Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; 104(12): 1306-13, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25389704

RESUMO

The genus Fusarium has a wide host range and causes many different forms of plant disease. These include seed rot and seedling blight diseases of cultivated plants. The diseases caused by Fusarium on wild plants are less well-known. In this study, we examined disease development caused by Fusarium sp. n on nondormant seeds of the important rangeland weed Bromus tectorum as part of broader studies of the phenomenon of stand failure or "die-off" in this annual grass. We previously isolated an undescribed species in the F. tricinctum species complex from die-off soils and showed that it is pathogenic on seeds. It can cause high mortality of nondormant B. tectorum seeds, especially under conditions of water stress, but rarely attacks dormant seeds. In this study, we used scanning electron microscopy (SEM) to investigate the mode of attack used by this pathogen. Nondormant B. tectorum seeds (i.e., florets containing caryopses) were inoculated with isolate Skull C1 macroconidia. Seeds were then exposed to water stress conditions (-1.5 MPa) for 7 days and then transferred to free water. Time lapse SEM photographs of healthy versus infected seeds revealed that hyphae under water stress conditions grew toward and culminated their attack at the abscission layer of the floret attachment scar. A prominent infection cushion, apparent macroscopically as a white tuft of mycelium at the radicle end of the seed, developed within 48 h after inoculation. Seeds that lacked an infection cushion completed germination upon transfer to free water, whereas seeds with an infection cushion were almost always killed. In addition, hyphae on seeds that did not initiate germination lacked directional growth and did not develop the infection cushion. This strongly suggests that the fungal attack is triggered by seed exudates released through the floret attachment scar at the initiation of germination. Images of cross sections of infected seeds showed that the fungal hyphae first penetrated the caryposis wall, then entered the embryo, and later ramified throughout the endosperm, completely destroying the seed.


Assuntos
Bromus/microbiologia , Fusarium/patogenicidade , Doenças das Plantas/microbiologia , Bromus/ultraestrutura , Endosperma/microbiologia , Endosperma/ultraestrutura , Fusarium/genética , Fusarium/isolamento & purificação , Fusarium/ultraestrutura , Germinação , Micélio , Plântula/microbiologia , Plântula/ultraestrutura , Sementes/microbiologia , Sementes/ultraestrutura , Esporos Fúngicos
2.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 11): 2257-65, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24189238

RESUMO

The study of virus structures has contributed to methodological advances in structural biology that are generally applicable (molecular replacement and noncrystallographic symmetry are just two of the best known examples). Moreover, structural virology has been instrumental in forging the more general concept of exploiting phase information derived from multiple structural techniques. This hybridization of structural methods, primarily electron microscopy (EM) and X-ray crystallography, but also small-angle X-ray scattering (SAXS) and nuclear magnetic resonance (NMR) spectroscopy, is central to integrative structural biology. Here, the interplay of X-ray crystallography and EM is illustrated through the example of the structural determination of the marine lipid-containing bacteriophage PM2. Molecular replacement starting from an ~13 Å cryo-EM reconstruction, followed by cycling density averaging, phase extension and solvent flattening, gave the X-ray structure of the intact virus at 7 Å resolution This in turn served as a bridge to phase, to 2.5 Å resolution, data from twinned crystals of the major coat protein (P2), ultimately yielding a quasi-atomic model of the particle, which provided significant insights into virus evolution and viral membrane biogenesis.


Assuntos
Substituição de Aminoácidos , Proteínas do Capsídeo/química , Corticoviridae/química , Modelos Moleculares , Espalhamento a Baixo Ângulo , Bromus/química , Bromus/ultraestrutura , Bromus/virologia , Proteínas do Capsídeo/ultraestrutura , Corticoviridae/ultraestrutura , Microscopia Crioeletrônica/métodos , Microscopia Crioeletrônica/tendências , Cristalização , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Vírus do Mosaico do Tabaco/química , Vírus do Mosaico do Tabaco/ultraestrutura , Vírus Satélite da Necrose do Tabaco/química , Vírus Satélite da Necrose do Tabaco/ultraestrutura , Tombusvirus/química , Tombusvirus/ultraestrutura
3.
J Agric Food Chem ; 54(21): 8206-11, 2006 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-17032030

RESUMO

Neutral detergent fiber (NDF) is considered the single best laboratory predictor of voluntary intake by ruminant livestock, creating interest in using NDF as a selection criterion in forage breeding programs. Because genetic reductions in NDF lead to increases in dry matter digestibility but not to changes in digestibility of the NDF fraction, we postulated that low-NDF plants do not have altered compositions of their cell walls. We tested this hypothesis using clones of smooth bromegrass (Bromus inermis Leyss.) with divergent NDF concentrations. High-NDF and low-NDF plants did not differ in cell wall concentrations or in the concentrations of any cell wall component (fucose, arabinose, rhamnose, galactose, glucose, xylose, mannose, uronic acids, and lignin). Instead, low-NDF plants had a cell wall that was more susceptible to solubilization in neutral detergent solution, suggesting that their cell walls were less well-developed as compared to high-NDF plants. NDF should not be used as a substitute for cell wall concentration in forage plants.


Assuntos
Bromus/ultraestrutura , Parede Celular/química , Fibras na Dieta/análise , Bromus/química , Carboidratos/análise , Folhas de Planta/química , Folhas de Planta/ultraestrutura , Caules de Planta/química , Caules de Planta/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...