Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 110(5): 935-41, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22875816

RESUMO

BACKGROUND: Land plants (embryophytes) are monophyletic and encompass four major clades: liverworts, mosses, hornworts and polysporangiophytes. The liverworts are resolved as the earliest divergent lineage and the mosses as sister to a crown clade formed by the hornworts and polysporangiophytes (lycophytes, monilophytes and seed plants). Alternative topologies resolving the hornworts as sister to mosses plus polysporangiophytes are less well supported. Sporophyte development in liverworts depends only on embryonic formative cell divisions. A transient basal meristem contributes part of the sporophyte in mosses. The sporophyte body in hornworts and polysporangiophytes develops predominantly by post-embryonic meristematic activity. SCOPE: This paper explores the origin of the sporophyte shoot in terms of changes in embryo organization. Pressure towards amplification of the sporangium-associated photosynthetic apparatus was a major driver of sporophyte evolution. Starting from a putative ancestral condition in which a transient basal meristem produced a sporangium-supporting seta, we postulate that in the hornwort-polysporangiophyte lineage the basal meristem acquired indeterminate meristematic activity and ectopically expressed the sporangium morphogenetic programme. The resulting sporophyte body plan remained substantially unaltered in hornworts, whereas in polysporangiophytes the persistent meristem shifted from a mid-embryo to a superficial position and was converted into an ancestral shoot apical meristem with the evolution of sequential vegetative and reproductive growth. CONCLUSIONS: The sporophyte shoot is interpreted as a sterilized sporangial axis interpolated between the embryo and the fertile sporangium. With reference to the putatively ancestral condition found in mosses, the sporophyte body plans in hornworts and polysporangiophytes are viewed as the product of opposite heterochronic events, i.e. an anticipation and a delay, respectively, in the development of the sporangium. In either case the result was a pedomorphic sporophyte permanently retaining juvenile characters.


Assuntos
Evolução Biológica , Embriófitas/genética , Brotos de Planta/embriologia , Anthocerotophyta/embriologia , Anthocerotophyta/genética , Anthocerotophyta/crescimento & desenvolvimento , Briófitas/embriologia , Briófitas/genética , Briófitas/crescimento & desenvolvimento , Embriófitas/embriologia , Embriófitas/crescimento & desenvolvimento , Meristema/embriologia , Meristema/genética , Meristema/crescimento & desenvolvimento , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Estômatos de Plantas/embriologia , Estômatos de Plantas/genética , Estômatos de Plantas/crescimento & desenvolvimento
2.
Development ; 138(11): 2273-81, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21558375

RESUMO

Land plants are anchored to their substratum from which essential inorganic nutrients are taken up. These functions are carried out by a system of rhizoids in early diverging groups of land plants, such as mosses, liverworts and hornworts. Physcomitrella patens RHD SIX-LIKE1 (PpRSL1) and PpRSL2 transcription factors are necessary for rhizoid development in mosses. Similar proteins, AtRHD6 and AtRSL1, control the development of root hairs in Arabidopsis thaliana. Auxin positively regulates root hair development independently of AtRHD6 and AtRSL1 in A. thaliana but the regulatory interactions between auxin and PpRSL1 and PpRSL2 are unknown. We show here that co-expression of PpRSL1 and PpRSL2 is sufficient for the development of the rhizoid system in the moss P. patens; constitutive expression of PpRSL1 and PpRSL2 converts developing leafy shoot axes (gametophores) into rhizoids. During wild-type development, PpRSL1 and PpRSL2 are expressed in the specialized cells that develop rhizoids, indicating that cell-specific expression of PpRSL1 and PpRSL2 is sufficient to promote rhizoid differentiation during wild-type P. patens development. In contrast to A. thaliana, auxin promotes rhizoid development by positively regulating PpRSL1 and PpRSL2 activity in P. patens. This indicates that even though the same genes control the development of root hairs and rhizoids, the regulation of this transcriptional network by auxin is different in these two species. This suggests that auxin might have controlled the development of the first land plant soil anchoring systems that evolved 465 million years ago by regulating the expression of RSL genes and that this regulatory network has changed since mosses and angiosperms last shared a common ancestor.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Bryopsida/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Briófitas/embriologia , Briófitas/genética , Bryopsida/genética , DNA de Plantas/genética , DNA de Plantas/metabolismo , Genes de Plantas , Genoma de Planta , Ácidos Indolacéticos/metabolismo , Filogenia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase , Rizoma/genética , Rizoma/crescimento & desenvolvimento , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...