Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 276
Filtrar
1.
J Hazard Mater ; 465: 133228, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38141303

RESUMO

The brominated flame retardant decabromodiphenyl ethane (DBDPE) has been extensively used following restrictions on BDE-209 and thus, been frequently detected in aquatic environment. However, information on impact of DBDPE on fish development and the potential mechanisms remains scarce. In present study, developing zebrafish were employed as a study model. Embryos were exposed until 5 d to DBDPE at concentrations of 0, 3, 30, and 300 µg/L, following which the impact on larval development was investigated. DBDPE bioaccumulation and locomotor hyperactivity were observed in developing zebrafish exposed to DBDPE. Transcriptome and bioinformatics analyses indicated that pathways associated with cardiac muscle contraction and retinol metabolism were notably affected. The mechanisms of DBDPE to induce locomotor abnormality were further investigated by analyzing levels of retinol and retinol metabolites, eye and heart histology, heart rates, and ATPase activity. Our results indicate that locomotor hyperactivity observed in larvae exposed to DBDPE results from abnormal heartbeat, which in turn is attributable to inhibition of Na+/K+-ATPase activity. Furthermore, DBDPE did not change larval eye histology and contents of retinoid (retinol, retinal, and retinoic acid). This study provides insight into the mechanisms underlying DBDPE-induced developmental toxicity and highlights the need for addressing the environmental risks for aquatic organisms.


Assuntos
Retardadores de Chama , Peixe-Zebra , Animais , Larva , Vitamina A , Transcriptoma , Bromobenzenos/toxicidade , Éteres Difenil Halogenados/toxicidade , Retardadores de Chama/toxicidade , Adenosina Trifosfatases
2.
Environ Sci Technol ; 57(48): 19419-19429, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37946494

RESUMO

Decabromodiphenyl ethane (DBDPE), a ubiquitous emerging pollutant, could be enriched in the liver of organisms, but its effects and mechanisms on liver development and regeneration remain largely unknown. In the present study, we first investigated the adverse effects on liver development and found decreased area and intensity of fluorescence in transgenic zebrafish larvae exposed to DBDPE; further results in wild-type zebrafish larvae revealed a possible mechanism involving disturbed MAPK/Fox O signaling pathways and cell cycle arrest as indicated by decreased transcription of growth arrest and DNA-damage-inducible beta a (gadd45ba). Subsequently, an obstructed recovery process of liver tissue after partial hepatectomy was characterized by the changing profiles of ventral lobe-to-intestine ratio in transgenic female adults upon DBDPE exposure; further results confirmed the adverse effects on liver regeneration by the alterations of the hepatic somatic index and proliferating cell nuclear antigen expression in wild-type female adults and also pointed out a potential role of a disturbed signaling pathway involving cell cycles and glycerolipid metabolism. Our results not only provided novel evidence for the hepatotoxicity and underlying mechanism of DBDPE but also were indicative of subsequent ecological and health risk assessment.


Assuntos
Retardadores de Chama , Peixe-Zebra , Animais , Feminino , Retardadores de Chama/toxicidade , Bromobenzenos/metabolismo , Bromobenzenos/toxicidade , Fígado/metabolismo
3.
Environ Sci Technol ; 57(44): 16811-16822, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37880149

RESUMO

The novel brominated flame retardant decabromodiphenyl ethane (DBDPE) has become a ubiquitous emerging pollutant in the environment, which may evoke imperceptible effects in humans or wild animals. Hence in this study, zebrafish embryos were exposed to DBDPE (0, 0.1, 1, and 10 nM) until sexual maturity (F0), and F1 and F2 generations were cultured without further exposure to study the multi- and transgenerational toxicity and underlying mechanism. The growth showed sex-different changing profiles across three generations, and the social behavior confirmed transgenerational neurotoxicity in adult zebrafish upon life cycle exposure to DBDPE. Furthermore, maternal transfer of DBDPE was not detected, whereas parental transfer of neurotransmitters to zygotes was specifically disturbed in F1 and F2 offspring. A lack of changes in the F1 generation and opposite changing trends in the F0 and F2 generations were observed in a series of indicators for DNA damage, DNA methylation, and gene transcription. Taken together, life cycle exposure to DBDPE at environmentally relevant concentrations could induce transgenerational neurotoxicity in zebrafish. Our findings also highlighted potential impacts on wild gregarious fish, which would face higher risks from predators.


