate the Bradyrhizobium sp. community density in the endosphere and the rhizosphere of two commercial sugarcane cultivars. Samples of the rhizosphere and root endosphere of two Brazilian sugarcane cultivars (RB867515 and IACSP95-5000) were collected, serially diluted, and inoculated on axenic cowpea (Vigna unguiculata) and the induction of nodules was evaluated. Based on the results, a density was estimated of at least 1.6 × 104 rhizobia g root-1 in rhizosphere samples and up to 105 rhizobia g root -1 in endosphere. BOX-PCR profiling of 93 Bradyrhizobium isolates revealed genetic variability, with some dominant (up to 18 representants) and less dominant genotypes. 16S rRNA and ITS sequence analyses confirmed nine phylotypes, six of which pertained to the B. elkanii clade and three to the B. japonicum clade. Five isolates were genetically similar to the recently described species B. sacchari. There was no effect of the factors "plant cultivar" and "root compartment" on Bradyrhizobium sp. community composition and the most abundant genotypes occurred both in rhizosphere and endosphere of both cultivars. Therefore, this study confirms the natural presence of diverse Bradyrhizobium spp. in sugarcane root systems (mainly the rhizosphere) and indicates that certain Bradyrhizobium phylotypes have a special affinity for sugarcane root colonization.


Assuntos
Bradyrhizobium/isolamento & purificação , Nódulos Radiculares de Plantas/microbiologia , Saccharum/microbiologia , Bradyrhizobium/classificação , Bradyrhizobium/genética , Brasil , DNA Bacteriano/genética , Filogenia , RNA Ribossômico 16S/genética , Rizosfera , Vigna/crescimento & desenvolvimento , Vigna/microbiologia
16.
Microbes Environ ; 34(1): 43-58, 2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30773514

RESUMO

The climate, topography, fauna, and flora of Venezuela are highly diverse. However, limited information is currently available on the characterization of soybean rhizobia in Venezuela. To clarify the physiological and genetic diversities of soybean rhizobia in Venezuela, soybean root nodules were collected from 11 soil types located in different topographical regions. A total of 395 root nodules were collected and 120 isolates were obtained. All isolates were classified in terms of stress tolerance under different concentrations of NaCl and Al3+. The tolerance levels of isolates to NaCl and Al3+ varied. Based on sampling origins and stress tolerance levels, 44 isolates were selected for further characterization. An inoculation test indicated that all isolates showed the capacity for root nodulation on soybean. Based on multilocus sequence typing (MLST), 20 isolates were classified into the genera Rhizobium and Bradyrhizobium. The remaining 24 isolates were classified into the genus Burkholderia or Paraburkholderia. There is currently no evidence to demonstrate that the genera Burkholderia and Paraburkholderia are the predominant soybean rhizobia in agricultural fields. Of the 24 isolates classified in (Para) Burkholderia, the nodD-nodB intergenic spacer regions of 10 isolates and the nifH gene sequences of 17 isolates were closely related to the genera Rhizobium and Bradyrhizobium, respectively. The root nodulation numbers of five (Para) Burkholderia isolates were higher than those of the 20 α-rhizobia. Furthermore, among the 44 isolates tested, one Paraburkholderia isolate exhibited the highest nitrogen-fixation activity in root nodules.


Assuntos
Burkholderiaceae/classificação , Burkholderiaceae/isolamento & purificação , Glycine max/microbiologia , Filogenia , Microbiologia do Solo , Compostos de Alumínio/metabolismo , Bradyrhizobium/classificação , Bradyrhizobium/genética , Bradyrhizobium/isolamento & purificação , Bradyrhizobium/fisiologia , Burkholderia/classificação , Burkholderia/genética , Burkholderia/isolamento & purificação , Burkholderia/fisiologia , Burkholderiaceae/genética , Burkholderiaceae/fisiologia , Clima , Genes Bacterianos/genética , Geografia , Tipagem de Sequências Multilocus , Fixação de Nitrogênio/genética , Nodulação , Rhizobium/classificação , Rhizobium/genética , Rhizobium/isolamento & purificação , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/microbiologia , Cloreto de Sódio/metabolismo , Estresse Fisiológico , Simbiose , Venezuela
17.
Braz J Microbiol ; 50(2): 335-345, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30759310

