Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35164096

RESUMO

A determination method for trace 24-epibrassinolide (EBL) in plant tissues was developed using ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The plant tissue samples were extracted using a methanol-formic acid solution, and the corresponding supernatant was purified with ODS C18 solid-phase extraction column. The extracts were separated using a Zorbax Eclipse Plus C18 (2.1 mm × 50 mm, 1.8 µm) column with methanol and 0.1% formic acid as the mobile phase. The ion source for the mass spectrometry was an electrospray ionization source with positive ion mode detection. The linear range of the target compound was 0.7~104 µg/kg, the limit of detection (LOD) was 0.11~0.37 µg/kg, the limit of quantification (LOQ) was 0.36~1.22 µg/kg, the recovery rate was 84.0~116.3%, and the relative standard deviation (RSD%) was 0.8~10.5. The samples of maize plumule, brassica rapeseed flower, and marigold leaf were detected using the external standard method. The optimization of the extraction method and detection method of EBL improved the detection sensitivity, laid a foundation for the artificial synthesis of EBL, improved the extraction rate of EBL, and provided a theoretical basis for the study of EBL in many plants.


Assuntos
Brassica napus/química , Brassinosteroides , Flores/química , Folhas de Planta/química , Zea mays/química , Brassinosteroides/química , Brassinosteroides/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Avaliação de Medicamentos , Espectrometria de Massas em Tandem
2.
Amino Acids ; 53(9): 1373-1389, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34386848

RESUMO

Glycogen synthase kinase 3ß (GSK3ß) is considered an important element of glycogen metabolism; however, it has many other regulatory roles. Changes in the GSK3ß signaling mechanism have been associated with various disorders, such as Alzheimer's disease (AD), type II diabetes, and cancer. Although the effects of GSK3ß inhibitors on reducing the pathological effects of AD have been described, an effective inhibitor has not yet been developed. Epibrassinolide (EBR), a brassinosteroid (BR), is structurally similar to mammalian steroid hormones. Our studies have shown that EBR has an inhibitory effect on GSK3ß in different cell lines. Roscovitine (ROSC), a cyclin-dependent kinase (CDK) inhibitor, has also been identified as a potential GSK3 inhibitor. Within the scope of this study, we propose that EBR and/or ROSC might have mechanistic action in AD models. To test this hypothesis, we used in vitro models and Caenorhabditis elegans (C. elegans) AD strains. Finally, EBR treatment successfully protected cells from apoptosis and increased the inhibitory phosphorylation of GSK3ß. In addition, EBR and/or ROSC treatment had a positive effect on the survival rates of C. elegans strains. More interestingly, the paralysis phenotype of the C. elegans AD model due to Aß42 toxicity was prevented by EBR and/or ROSC. Our findings suggest that EBR and ROSC administration have neuroprotective effects on both in vitro and C. elegans models via inhibitory GSK3ß phosphorylation at Ser9.


Assuntos
Brassinosteroides/farmacologia , Caenorhabditis elegans/crescimento & desenvolvimento , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Longevidade , Transtornos Motores/tratamento farmacológico , Roscovitina/farmacologia , Esteroides Heterocíclicos/farmacologia , Proteínas tau/metabolismo , Animais , Brassinosteroides/química , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Quimioterapia Combinada , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Fármacos Neuroprotetores/farmacologia , Fosforilação , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Esteroides Heterocíclicos/química , Proteínas tau/genética
3.
Int J Mol Sci ; 22(9)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062717

RESUMO

Brassinosteroids are polyhydroxysteroids that are involved in different plants' biological functions, such as growth, development and resistance to biotic and external stresses. Because of its low abundance in plants, much effort has been dedicated to the synthesis and characterization of brassinosteroids analogs. Herein, we report the synthesis of brassinosteroid 24-nor-5ß-cholane type analogs with 23-benzoate function and 22,23-benzoate groups. The synthesis was accomplished with high reaction yields in a four-step synthesis route and using hyodeoxycholic acid as starting material. All synthesized analogs were tested using the rice lamina inclination test to assess their growth-promoting activity and compare it with those obtained for brassinolide, which was used as a positive control. The results indicate that the diasteroisomeric mixture of monobenzoylated derivatives exhibit the highest activity at the lowest tested concentrations (1 × 10-8 and 1 × 10-7 M), being even more active than brassinolide. Therefore, a simple synthetic procedure with high reaction yields that use a very accessible starting material provides brassinosteroid synthetic analogs with promising effects on plant growth. This exploratory study suggests that brassinosteroid analogs with similar chemical structures could be a good alternative to natural brassinosteroids.