Assuntos
Poluentes Ambientais , Retardadores de Chama , Animais , Humanos , Peixe-Zebra/genética , Bromobenzenos/toxicidade , Estágios do Ciclo de Vida , Retardadores de Chama/toxicidade
4.
Environ Sci Technol ; 57(30): 11043-11055, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37467077

RESUMO

Decabromodiphenyl ethane (DBDPE), a novel brominated flame retardant, is becoming increasingly prevalent in environmental and biota samples. While DBDPE has been shown to cause various biological adverse effects, the molecular mechanism behind these effects is still unclear. In this research, zebrafish embryos were exposed to DBDPE (50-400 µg/L) until 120 h post fertilization (hpf). The results confirmed the neurotoxicity by increased average swimming speed, interfered neurotransmitter contents, and transcription of neurodevelopment-related genes in zebrafish larvae. Metabolomics analysis revealed changes of metabolites primarily involved in glycolipid metabolism, oxidative phosphorylation, and oxidative stress, which were validated through the alterations of multiple biomarkers at various levels. We further evaluated the mitochondrial performance upon DBDPE exposure and found inhibited mitochondrial oxidative respiration accompanied by decreased mitochondrial respiratory chain complex activities, mitochondrial membrane potential, and ATP contents. However, addition of nicotinamide riboside could effectively restore DBDPE-induced mitochondrial impairments and resultant neurotoxicity, oxidative stress as well as glycolipid metabolism in zebrafish larvae. Taken together, our data suggest that mitochondrial dysfunction was involved in DBDPE-induced toxicity, providing novel insight into the toxic mechanisms of DBDPE as well as other emerging pollutants.


Assuntos
Retardadores de Chama , Peixe-Zebra , Animais , Larva , Bromobenzenos/farmacologia , Bromobenzenos/toxicidade , Retardadores de Chama/toxicidade , Mitocôndrias , Glicolipídeos/metabolismo , Glicolipídeos/farmacologia
5.
Environ Sci Technol ; 57(7): 2887-2897, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36779393

RESUMO

A novel brominated flame retardant decabromodiphenyl ethane (DBDPE) has become a ubiquitous emerging pollutant; hence, the knowledge of its long-term toxic effects and underlying mechanism would be critical for further health risk assessment. In the present study, the multi- and transgenerational toxicity of DBDPE was investigated in zebrafish upon a life cycle exposure at environmentally relevant concentrations. The significantly increased malformation rate and declined survival rate specifically occurred in unexposed F2 larvae suggested transgenerational development toxicity by DBDPE. The changing profiles revealed by transcriptome and DNA methylome confirmed an increased susceptibility in F2 larvae and figured out potential disruptions of glycolipid metabolism, mitochondrial energy metabolism, and neurodevelopment. The changes of biochemical indicators such as ATP production confirmed a disturbance in the energy metabolism, whereas the alterations of neurotransmitter contents and light-dark stimulated behavior provided further evidence for multi- and transgenerational neurotoxicity in zebrafish. Our findings also highlighted the necessity for considering the long-term impacts when evaluating the health of wild animals as well as human beings by emerging pollutants.


Assuntos
Poluentes Ambientais , Retardadores de Chama , Humanos , Animais , Peixe-Zebra , Larva , Bromobenzenos/toxicidade , Retardadores de Chama/toxicidade , Éteres Difenil Halogenados/toxicidade
6.
Environ Pollut ; 314: 120263, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36155225

RESUMO

Decabromodiphenyl ethane (DBDPE), as one of the most widely used new brominated flame retardants (NBFRs), can pose a potential threat to human health and the environment. An integrated transcriptome and proteome was performed for investigating the toxicological molecular mechanisms of Pleurotus ostreatus (P. ostreatus) during the biodegradation of DBDPE at the concentrations of 5 and 20 mg/L. A total of 1193/1018 and 92/126 differentially expressed genes/proteins (DEGs/DEPs) were found, respectively, with DBDPE exposure at 5 and 20 mg/L. These DEGs and DEPs were mainly involved in the cellular process as well as metabolic process. DEPs for oxidation-reduction process and hydrolase activity were up-regulated, and those for membrane, lipid metabolic process and transmembrane transport were down-regulated. The DEGs and DEPs related to some key enzymes were down-regulated, such as NADH dehydrogenase/oxidoreductase, succinate dehydrogenase, cytochrome C1 protein, cytochrome-c oxidase/reductase and ATP synthase, which indicated that DBDPE affected the oxidative phosphorylation as well as tricarboxylic acid (TCA) cycle. Cytochrome P450 enzymes (CYPs) might be involved in DBDPE degradation through hydroxylation and oxidation. Some stress proteins were induced to resist DBDPE toxicity, including major facilitator superfamily (MFS) transporter, superoxide dismutase (SOD), molecular chaperones, heat shock proteins (HSP20, HSP26, HSP42), 60S ribosomal protein and histone H4. The findings help revealing the toxicological molecular mechanisms of DBDPE on P. ostreatus, aiming to improve the removal of DBDPE.


Assuntos
Retardadores de Chama , Pleurotus , Trifosfato de Adenosina , Bromobenzenos/toxicidade , Citocromos c1 , Complexo IV da Cadeia de Transporte de Elétrons , Retardadores de Chama/toxicidade , Éteres Difenil Halogenados/toxicidade , Proteínas de Choque Térmico , Histonas , Hidrolases , Lipídeos , NADH Desidrogenase , Proteoma , Proteômica , Proteínas Ribossômicas , Succinato Desidrogenase , Superóxido Dismutase , Transcriptoma , Ácidos Tricarboxílicos
7.
J Hazard Mater ; 431: 128625, 2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35278969

RESUMO

Decabromodiphenyl ethane (DBDPE), one widely used new brominated flame retardant, was of great concern due to its biotoxicity. The toxic evaluation of DBDPE (1-50 mg/L) to white-rot fungus (Pleurotus ostreatus), including oxidative stress, morphology and transcriptomics was conducted aiming at improving its biodegradation. Fungal growth and ATPase activity were obviously inhibited by DBDPE at ≥ 10 mg/L with the exposure from 48 h to 96 h. DBDPE could induce oxidative stress to P. ostreatus. The activity of SOD (superoxide dismutase), CAT (catalase) and GSH (glutathione) were all promoted by DBDPE at ≤ 5 mg/L and inhibited at > 5 mg/L with 96-h exposure. MDA (malondialdehyde) content rose obviously with DBDPE exposure (10-50 mg/L). The mycelium was wizened under 20 mg/L DBDPE exposure according to SEM observation. Transcriptomics analysis suggested that DBDPE could change many functional genes expression of P. ostreatus. GO analysis indicated DBDPE could affect biological process and cellular component by inhibiting electron transport, mitochondrial ATP synthesis, oxidoreductase activity as well as transporter activity. KEGG enrichment pathways analysis indicated DBDPE could inhibit oxidative phosphorylation, tricarboxylic acid (TCA) cycle and carbon metabolism by down-regulating the genes related to NADH reductase/dehydrogenase, succinate dehydrogenase, cytochrome-c reductase/oxidase, cytochrome C1 protein and ATP synthase.


Assuntos
Retardadores de Chama , Pleurotus , Trifosfato de Adenosina , Bromobenzenos/toxicidade , Retardadores de Chama/toxicidade , Estresse Oxidativo , Pleurotus/genética , Transcriptoma
8.
Environ Sci Technol ; 56(1): 470-479, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34919388

RESUMO

The novel brominated flame retardant decabromodiphenyl ethane (DBDPE) has become a widespread environmental pollutant. However, the target tissue and toxicity of DBDPE are still not clear. In the current study, female zebrafish were exposed to 1 and 100 nM DBDPE for 28 days. Chemical analysis revealed that DBDPE tended to accumulate in the brain other than the liver and gonad. Subsequently, tandem mass tag-based quantitative proteomics and parallel reaction monitoring verification were performed to screen the differentially expressed proteins in the brain. Bioinformatics analysis revealed that DBDPE mainly affected the biological process related to muscle contraction and estrogenic response. Therefore, the neurotoxicity and reproductive disruptions were validated via multilevel toxicological endpoints. Specifically, locomotor behavioral changes proved the potency of neurotoxicity, which may be caused by disturbance of muscular proteins and calcium homeostasis; decreases of sex hormone levels and transcriptional changes of genes related to the hypothalamic-pituitary-gonad-liver axis confirmed reproductive disruptions upon DBDPE exposure. In summary, our results suggested that DBDPE primarily accumulated in the brain and evoked neurotoxicity and reproductive disruptions in female zebrafish. These findings can provide important clues for a further mechanism study and risk assessment of DBDPE.


Assuntos
Retardadores de Chama , Peixe-Zebra , Animais , Bromobenzenos/toxicidade , Sistema Endócrino , Monitoramento Ambiental , Feminino , Retardadores de Chama/toxicidade , Éteres Difenil Halogenados/toxicidade , Contração Muscular
9.
Environ Pollut ; 289: 117965, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426208

RESUMO

As a novel brominated flame retardant (NBFR), decabromodiphenyl ethane (DBDPE) has been poorly understood for the environmental fate and toxicity in terrestrial invertebrates. For the first time, the bioaccumulation, elimination, metabolism and detoxification of DBDPE in earthworms as well as its potential impacts on soil microbes were investigated. The results showed much higher DBDPE concentrations in casts than in earthworms. The bioaccumulation factor (BAF) and elimination rate constant (ke) values were 0.028-0.213 (gdw, worm/gdw, soil) and 0.323-0.452 (day-1), respectively. The detoxifying enzymes (CYP450 and GST) could be induced by DBDPE within the range of exposure dosage, and the activities were significantly increased at 21 d (p < 0.05). The results were identified by GC-ECNI-MS, and it showed that at least eleven unknown peaks were separately observed in the earthworms, which were the biotransformation products of DBDPE in earthworms. Additionally, the damages, including skin shrinkage, setae impairment, and intercellular vacuolization, were clearly observed by SEM/TEM. Based on these data, DBDPE could accumulate in earthworms, yet, with low bioaccumulation ability. Moreover, DBDPE exposure resulted in minimal harmful impacts on microbial activities including microbial biomass C (MBC), Microbial basal respiration (MBR), Urease (US) activity and fluorescein diacetate hydrolase (FDA) activity (p < 0.05). Our findings would provide some essential information for interpreting the ecological risks of DBDPE in soil.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Bioacumulação , Bromobenzenos/toxicidade , Solo , Poluentes do Solo/toxicidade
10.
FASEB J ; 35(4): e21449, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33724544

RESUMO

Decabromodiphenyl ethane (DBDPE) is a new brominated flame retardant and is widely added to flammable materials to prevent fire. Because it has been continuously detected in a variety of organisms and humans, it is important to reveal the biological toxicity of DBDPE. However, the influence of DBDPE for female reproduction is unclear. In this study, we investigated whether and how DBDPE exposure affects oocyte development. Female mice as a model were orally exposed to DBDPE by 0, 0.05, 0.5, 5, 50 µg/kg bw/day for 30 days (0.05 µg/kg bw/day is close to the environmental exposure concentration). We found that exposure of mice to DBDPE did not affect the first polar body extrusion (PBE) of oocytes. Strikingly, however, asymmetric division of oocytes was markedly impaired in 5 and 50 µg/kg bw/day DBDPE exposed group, which resulted in oocytes with larger polar bodies (PBs). Then, we further explored and found that DBDPE exposure inhibited the spindle migration and membrane protrusion in oocytes during anaphase of meiosis I (anaphase I), thereby impairing asymmetric division. Additionally, we found that DBDPE exposure suppressed the inactivation of cyclin-dependent kinase 1 (Cdk1), resulting in the decrease of cytoplasmic formin2 (FMN2)-mediated F-actin polymerization in oocytes at the onset of anaphase I. Simultaneously, DBDPE exposure damaged the structural integrity of the spindle and the perpendicular relationship between spindle and cortex. These together led to the failure of spindle migration and membrane protrusion required for oocytes asymmetric division. Finally, DBDPE exposure injured the development of blastocysts, leading to blastocyst apoptosis.


Assuntos
Bromobenzenos/toxicidade , Proteína Quinase CDC2/metabolismo , Retardadores de Chama/toxicidade , Meiose/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Animais , Proteína Quinase CDC2/genética , Ciclo Celular/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos
11.
Biol Pharm Bull ; 44(1): 150-153, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33390544

RESUMO

Bromobenzene (BB) is known to pose a serious threat to human health. We previously demonstrated that BB showed chronotoxicity, that is, daily fluctuations in the severity of hepatotoxicity induced in mice. Although BB showed mild nephrotoxicity, a daily fluctuation was not observed in this toxicity. This might be attributed to the fact that BB-induced chronotoxicity is observed only in the liver and not in the kidneys and that the damage caused by BB is prominent in the liver, masking the daily fluctuation in nephrotoxicity. To confirm these two possibilities, we examined the daily fluctuations in nephrotoxicity due to BB intermediate metabolites that target the kidneys: 3-bromophenol, bromohydroquinone, and 4-bromocatechol. Mice were injected with 3-bromophenol, bromohydroquinone, or 4-bromocatechol intraperitoneally at six different time points in a day (zeitgeber time (ZT): ZT2, ZT6, ZT10, ZT14, ZT18, or ZT22). Mortality was monitored for 7 d post-injection. Mice were more sensitive to the acute toxicity of these metabolites around at ZT14 (dark-phase) exposure than around at ZT2 (light-phase) exposure. Furthermore, mice administered with a non-lethal dose of 4-bromocatechol showed significant increases in the levels of plasma blood urea nitrogen and renal malondialdehyde at ZT14 exposure. Moreover, glutathione peroxidase-4, a ferroptosis indicator, was attenuated at ZT14 exposure. These results indicate the toxicity of BB metabolites was higher during the dark-phase exposure, and demonstrate the reason why the diurnal variation of nephrotoxicity by BB was not observed in our previous report is that renal damage was masked due to severe hepatic damage.


Assuntos
Bromobenzenos/metabolismo , Bromobenzenos/toxicidade , Ritmo Circadiano/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/metabolismo , Animais , Fenômenos Cronobiológicos/efeitos dos fármacos , Fenômenos Cronobiológicos/fisiologia , Ritmo Circadiano/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos ICR
12.
Ecotoxicol Environ Saf ; 207: 111290, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32931969

RESUMO

Decabromodiphenyl ethane (DBDPE), a widely used new brominated flame retardant, is added into flammable materials to achieve fire retardation. As it is continuously detected in the environment, it has become an emerging environmental pollutant. However, the effects of DBDPE exposure on oocyte maturation and its underlying mechanisms remain unknown. This study found that DBDPE exposure inhibited the rate of germinal vesicle breakdown (GVBD), first polar body extrusion (PBE) and fertilization of mouse oocytes. After 14 h of exposure to DBDPE, metaphase II (MII) oocytes showed that the hardness of zona pellucida (ZP) markedly increased and that the spindle morphology was abnormal. Moreover, DBDPE exposure induced abnormal mitochondrial distribution, mitochondrial dysfunction, and ATP deficiency. Simultaneously, DBDPE exposure down-regulated the expression of antioxidant-related genes (Sod2, Gpx1) and increased the level of reactive oxygen species (ROS) in oocytes. The results of immunofluorescence and qRT-PCR revealed that autophagy occurred in DBDPE-treated oocytes with high expression of autophagy-related protein (LC3) and genes (Lc3, Beclin1). Meanwhile, DBDPE significantly up-regulated the protein (Bax) and mRNA (Bax, Caspase3) levels of pro-apoptosis genes. However, the protein and mRNA expression of anti-apoptosis genes Bcl-2 was dramatically down-regulated in DBDPE-exposed oocytes. Collectively, DBDPE exposure impaired mitochondrial function, causing oxidative damage, autophagy and apoptosis in oocytes.


Assuntos
Bromobenzenos/toxicidade , Retardadores de Chama/toxicidade , Oócitos/efeitos dos fármacos , Oogênese/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Autofagia/efeitos dos fármacos , Feminino , Técnicas In Vitro , Camundongos , Mitocôndrias/efeitos dos fármacos , Oócitos/metabolismo , Oócitos/patologia , Oogênese/genética , Oxirredução , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo
13.
Chem Res Toxicol ; 33(12): 3048-3053, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33283517

RESUMO

Bromobenzene is an industrial solvent that elicits toxicity predominantly in the liver. In this study, the hepatic concentrations of bromobenzene and its related compounds 1,2-dibromobenzene and 1,4-dibromobenzene in humanized-liver mice were predicted after single oral administrations by simplified physiologically based pharmacokinetic (PBPK) models that had been set up on experimental plasma concentrations after single oral doses of 100 mg/kg to rats and 100-250 mg/kg to control mice and humanized-liver mice. The output values by simplified PBPK models were consistent with measured blood substrate concentrations in rats, control mice, and humanized-liver mice with suitable input parameter values derived from in silico prediction and the literature or estimated by fitting the measured plasma substrate concentrations. The predicted time-dependent hepatic concentrations after virtual administrations in humanized-liver mice were partly confirmed with single measured hepatic concentrations of bromobenzene and 1,4-dibromobenzene 2 h after oral doses of 150-250 mg/kg to humanized-liver mice. Moreover, leaked human albumin mRNA, a marker of the extent of human hepatic injuries, in humanized-liver mouse plasma was detected after oral administration of bromobenzene, 1,2-dibromobenzene, and 1,4-dibromobenzene. These results suggest that dosimetry approaches for determining tissue and/or blood exposures of hepatic toxicants bromobenzene, 1,2-dibromobenzene, and 1,4-dibromobenzene in humanized-liver mice were useful after virtual oral doses using simplified PBPK models. Using simplified PBPK models and plasma data from humanized-liver mice has potential to predict and evaluate the hepatic toxicity of bromobenzenes and related compounds in humanized-liver mice and in humans.


Assuntos
Bromobenzenos/farmacocinética , Modelos Animais de Doenças , Modelos Biológicos , Administração Oral , Animais , Bromobenzenos/análise , Bromobenzenos/toxicidade , Masculino , Camundongos , Camundongos Transgênicos
14.
Int J Mol Sci ; 21(21)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158035

RESUMO

Liver disease and disorders associated with aberrant hepatocyte metabolism can be initiated via drug and environmental toxicant exposures. In this study, we tested the hypothesis that gene and metabolic profiling can reveal commonalities in liver response to different toxicants and provide the capability to identify early signatures of acute liver toxicity. We used Sprague Dawley rats and three classical hepatotoxicants: acetaminophen (2 g/kg), bromobenzene (0.4 g/kg), and carbon tetrachloride (0.3 g/kg), to identify early perturbations in liver metabolism after a single acute exposure dose. We measured changes in liver genes and plasma metabolites at two time points (5 and 10 h) and used genome-scale metabolic models to identify commonalities in liver responses across the three toxicants. We found strong correlations for gene and metabolic profiles between the toxicants, indicative of similarities in the liver response to toxicity. We identified several injury-specific pathways in lipid and amino acid metabolism that changed similarly across the three toxicants. Our findings suggest that several plasma metabolites in lipid and amino acid metabolism are strongly associated with the progression of liver toxicity, and as such, could be targeted and clinically assessed for their potential as early predictors of acute liver toxicity.


Assuntos
Aminoácidos/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Substâncias Perigosas/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Acetaminofen/farmacologia , Acetaminofen/toxicidade , Doença Aguda , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Bromobenzenos/farmacologia , Bromobenzenos/toxicidade , Tetracloreto de Carbono/farmacologia , Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Perfilação da Expressão Gênica , Substâncias Perigosas/toxicidade , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Metabolismo dos Lipídeos/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Metaboloma/genética , Metabolômica , Prognóstico , Ratos , Ratos Sprague-Dawley , Transcriptoma/efeitos dos fármacos
15.
Toxicology ; 441: 152493, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32479839

RESUMO

Early diagnosis of liver injuries caused by drugs or occupational exposures is necessary to enable effective treatments and prevent liver failure. Whereas histopathology remains the gold standard for assessing hepatotoxicity in animals, plasma aminotransferase levels are the primary measures for monitoring liver dysfunction in humans. In this study, using Sprague Dawley rats, we investigated whether integrated analyses of transcriptomic and metabolomic data with genome-scale metabolic models (GSMs) could identify early indicators of injury and provide new insights into the mechanisms of hepatotoxicity. We obtained concurrent measurements of gene-expression changes in the liver and kidneys, and expression changes along with metabolic profiles in the plasma and urine, from rats 5 or 10 h after exposing them to one of two classical hepatotoxicants, acetaminophen (2 g/kg) or bromobenzene (0.4 g/kg). Global multivariate analyses revealed that gene-expression changes in the liver and metabolic profiles in the plasma and urine of toxicant-treated animals differed from those of controls, even at time points much earlier than changes detected by conventional markers of liver injury. Furthermore, clustering analysis revealed that both the gene-expression changes in the liver and the metabolic profiles in the plasma induced by the two hepatotoxicants were highly correlated, indicating commonalities in the liver toxicity response. Systematic GSM-based analyses yielded metabolites associated with the mechanisms of toxicity and identified several lipid and amino acid metabolism pathways that were activated by both toxicants and those uniquely activated by each. Our findings suggest that several metabolite alterations, which are strongly associated with the mechanisms of toxicity and occur within injury-specific pathways (e.g., of bile acid and fatty acid metabolism), could be targeted and clinically assessed for their potential as early indicators of liver damage.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/sangue , Acetaminofen/toxicidade , Animais , Biomarcadores/sangue , Biomarcadores/urina , Bromobenzenos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/urina , Perfilação da Expressão Gênica , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Metabolômica , Ratos Sprague-Dawley
16.
J Appl Biomed ; 18(2-3): 87-95, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34907730

RESUMO

Bromobenzene is a compound which has contributed much in understanding the mechanisms involved in xenobiotic hepatotoxicity induced by drugs and environment pollutants. In the present study, the protective and ameliorative effect of beta-carotene was investigated against bromobenzene-induced hepatotoxicity and compared with silymarin, a standard hepatoprotective reference drug. Beta-carotene (10 mg/kg b.w. p.o.) was administered to the rats for 9 days before intragastric intubation of bromobenzene (10 mmol/kg b.w.). Liver marker enzymes (aspartate transaminase, alanine transaminase and alkaline phosphatase), total protein content, bilirubin, total cholesterol, high-density lipoproteins, triglycerides, antioxidant status (reduced glutathione, superoxide dismutase, catalase, glutathione-S-transferase and glutathione peroxidase) were assessed along with histopathological analysis. ELISA was performed for analysing the levels of cytokines such as TNF-α, IL-1ß and IL-6 in serum and in the liver. Caspase-3, COX-2 and NF-κB were evaluated by Western blotting. Administration of bromobenzene resulted in elevated levels of liver marker enzymes, bilirubin, lipid peroxidation and cytokines but deterioration in total protein content, antioxidant levels and histopathological conditions. Pre-treatment with beta-carotene not only significantly decreased the levels of liver markers, lipid peroxidation and cytokines but also improved histo-architecture and increased antioxidant levels minimising oxidative stress, and reduced factors contributing to apoptosis. This significant reversal of the biochemical changes on pre-treatment with beta-carotene in comparison with rats administered with bromobenzene clearly demonstrates that beta-carotene possesses promising hepatoprotective effect through its antioxidant, anti-inflammatory and antiapoptotic activity and hence is suggested as a potential therapeutic agent for protection from bromobenzene.


Assuntos
Antioxidantes , Doença Hepática Induzida por Substâncias e Drogas , beta Caroteno , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Bilirrubina/farmacologia , Bromobenzenos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Citocinas/metabolismo , Feminino , Substâncias Protetoras/farmacologia , Ratos , Ratos Wistar , beta Caroteno/química , beta Caroteno/farmacologia
17.
Appl Biochem Biotechnol ; 190(2): 616-633, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31407161

RESUMO

Bromobenzene is an environmental toxin which causes hepatotoxicity, and the secondary metabolites on biotransformation cause nephrotoxicity. The objective of this study was to assess the alleviation of the nephrotoxic effect of bromobenzene by beta carotene in female Wistar albino rats. Beta carotene (10 mg/kg b.w.p.o.) was delivered orally to the rats for 9 days before bromobenzene (10 mM/kg b.w.p.o.) was intragastrically intubated. Kidney markers, antioxidant status and lipid peroxidation were evaluated. In addition, the levels of TNF-α, IL-6 and IL-1ß were measured in serum and in kidney tissue homogenate using ELISA. Caspase, COX-2 and NF-κB were measured with the help of Western blotting. Histopathological analysis of the kidney was done for the control and experimental rats. Bromobenzene induction caused elevation in levels of creatinine, urea, uric acid, cytokines and lipid per oxidation along with deterioration in histological observations and antioxidant status. Pre-treatment with beta carotene significantly (*p < 0.05) normalised the levels of kidney markers and pro-inflammatory cytokines. It also reduced oxidative stress and lipid peroxidation, as shown by improved antioxidant status. The anti-apoptotic activity was evidenced by inhibition of protein expression of caspase, COX-2 and NF-κB. This significant reversal (*p < 0.05) of the above variations in comparison with the control group as noticed in the bromobenzene-administered rats demonstrates that beta carotene possesses promising nephroprotective effect through its antioxidant, anti-inflammatory and anti-apoptotic activity and therefore suggests its use as a potential therapeutic agent for protection from bromobenzene and hence environmental pollutant toxicity.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Bromobenzenos/toxicidade , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Nefropatias/induzido quimicamente , Nefropatias/prevenção & controle , beta Caroteno/administração & dosagem , Animais , Feminino , Ratos , Ratos Wistar
18.
Ecotoxicol Environ Saf ; 179: 151-159, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31035249

RESUMO

Tetrabromobisphenol A bis(2,3-dibromopropyl ether) (TBBPA-BDBPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTPBE) are both brominated flame retardants (BFRs) that have been detected in birds; however, their potential biological effects are largely unknown. We assessed the effects of embryonic exposure to TBBPA-BDBPE and BTBPE in a model avian predator, the American kestrel (Falco sparverius). Fertile eggs from a captive population of kestrels were injected on embryonic day 5 (ED5) with a vehicle control or one of three doses within the range of concentrations that have been detected in biota (nominal concentrations of 0, 10, 50 or 100 ng/g egg; measured concentrations 0, 3.0, 13.7 or 33.5 ng TBBPA-BDBPE/g egg and 0, 5.3, 26.8 or 58.1 ng BTBPE/g egg). Eggs were artificially incubated until hatching (ED28), at which point blood and tissues were collected to measure morphological and physiological endpoints, including organ somatic indices, circulating and glandular thyroid hormone concentrations, thyroid gland histology, hepatic deiodinase activity, and markers of oxidative stress. Neither compound had any effects on embryo survival through 90% of the incubation period or on hatching success, body mass, organ size, or oxidative stress of hatchlings. There was evidence of sex-specific effects in the thyroid system responses to the BTBPE exposures, with type 2 deiodinase (D2) activity decreasing at higher doses in female, but not in male hatchlings, suggesting that females may be more sensitive to BTBPE. However, there were no effects of TBBPA-BDBPE on the thyroid system in kestrels. For the BTPBE study, a subset of high-dose eggs was collected throughout the incubation period to measure changes in BTBPE concentrations. There was no decrease in BTBPE over the incubation period, suggesting that BTBPE is slowly metabolized by kestrel embryos throughout their ∼28-d development. These two compounds, therefore, do not appear to be particularly toxic to embryos of the American kestrel.


Assuntos
Bromobenzenos/toxicidade , Desenvolvimento Embrionário/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Falconiformes/crescimento & desenvolvimento , Retardadores de Chama/toxicidade , Óvulo/efeitos dos fármacos , Bifenil Polibromatos/toxicidade , Animais , Relação Dose-Resposta a Droga , Desenvolvimento Embrionário/fisiologia , Falconiformes/metabolismo , Feminino , Iodeto Peroxidase/metabolismo , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Tamanho do Órgão/efeitos dos fármacos , Óvulo/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia , Hormônios Tireóideos/metabolismo
19.
Ecotoxicol Environ Saf ; 174: 224-235, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30844666

RESUMO

In recent years, decabromodiphenyl ethane (DBDPE), a new alternative flame retardant to the decabrominated diphenyl ethers (BDE-209), is widely used in a variety of products. Previous studies have indicated that DBDPE, like BDE-209, could disrupt thyroid function. However, compared with BDE-209, the degrees of thyrotoxicosis induced by DBDPE were not clear. In addition, the mechanism of thyrotoxicosis induced by DBDPE or BDE-209 was still under further investigation. In this study, male rats as a model were orally exposed to DBDPE or BDE-209 by 5, 50, 500 mg/kg bw/day for 28 days. Then, we assessed the thyrotoxicosis of DBDPE versus BDE-209 and explored the mechanisms of DBDPE and BDE-209-induced thyrotoxicosis. Results showed that decreased free triiodothyronine (FT3) and increased thyroid-stimulating hormone (TSH) and thyrotropin-releasing hormone (TRH) in serum were observed in both 500 mg/kg bw/day BDE-209 and DBDPE group. Decreased total thyroxine (TT4), total T3 (TT3), and free T4 (FT4) were only observed in BDE-209 group but not in DBDPE group. Histological examination and transmission electron microscope examination showed that high level exposure to BDE-209 and DBDPE both caused significant changes in histological structure and ultrastructure of the thyroid gland. Additionally, oxidative damages of thyroid gland (decreased SOD and GSH activities, and increased MDA content) were also observed in both BDE-209 and DBDPE groups. TG contents in the thyroid gland was reduced in BDE-209 group but not in DBDPE group. Both BDE-209 and DBDPE affected the expression of hypothalamic-pituitary-thyroid (HPT) axis related genes. These findings suggested that both BDE-209 and DBDPE exposure could disrupt thyroid function in the direction of hypothyroidism and the underlying mechanism was likely to be oxidative stress and perturbations of HPT axis. However, DBDPE was found to be less toxic than BDE-209.


Assuntos
Bromobenzenos/toxicidade , Disruptores Endócrinos/toxicidade , Retardadores de Chama/toxicidade , Éteres Difenil Halogenados/toxicidade , Glândula Tireoide/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Hipotálamo/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Hipófise/patologia , Ratos , Ratos Sprague-Dawley , Glândula Tireoide/metabolismo , Glândula Tireoide/ultraestrutura , Tireotropina/sangue , Hormônio Liberador de Tireotropina/sangue , Tri-Iodotironina/sangue
20.
Chemosphere ; 223: 675-685, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30802833

RESUMO

Recent reports indicated that decabrominated diphenyl ether (BDE-209) and decabromodiphenyl ethane (DBDPE) exist extensively in the environment. The toxicity of BDE-209 has been reported in quite a few studies, whereas the data of DBDPE are relatively rare. However, databases regarding cardiovascular toxicities of both BDE-209 and DBDPE are lacking. In this study, we investigated the vascular/cardiac trauma induced by DBDPE after oral exposure and compared the results with those of BDE-209 using rat model. Male rats were orally administered with corn oil containing DBDPE or BDE-209 (5, 50, 500 mg/kg/day) for 28 days, then oxidative stress, morphological and ultrastructural changes of the heart and abdominal aorta, levels of creatine kinase (CK) and lactate dehydrogenase (LDH), inflammatory cytokines, endothelin-1 (ET-1), and intercellular adhesion molecule-1 (ICAM-1) in the serum were monitored. Results showed that BDE-209 and DBDPE caused heart and abdominal aorta morphological and ultrastructural damage, serum CK and LDH elevation, and antioxidant enzyme activity changes. BDE-209 and DBDPE-induced inflammation was characterized by the upregulation of key inflammatory mediators, including interleukin-1beta (IL-1ß), IL-6, IL-10, and tumor necrosis factor alpha (TNFα). Additionally, BDE-209 and DBDPE led to endothelial dysfunction, as evidenced by the ET-1 and ICAM-1 elevation. Our findings demonstrated that BDE-209 and DBDPE could induce oxidative stress, inflammation, and eventually lead to endothelial dysfunction and cardiovascular injury. Compared to DBDPE, these toxic responses were stronger in the hearts and abdominal aorta of Sprague-Dawley rats exposed to BDE-209. Our findings indicated a potential deleterious effect of BDE-209 and DBDPE on the cardiovascular system.


Assuntos
Bromobenzenos/toxicidade , Sistema Cardiovascular/lesões , Retardadores de Chama/toxicidade , Éteres Difenil Halogenados/toxicidade , Animais , Endotélio/efeitos dos fármacos , Endotélio/fisiopatologia , Inflamação/induzido quimicamente , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...