RESUMO

Cowpea (Vigna unguiculata L.) is a legume species that considerably benefits from inoculation with nitrogen fixing bacteria of the genus Bradyrhizobium. One of the strains recommended for inoculation in cowpea in Brazil is UFLA03-84 (Bradyrhizobium sp.). The aim of our study was to define the taxonomic position of the UFLA03-84 strain and of two other strains of Bradyrhizobium (UFLA03-144 and INPA237B), all belonging to the same phylogenetic group and isolated from soils of the Brazilian Amazon. Multilocus sequence analysis (MLSA) of the housekeeping genes atpD, gyrB, recA, and rpoB grouped (with similarity higher than 99%) the three strains with Bradyrhizobium viridifuturi SEMIA 690T. The analyses of average nucleotide identity and digital DNA-DNA hybridization supported classification of the group as Bradyrhizobium viridifuturi. The three strains exhibited similar behavior in relation to the most of the phenotypic characteristics evaluated. However, some characteristics exhibited variation, indicating phenotypic diversity within the species. Phylogenetic analysis of the nodC and nifH genes showed that the three strains are members of the same symbiovar (tropici) that contains type strains of Bradyrhizobium species coming from tropical soils (SEMIA 690TB. viridifuturi, CNPSo 1112TB. tropiciagri, CNPSo 2833TB. embrapense, and B. brasilense UFLA03-321T).


Assuntos
Bradyrhizobium/classificação , Bradyrhizobium/genética , Genes Essenciais/genética , Nódulos Radiculares de Plantas/microbiologia , Vigna/microbiologia , Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana , Bradyrhizobium/isolamento & purificação , Brasil , DNA Girase/genética , RNA Polimerases Dirigidas por DNA/genética , Genoma Bacteriano/genética , Proteínas de Membrana/genética , Tipagem de Sequências Multilocus , N-Acetilglucosaminiltransferases/genética , Fixação de Nitrogênio/genética , Oxirredutases/genética , RNA Ribossômico 16S/genética , Recombinases Rec A/genética , Microbiologia do Solo
18.
Braz J Microbiol ; 50(1): 205-211, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30637629

RESUMO

The bacterial strains SEMIA 587 and 5019 (Bradyrhizobium elkanii), 5079 (Bradyrhizobium japonicum), and 5080 (Bradyrhizobium diazoefficiens) are recommended for soybean inoculants in Brazil. In several countries, the current regulations are insufficient to induce companies for improving the quality of their products, leading to low performance and subsequent abandonment of inoculant use. From 2010 to 2014, 1086 samples coming mainly from Argentina and the southern region of Brazil were analyzed for viable cells counting, strains identification, and purity analysis according to the SDA/MAPA no. 30/2010 Normative Instruction. Most products were imported and formulated in liquid carriers with 5.0 × 109 colony-forming units (CFU)/mL. The strains most frequently used were SEMIA 5079/5080. Only 2.21% of samples had contaminants. The guaranteed concentration of viable cells in inoculants mostly ranged from 4.1 × 109 to 5.0 × 109 CFU/mL or CFU/g. The most frequently found concentration was above 1.1 × 1010 CFU/mL or CFU/g, which was higher than the product guarantee. The inoculants used for soybean crop in Brazil have excellent quality, leading the country to the leadership in taking advantage of the biological nitrogen fixation benefits for a productive and sustainable agriculture.


Assuntos
Inoculantes Agrícolas/isolamento & purificação , Bradyrhizobium/isolamento & purificação , Glycine max/microbiologia , Inoculantes Agrícolas/classificação , Inoculantes Agrícolas/genética , Inoculantes Agrícolas/crescimento & desenvolvimento , Bradyrhizobium/classificação , Bradyrhizobium/genética , Bradyrhizobium/crescimento & desenvolvimento , Brasil , Inocuidade dos Alimentos , Controle de Qualidade , Glycine max/química
19.
J Appl Microbiol ; 126(2): 523-533, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30276936