Assuntos
Benzoatos/síntese química , Brassinosteroides/síntese química , Colanos/síntese química , Desenvolvimento Vegetal , Arabidopsis/crescimento & desenvolvimento , Benzoatos/química , Brassinosteroides/química , Colanos/química , Ácido Desoxicólico/síntese química , Ácido Desoxicólico/química , Estrutura Molecular , Oryza/química , Reguladores de Crescimento de Plantas , Esteroides Heterocíclicos/química
4.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808421

RESUMO

Brassinosteroids (BRs) are plant hormones of steroid nature, regulating various developmental and adaptive processes. The perception, transport, and signaling of BRs are actively studied nowadays via a wide range of biochemical and genetic tools. However, most of the knowledge about BRs intracellular localization and turnover relies on the visualization of the receptors or cellular compartments using dyes or fluorescent protein fusions. We have previously synthesized a conjugate of epibrassinolide with green fluorescent dye BODIPY (eBL-BODIPY). Here we present a detailed assessment of the compound bioactivity and its suitability as probe for in vivo visualization of BRs. We show that eBL-BODIPY rapidly penetrates epidermal cells of Arabidopsis thaliana roots and after long exposure causes physiological and transcriptomic responses similar to the natural hormone.


Assuntos
Compostos de Boro/química , Brassinosteroides/química , Corantes Fluorescentes/química , Esteroides Heterocíclicos/química , Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais
5.
Food Chem ; 356: 129704, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33831827

RESUMO

The postharvest senescence accompanied by yellowing limited the shelf-life of broccoli. In this study, we developed a novel W/O/W double emulsion co-delivering brassinolide and cinnamon essential oil and applied it to broccoli for preservation. Results showed that double emulsion prepared by whey protein concentrate-high methoxyl pectin (1:3) exhibited best storage stability with largest particle size (581.30 nm), lowest PDI (0.23) and zeta potential (-40.31 mV). This double emulsion also exhibited highest encapsulation efficiency of brassinolide (92%) and cinnamon essential oil (88%). The broccoli coated with double emulsion maintained higher chlorophyll contents and activities of chlorophyllase and magnesium-dechelatase were reduced by 9% and 24%, respectively. The energy metabolic enzymes (SDH, CCO, H+-ATPase, Ca2+-ATPase) were also activated, inducing higher level of ATP and energy charge. These results demonstrated W/O/W double emulsion co-delivering brassinolide and cinnamon essential delayed the senescence of broccoli via regulating chlorophyll degradation and energy metabolism.


Assuntos
Brassica/metabolismo , Brassinosteroides/química , Clorofila/metabolismo , Emulsões/química , Metabolismo Energético , Óleos Voláteis/química , Esteroides Heterocíclicos/química , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Brassica/efeitos dos fármacos , Brassinosteroides/metabolismo , Brassinosteroides/farmacologia , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Hidrolases de Éster Carboxílico/metabolismo , Cinnamomum zeylanicum/metabolismo , Emulsões/metabolismo , Metabolismo Energético/efeitos dos fármacos , Enzimas/química , Armazenamento de Alimentos/métodos , Óleos Voláteis/metabolismo , Óleos Voláteis/farmacologia , Tamanho da Partícula , Esteroides Heterocíclicos/metabolismo , Esteroides Heterocíclicos/farmacologia , Viscosidade
6.
Molecules ; 26(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671806

RESUMO

The metabolism of brassinosteroid leads to structural modifications in the ring skeleton or the side alkyl chain. The esterification and glycosylation at C-3 are the most common metabolic pathways, and it has been suggested that conjugate brassinosteroids are less active or inactive. In this way, plants regulate the content of active brassinosteroids. In this work, the synthesis of brassinosteroid 24-norcholane type analogs conjugated at C-3 with benzoate groups, carrying electron donor and electron attractant substituents on the aromatic ring, is described. Additionally, their growth-promoting activities were evaluated using the Rice Lamina Inclination Test (RLIT) and compared with that exhibited by brassinolide (used as positive control) and non-conjugated analogs. The results indicate that at the lowest tested concentrations (10-8-10-7 M), all analogs conjugated at C-3 exhibit similar or higher activities than brassinolide, and the diasteroisomers with S configuration at C-22 are the more active ones. Increasing concentration (10-6 M) reduces the biological activities of analogs as compared to brassinolide.


Assuntos
Benzoatos/química , Brassinosteroides/síntese química , Oryza/efeitos dos fármacos , Reguladores de Crescimento de Plantas/síntese química , Benzoatos/farmacologia , Brassinosteroides/química , Brassinosteroides/farmacologia , Relação Dose-Resposta a Droga , Conformação Molecular , Oryza/metabolismo , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/farmacologia , Estereoisomerismo
7.
Int J Mol Sci ; 22(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652675

RESUMO

A priority of modern agriculture is to use novel and environmentally friendly plant-growth promoter compounds to increase crop yields and avoid the indiscriminate use of synthetic fertilizers. Brassinosteroids are directly involved in the growth and development of plants and are considered attractive candidates to solve this problem. Obtaining these metabolites from their natural sources is expensive and cumbersome since they occur in extremely low concentrations in plants. For this reason, much effort has been dedicated in the last decades to synthesize brassinosteroids analogs. In this manuscript, we present the synthesis and characterization of seven steroidal carbamates starting from stigmasterol, ß-sitosterol, diosgenin and several oxygenated derivatives of it. The synthesis route for functionalization of diosgenin included epoxidation and epoxy opening reactions, reduction of carbonyl groups, selective oxidation of hydroxyl groups, among others. All the obtained compounds were characterized by 1H and 13C NMR, HRMS, and their melting points are also reported. Rice lamina inclination test performed at different concentrations established that all reported steroidal carbamates show plant-growth-promoting activity. A molecular docking study evaluated the affinity of the synthesized compounds towards the BRI1-BAK1 receptor from Arabidopsis thaliana and three of the docked compounds displayed a binding energy lower than brassinolide.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Carbamatos , Simulação de Acoplamento Molecular , Oryza/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas , Brassinosteroides/química , Carbamatos/síntese química , Carbamatos/química , Carbamatos/farmacologia , Reguladores de Crescimento de Plantas/síntese química , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/farmacologia , Esteroides Heterocíclicos/química
8.
Int J Mol Sci ; 22(3)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33503838

RESUMO

Brassinosteroids (BRs) are plant hormones that play an essential role in plant development and have the ability to protect plants against various environmental stresses, such as low and high temperature, drought, heat, salinity, heavy metal toxicity, and pesticides. Mitigation of stress effects are produced through independent mechanisms or by interaction with other important phytohormones. However, there are few studies in which this property has been reported for BRs analogs. Thus, in this work, the enhancement of drought stress tolerance of A. thaliana was assessed for a series of 2-deoxybrassinosteroid analogs. In addition, the growth-promoting activity in the Rice Lamina Inclination Test (RLIT) was also evaluated. The results show that analog 1 exhibits similar growth activity as brassinolide (BL; used as positive control) in the RLIT bioassay. Interestingly, both compounds increase their activities by a factor of 1.2-1.5 when they are incorporated to polymer micelles formed by Pluronic F-127. On the other hand, tolerance to water deficit stress of Arabidopsis thaliana seedlings was evaluated by determining survival rate and dry weight of seedlings after the recovery period. In both cases, the effect of analog 1 is higher than that exhibited by BL. Additionally, the expression of a subset of drought stress marker genes was evaluated in presence and absence of exogenous applied BRs. Results obtained by qRT-PCR analysis, indicate that transcriptional changes of AtDREBD2A and AtNCED3 genes were more significant in A. thaliana treated with analog 1 in homogeneous solution than in that treated with BL. These changes suggest the activation of alternative pathway in response to water stress deficit. Thus, exogenous application of BRs synthetic analogs could be a potential tool for improvement of crop production under stress conditions.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Brassinosteroides/farmacologia , Secas , Reguladores de Crescimento de Plantas/farmacologia , Estresse Fisiológico , Brassinosteroides/química , Estrutura Molecular , Fenótipo , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/química , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
9.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35008768

RESUMO

Cereals, which belong to the Poaceae family, are the most economically important group of plants. Among abiotic stresses, temperature stresses are a serious and at the same time unpredictable problem for plant production. Both frost (in the case of winter cereals) and high temperatures in summer (especially combined with a water deficit in the soil) can result in significant yield losses. Plants have developed various adaptive mechanisms that have enabled them to survive periods of extreme temperatures. The processes of acclimation to low and high temperatures are controlled, among others, by phytohormones. The current review is devoted to the role of brassinosteroids (BR) in cereal acclimation to temperature stress with special attention being paid to the impact of BR on photosynthesis and the membrane properties. In cereals, the exogenous application of BR increases frost tolerance (winter rye, winter wheat), tolerance to cold (maize) and tolerance to a high temperature (rice). Disturbances in BR biosynthesis and signaling are accompanied by a decrease in frost tolerance but unexpectedly an improvement of tolerance to high temperature (barley). BR exogenous treatment increases the efficiency of the photosynthetic light reactions under various temperature conditions (winter rye, barley, rice), but interestingly, BR mutants with disturbances in BR biosynthesis are also characterized by an increased efficiency of PSII (barley). BR regulate the sugar metabolism including an increase in the sugar content, which is of key importance for acclimation, especially to low temperatures (winter rye, barley, maize). BR either participate in the temperature-dependent regulation of fatty acid biosynthesis or control the processes that are responsible for the transport or incorporation of the fatty acids into the membranes, which influences membrane fluidity (and subsequently the tolerance to high/low temperatures) (barley). BR may be one of the players, along with gibberellins or ABA, in acquiring tolerance to temperature stress in cereals (particularly important for the acclimation of cereals to low temperature).


Assuntos
Brassinosteroides/metabolismo , Membrana Celular/fisiologia , Fenômenos Químicos , Grão Comestível/fisiologia , Fotossíntese , Estresse Fisiológico , Temperatura , Brassinosteroides/química
10.
Plant Physiol Biochem ; 158: 34-42, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33296844

RESUMO

Garlic (Allium sativum L.) is an economically important vegetable crop which is used worldwide for culinary and medicinal purposes. Soil salinity constrains the yield components of garlic. Understanding the responsive mechanism of garlic to salinity is crucial to improve its tolerance. To address this problem, two garlic cultivars differing in salt tolerance were used to investigate the long-term adaptive responses to salt stress at phenotype and transcriptome levels. Phenotypic analysis showed four-week salt stress significantly decreased the yield components of salt-sensitive cultivar. Transcriptomes of garlics were de novo assembled and mined for transcriptional activities regulated by salt stress. The results showed that photosynthesis, energy allocation, and secondary metabolism were commonly enriched in both sensitive and tolerant genotypes. Moreover, distinct responsive patterns were also observed between the two genotypes. Compared with the salt-tolerant genotype, most transcripts encoding enzymes in the phenylpropanoid biosynthesis pathway were coordinately down regulated in the salt-sensitive genotype, resulting in alternation of the content and composition of lignin. Meanwhile, transcripts encoding the enzymes in the brassinosteroid (BR) biosynthesis pathway were also systematically down regulated in the salt-sensitive genotypes. Taken together, these results suggested that BR-mediated lignin accumulation possibly plays an important role in garlic adaption to salt stress. These findings expand the understanding of responsive mechanism of garlic to salt stress.


Assuntos
Brassinosteroides/química , Alho/fisiologia , Lignina/química , Estresse Salino , Estresse Fisiológico , Transcriptoma , Alho/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genótipo
11.
Int J Mol Sci ; 22(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375728

RESUMO

Brassinosteroids are a class of plant hormones that regulate a broad range of physiological processes such as plant growth, development and immunity, including the suppression of biotic and abiotic stresses. In this paper, we report the synthesis of new brassinosteroid analogues with a nitrogen-containing side chain and their biological activity on Arabidopis thaliana. Based on molecular docking experiments, two groups of brassinosteroid analogues were prepared with short and long side chains in order to study the impact of side chain length on plants. The derivatives with a short side chain were prepared with amide, amine and ammonium functional groups. The derivatives with a long side chain were synthesized using amide and ammonium functional groups. A total of 25 new brassinosteroid analogues were prepared. All 25 compounds were tested in an Arabidopsis root sensitivity bioassay and cytotoxicity screening. The synthesized substances showed no significant inhibitory activity compared to natural 24-epibrassinolide. In contrast, in low concentration, several compounds (8a, 8b, 8e, 16e, 22a and 22e) showed interesting growth-promoting activity. The cytotoxicity assay showed no toxicity of the prepared compounds on cancer and normal cell lines.


Assuntos
Brassinosteroides/síntese química , Brassinosteroides/farmacologia , Técnicas de Química Sintética , Nitrogênio/química , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Brassinosteroides/química , Estrutura Molecular , Desenvolvimento Vegetal/efeitos dos fármacos
12.
Int J Mol Sci ; 21(8)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326491

RESUMO

Plant adaptations to changing environments rely on integrating external stimuli into internal responses. Brassinosteroids (BRs), a group of growth-promoting phytohormones, have been reported to act as signal molecules mediating these processes. BRs are perceived by cell surface receptor complex including receptor BRI1 and coreceptor BAK1, which subsequently triggers a signaling cascade that leads to inhibition of BIN2 and activation of BES1/BZR1 transcription factors. BES1/BZR1 can directly regulate the expression of thousands of downstream responsive genes. Recent studies in the model plant Arabidopsis demonstrated that BR biosynthesis and signal transduction, especially the regulatory components BIN2 and BES1/BZR1, are finely tuned by various environmental cues. Here, we summarize these research updates and give a comprehensive review of how BR biosynthesis and signaling are modulated by changing environments and how these changes regulate plant adaptive growth or stress tolerance.


Assuntos
Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Estresse Fisiológico/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/biossíntese , Brassinosteroides/química , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas/imunologia , Luz , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Estresse Fisiológico/fisiologia , Temperatura , Fatores de Transcrição/metabolismo , Água/metabolismo
13.
Int J Mol Sci ; 21(5)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155857

RESUMO

The quest and design of new brassinosteroids analogs is a matter of current interest. Herein, the effect of short alkyl side chains and the configuration at C22 on the growth-promoting activity of a series of new brassinosteroid 24-norcholan-type analogs have been evaluated by the rice leaf inclination test using brassinolide as positive control. The highest activities were found for triol 3 with a C22(S) configuration and monobenzoylated derivatives. A docking study of these compounds into the active site of the Brassinosteroid Insensitive 1(BRI1)-ligand-BRI1-Associated Receptor Kinase 1 (BAK1) complex was performed using AutoDock Vina, and protein-ligand contacts were analyzed using LigPlot+. The results suggest that the hydrophobic interactions of ligands with the receptor BRI1LRR and hydrogen bonding with BAK1 in the complex are important for ligand recognition. For monobenzoylated derivatives, the absence of the hydrophobic end in the alkyl chain seems to be compensated by the benzoyl group. Thus, it would be interesting to determine if this result depends on the nature of the substituent group. Finally, mixtures of S/R triols 3/4 exhibit activities that are comparable or even better than those found for brassinolide. Thus, these compounds are potential candidates for application in agriculture to improve the growth and yield of plants against various types of biotic and abiotic stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Brassinosteroides/química , Brassinosteroides/farmacologia , Ácidos Cólicos/química , Oryza/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Simulação de Acoplamento Molecular , Oryza/efeitos dos fármacos , Oryza/metabolismo , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/química
14.
J Agric Food Chem ; 68(13): 3912-3923, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32146811

RESUMO

Gas chromatography-mass spectrometry (GC-MS) analysis revealed that castasterone and its biosynthetic precursors are found in Brachypodium distachyon. In vitro conversion experiments with crude enzyme solutions prepared from B. distachyon demonstrated the presence of the following biosynthetic sequences: campesterol → campesta-4-en-3-one → campesta-3-one → campestanol → 6-deoxocathasterone → 6-deoxoteasterone → teasterone ↔ 3-dehydroteasterone ↔ typhasterol → castasterone. campesterol → 22-hydroxycampesterol → 22-hydroxy-campesta-4-en-3-one → 22-hydroxy-campesta-3-one → 6-deoxo-3-dehydroteasterone → 3-dehydroteasterone. 6-deoxoteasterone ↔ 6-deoxo-3-dehydroteasterone ↔ 6-deoxotyphasterol → 6-deoxocastasterone → castasterone. This shows that there are campestanol-dependent and campestanol-independent pathway in B. distachyon that synthesize 24-methylated brassinosteroids (BRs). Biochemical analysis of BRs biosynthetic enzymes confirmed that BdDET2, BdCYP90B1, BdCYP90A1, BdCYP90D2, and BdCYP85A1 are orthologous to BR 5α-reductase, BR C-22 hydroxylase, BR C-3 oxidase, BR C-23 hydroxylase, and BR C-6 oxidase, respectively. Brassinolide was not identified in B. distachyon. Additionally, B. distachyon crude enzyme solutions could not catalyze the conversion of castasterone to brassinolide, and the gene encoding an ortholog of CYP85A2 (a brassinolide synthase) was not found in B. distachyon. These results strongly suggest that the end product for brassinosteroid biosynthesis which controls the growth and development of B. distachyon is not brassinolide but rather castasterone.


Assuntos
Brachypodium/metabolismo , Colestanóis/metabolismo , Vias Biossintéticas , Brachypodium/química , Brachypodium/genética , Brassinosteroides/biossíntese , Brassinosteroides/química , Colestanóis/química , Cromatografia Gasosa-Espectrometria de Massas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
Food Chem ; 315: 126275, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32004982

RESUMO

The effects of individual epi-brassinolide (eBL) and NaCl, as well as their combination on contents of main phytochemicals and antioxidant capacity of Chinese kale sprouts were investigated. Our results showed that the application of 100 nM eBL decreased the contents of individual and total glucosinolates, while treatments of 160 mM NaCl both alone and combined with 100 nM eBL enhanced the glucosinolates accumulation by promoting the expression of genes involved in glucosinolate biosynthesis in Chinese kale sprouts and the combined treatment led to significantly higher content of most glucosinolate profiles. Moreover, it also elevated the contents of ascorbic acid and total carotenoids, whereas did not influence the total phenolics and antioxidant capacity. These findings indicated that the combined treatment of 100 nM eBL plus 160 mM NaCl could provide a new strategy to improve the main health promoting compounds in Chinese kale sprouts.


Assuntos
Brassica/química , Brassinosteroides/química , Compostos Fitoquímicos/química , Plântula/química , Cloreto de Sódio/química , Esteroides Heterocíclicos/química , Antioxidantes/química , Ácido Ascórbico/química , Carotenoides/química , Glucosinolatos/química , Fenóis/química , Cloreto de Sódio/farmacologia
16.
Nitric Oxide ; 97: 33-47, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32045686

RESUMO

The present study unravels origin of nitric oxide (NO) and the interaction between 24-Epibrassinolide (EBL) and nitrate reductase (NR) for NO production in Indian mustard (Brassica juncea L.) under salinity stress. Two independent experiments were performed to check whether (i) Nitrate reductase or Nitric oxide synthase takes part in the biosynthesis of endogenous NO and (ii) EBL has any regulatory effect on NR-dependent NO biosynthesis in the alleviation of salinity stress. Results revealed that NR-inhibitor tungstate significantly (P ≤ 0.05) decreased the NR activity and endogenous NO content, while NOS inhibitor l-NAME did not influence NO biosynthesis and plant growth. Under salinity stress, inhibition in NR activity decreased the activities of antioxidant enzymes, increased H2O2, MDA, protein carbonyl content and caused DNA damage, implying that antioxidant defense might be related to NO signal. EBL supplementation enhanced the NR activity but did not influence NOS activity, suggesting that NR was involved in endogenous NO production. EBL supplementation alleviated the inhibitory effects of salinity stress and improved the plant growth by enhancing nutrients, photosynthetic pigments, compatible osmolytes, and performance of AsA-GSH cycle. It also decreased the superoxide ion accumulation, leaf epidermal damages, cell death, DNA damage, and ABA content. Comet assay revealed significant (P ≤ 0.05) enhancement in tail length and olive tail moment, while flow cytometry did not showed any significant (P ≤ 0.05) changes in genome size and ploidy level under salinity stress. Moreover, EBL supplementation increased the G6PDH activity and S-nitrosothiol content which further boosted the antioxidant responses under salinity stress. Taken together, these results suggested that NO production in mustard occurred in NR-dependent manner and EBL in association with endogenous NO activates the antioxidant system to counter salinity stress.


Assuntos
Brassinosteroides/metabolismo , Mostardeira/química , Nitrato Redutase/metabolismo , Óxido Nítrico/biossíntese , Estresse Salino , Esteroides Heterocíclicos/metabolismo , Brassinosteroides/química , Inibidores Enzimáticos/farmacologia , Índia , Mostardeira/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Nitrato Redutase/química , Óxido Nítrico/química , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Esteroides Heterocíclicos/química
17.
Steroids ; 154: 108545, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31758963

RESUMO

Lupinus angustifolius L. is a legume culture known as a source of valuable feed protein and the N2-fixator for improving soil fertility. However, its low ecological resistance does not allow for a stable yield of the crop. Earlier, we have shown that steroid phytohormone 24-epibrassinolide (EBR) increases the tolerance of lupine to chlorine ions by activating the protective proteins in ripening seeds (such as proteinase inhibitors that prevent protein breakdown) and lectins. Here we investigated the effect of EBR on the functional status of the N2-fixing system in root nodules, protein synthesis in ripening seeds and the resistance of lupine plants to various pathogens. It was found that EBR enhanced the nodulation process, N2-fixing activity of nitrogenase and the accumulation of poly-ß-hydroxybutirate in the bacteroides, increased the leghemoglobin content in the nodules as well as the metabolic activity of bacteroides. According to data on the inclusion of 14C-leucine in maturing seed proteins, EBR increased the accumulation of protein in them against the background of a short-term decrease in protein synthesis and its subsequent regeneration to the control level. Gradual inhibition of protein synthesis, characteristic of other legumes, was observed in control variants of lupine. EBR increased lupine resistance to phytopathogenic fungi of Colletotrichum genus and insects of Noctuidae and Scarabaeidae families. We concluded that a more complete implementation of the potential productivity and sustainability of lupine under the action of EBR was achieved due to the anabolic/anti-catabolic effect on the N2 fixation system in root nodules, as well as on protein synthesis in ripening seeds.


Assuntos
Antifúngicos/farmacologia , Brassinosteroides/farmacologia , Inseticidas/farmacologia , Lupinus/química , Reguladores de Crescimento de Plantas/farmacologia , Sementes/química , Esteroides Heterocíclicos/farmacologia , Animais , Antifúngicos/química , Antifúngicos/metabolismo , Brassinosteroides/química , Brassinosteroides/metabolismo , Besouros/efeitos dos fármacos , Colletotrichum/efeitos dos fármacos , Inseticidas/química , Inseticidas/metabolismo , Lupinus/metabolismo , Testes de Sensibilidade Microbiana , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/metabolismo , Sementes/metabolismo , Spodoptera/efeitos dos fármacos , Esteroides Heterocíclicos/química , Esteroides Heterocíclicos/metabolismo
18.
J Phys Chem B ; 124(2): 355-365, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31873025

RESUMO

Brassinosteroids (BRs) are essential phytohormones, which bind to the plant receptor, BRI1, to regulate various physiological processes. The molecular mechanism of the perception of BRs by the ectodomain of BRI1 remains not fully understood. It also remains elusive why a substantial difference in biological activity exists between the BRs. In this work, we study the binding mechanisms of the two most bioactive BRs, brassinolide (BLD) and castasterone (CAT), using molecular dynamics simulations. We report free-energy landscapes of the binding processes of both ligands, as well as detailed ligand binding pathways. Our results suggest that CAT has a lower binding affinity compared to BLD due to its inability to form hydrogen-bonding interactions with a tyrosine residue in the island domain of BRI1. We uncover a conserved nonproductive binding state for both BLD and CAT, which is more stable for CAT and may further contribute to the bioactivity difference. Finally, we validate past observations about the conformational restructuring and ordering of the island domain upon BLD binding. Overall, this study provides new insights into the fundamental mechanism of the perception of the two most bioactive BRs, which may create new avenues for genetic and agrochemical control of their signaling cascade.


Assuntos
Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Colestanóis/metabolismo , Proteínas Quinases/metabolismo , Esteroides Heterocíclicos/metabolismo , Arabidopsis/química , Proteínas de Arabidopsis/química , Brassinosteroides/química , Colestanóis/química , Ligação de Hidrogênio , Ligantes , Modelos Químicos , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Proteínas Quinases/química , Esteroides Heterocíclicos/química , Termodinâmica , Tirosina/química
19.
Molecules ; 24(24)2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31861056

RESUMO

Natural brassinosteroids possess a 22R, 23R configuration that appears essential for biological activity. It is, therefore, interesting to elucidate if the activity of brassinosteroids with a short side chain depends on the C22 configuration. Herein, we describe the synthesis of new brassinosteroids analogs with 24-norcholane type of side chain and R configuration at C22. The initial reaction is the dihydroxylation of a terminal olefin that leads to S/R epimers. Three different methods were tested in order to evaluate the obtained S/R ratio and the reaction yields. The results indicate that Upjohn dihydroxylation is the most selective reaction giving a 1.0:0.24 S/R ratio, whereas a Sharpless reaction leads to a mixture of 1.0:0.90 S/R with 95% yield. Using the latter mixture and following a previous reported method, benzoylated derivatives and both S and R brassinosteroids analogs were synthesized. All synthesized compounds were completely characterized by NMR spectroscopy, and HRMS of new compounds are also given. In conclusion, a synthetic route for preparation of new analogs of brassinosteroids of 24-norcholane type and R configuration at C22 were described. It is expected that this will help to elucidate if a configuration at C22 is a structural requirement for hormonal growth activity in plants.


Assuntos
Brassinosteroides/química , Técnicas de Química Sintética , Colanos/química , Estrutura Molecular , Brassinosteroides/síntese química , Colanos/síntese química , Hidroxilação , Espectroscopia de Ressonância Magnética , Reguladores de Crescimento de Plantas
20.
Steroids ; 151: 108468, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31400389

RESUMO

Three new brassinosteroid analogues, named sulphurenolide A, sulphurenolide B and sulphurenolide C, were isolated from the methanolic extract of fruiting bodies of Laetiporus sulphureus. Their structures were established on the basis of extensive spectroscopic analysis (1D, 2D NMR, and HRESIMS) and ECD calculation. Sulphurenolides A and B are a pair of C-20 epimer, and sulphurenolide B represents the first naturally occurring 20R-brassinosteroid. Moreover, sulphurenolides A-C are firstly reported 5-hydroxylation and homo-6-oxa derivatives of brassinosteroids from natural sources. Anti-inflammatory assay revealed that sulphurenolides B and C exhibited significant inhibitory effects on NO production in lipopolysaccharide-induced RAW264.7 cells, and sulphurenolide C showed stronger inhibition than that of positive control, minocycline.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Brassinosteroides/química , Brassinosteroides/farmacologia , Carpóforos/química , Polyporales/química , Animais , Camundongos , Modelos Moleculares , Conformação Molecular , Óxido Nítrico/biossíntese , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...