RESUMO

AIMS: The objective of this work was to isolate and characterize indigenous rhizobia from coal-mining areas able to efficiently nodulate and fix nitrogen in association with Calopogonium mucunoides (calopo). METHODS AND RESULTS: Isolation, authentication and morphological, biochemical and molecular characterization of the autochthonous rhizobia were performed and their symbiotic efficiency (SE) evaluated. Efficient rhizobial isolates suitable for the inoculation of calopo in coal-mining regions were obtained. A total of 30 isolates were obtained after nodulation authentication, of which five presented high SE with plant-growth promoting traits such as indole-3-acetic acid production, phosphate solubilization and biofilm formation. These isolates were identified as belonging to Bradyrhizobium, Pseudomonas and Rhizobium. CONCLUSIONS: Bradyrhizobium sp. A2-10 and Pseudomonas sp. A6-05 were able to promote calopo plant growth using soil obtained from coal-mining degraded areas, thus indicating their potential as inoculants aiming at land reclamation. SIGNIFICANCE AND IMPACT OF THE STUDY: To our knowledge, this is the first report of Pseudomonas nodule formation in calopo. Furthermore, the results demonstrated that autochthonous rhizobia obtained from degraded soils presented high SE in calopo and possess a wide range of plant-growth promoting traits. Ultimately, they may all contribute to an increased leguminous plant growth under stress conditions. The selected rhizobia strains may be used as inoculants and present a valuable role in the development of strategies aiming to recover coal-mining degraded areas. Bacterial inoculants would greatly reduce the use of often harmful nitrogen fertilizers vastly employed in revegetation programmes of degraded areas.


Assuntos
Bradyrhizobium/fisiologia , Minas de Carvão , Recuperação e Remediação Ambiental , Fabaceae/crescimento & desenvolvimento , Pseudomonas/fisiologia , Bradyrhizobium/isolamento & purificação , Bradyrhizobium/metabolismo , Fabaceae/metabolismo , Fabaceae/microbiologia , Fabaceae/fisiologia , Nodulação , Pseudomonas/isolamento & purificação , Pseudomonas/metabolismo , Rhizobium/isolamento & purificação , Rhizobium/metabolismo , Rhizobium/fisiologia , Solo , Simbiose
20.
Braz. j. microbiol ; Braz. j. microbiol;49(4): 703-713, Oct.-Dec. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-974305

RESUMO

ABSTRACT The leguminous inoculation with nodule-inducing bacteria that perform biological nitrogen fixation is a good example of an "eco-friendly agricultural practice". Bradyrhizobium strains BR 3267 and BR 3262 are recommended for cowpea (Vigna unguiculata) inoculation in Brazil and showed remarkable responses; nevertheless neither strain was characterized at species level, which is our goal in the present work using a polyphasic approach. The strains presented the typical phenotype of Bradyrhizobium with a slow growth and a white colony on yeast extract-mannitol medium. Strain BR 3267 was more versatile in its use of carbon sources compared to BR 3262. The fatty acid composition of BR 3267 was similar to the type strain of Bradyrhizobium yuanmingense; while BR 3262 was similar to Bradyrhizobium elkanii and Bradyrhizobium pachyrhizi. Phylogenetic analyses based on 16S rRNA and three housekeeping genes placed both strains within the genus Bradyrhizobium: strain BR 3267 was closest to B. yuanmingense and BR 3262 to B. pachyrhizi. Genome average nucleotide identity and DNA-DNA reassociation confirmed the genomic identification of B. yuanmingense BR 3267 and B. pachyrhizi BR 3262. The nodC and nifH gene analyses showed that strains BR 3267 and BR 3262 hold divergent symbiotic genes. In summary, the results indicate that cowpea can establish effective symbiosis with divergent bradyrhizobia isolated from Brazilian soils.


Assuntos
Bradyrhizobium/isolamento & purificação , Bradyrhizobium/genética , Inoculantes Agrícolas/isolamento & purificação , Inoculantes Agrícolas/genética , Vigna/microbiologia , Filogenia , Simbiose , Brasil , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Genoma Bacteriano , Evolução Molecular , Bradyrhizobium/classificação , Bradyrhizobium/fisiologia , Genômica , Nódulos Radiculares de Plantas/microbiologia , Inoculantes Agrícolas/classificação , Inoculantes Agrícolas/fisiologia , Vigna/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA