Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Rev. cuba. med. trop ; 75(1)abr. 2023.
Artigo em Espanhol | LILACS, CUMED | ID: biblio-1550874

RESUMO

La endocarditis bacteriana secundaria a la infección por Brucella spp., en este caso B. melitensis, como complicación de la brucelosis humana tiene una incidencia baja y, aunque es la presentación clínica con la que se asocia más frecuentemente la mortalidad, no todos los casos son letales, si son tratados oportunamente. Se describe el caso clínico de una endocarditis bacteriana por B. melitensis, diagnosticada en un adulto por el aislamiento del microorganismo en el hemocultivo. Paciente del sexo masculino, de 40 años, con antecedentes de realizar partos en el ganado bovino y consumir leche no pasteurizada. Acudió al médico por presentar durante siete días de evolución de las siguientes manifestaciones clínicas: fiebre, mialgias, artralgias, tos seca y pérdida de peso (15 kg). El hemograma informa: leucopenia, trombocitopenia y anemia; mientras que en un ecocardiograma transesofágico se observó vegetación en la válvula aórtica con una disminución de la función sistólica y en el hemocultivo se aisló B. melitensis. Debido a estos antecedentes, se inició el tratamiento antibacteriano con rifampicina, doxiciclina y gentamicina. El paciente se recuperó y tuvo una evolución clínica satisfactoria. La brucelosis es una enfermedad infrecuente. Debe considerarse en toda persona con fiebre de foco desconocido que resida en zonas endémicas o esté expuesto al cuidado de animales de granja. En esta enfermedad se impone un diagnóstico y tratamiento preciso, por ser una complicación con alta letalidad.


Bacterial endocarditis, secondary to Brucella spp. infection, in this case by B. melitensis, as a complication of human brucellosis has a low incidence. Although it is the clinical presentation most frequently associated with mortality, not all cases are lethal if timely treatment is provided. We describe a clinical case of bacterial endocarditis due to B. melitensis in a 40-year-old male patient with a history of conducting cattle deliveries and consuming unpasteurized milk, diagnosed after isolating the microorganism in blood culture. He presented with the following clinical manifestations after seven days of evolution: fever, myalgias, arthralgias, dry cough and weight loss (15 kg). The hemogram revealed leukopenia, thrombocytopenia, and anemia; while a transesophageal echocardiogram showed vegetation on the aortic valve with decreased systolic function, and B. melitensis was isolated in a blood culture. Considering this medical history, antibacterial treatment was initiated with rifampicin, doxycycline and gentamicin. The patient recovered and had satisfactory clinical evolution. Brucellosis is a rare disease. It should be considered in any person with a fever of unknown origin who lives in endemic areas or is exposed to the care of farm animals. Endocarditis is a highly lethal complication of human brucellosis; therefore, it requires a precise diagnosis and treatment.


Assuntos
Humanos , Masculino , Adulto , Gentamicinas/uso terapêutico , Brucella melitensis/patogenicidade , Endocardite Bacteriana/complicações
2.
Infect Immun ; 89(10): e0015621, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34125603

RESUMO

Brucellosis is one of the most common global zoonoses and is caused by facultative intracellular bacteria of the genus Brucella. Numerous studies have found that MyD88 signaling contributes to protection against Brucella; however, the underlying mechanism has not been entirely defined. Here, we show that MyD88 signaling in hematopoietic cells contributes both to inflammation and to control of Brucella melitensis infection in vivo. While the protective role of MyD88 in Brucella infection has often been attributed to promotion of gamma interferon (IFN-γ) production, we found that MyD88 signaling restricts host colonization by B. melitensis even in the absence of IFN-γ. In vitro, we show that MyD88 promotes macrophage glycolysis in response to B. melitensis. Interestingly, a B. melitensis mutant lacking the glucose transporter, GluP, was more highly attenuated in MyD88-/- than in wild-type mice, suggesting MyD88 deficiency results in an increased availability of glucose in vivo, which Brucella can exploit via GluP. Metabolite profiling of macrophages identified several metabolites regulated by MyD88 in response to B. melitensis, including itaconate. Subsequently, we found that itaconate has antibacterial effects against Brucella and also regulates the production of proinflammatory cytokines in B. melitensis-infected macrophages. Mice lacking the ability to produce itaconate were also more susceptible to B. melitensis in vivo. Collectively, our findings indicate that MyD88-dependent changes in host metabolism contribute to control of Brucella infection.


Assuntos
Brucelose/metabolismo , Glucose/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Succinatos/metabolismo , Animais , Brucella melitensis/patogenicidade , Brucelose/microbiologia , Citocinas/metabolismo , Glicólise/fisiologia , Interferon gama/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia
3.
Vet Microbiol ; 253: 108951, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33373884

RESUMO

Brucella, a facultative intracellular bacterium, can survive and replicate in various cell types such as epithelial cell, fibroblasts and macrophage. Macrophage is the most important sites for the survival of Brucella in vivo. The mechanisms of pathogenesis are difficult to address, since the unknown virulence genes are still exist. RNA-seq is available to study transcriptional changes that occur during disease as a way to identify important virulence-related genes. Here we described and analyzed the transcriptional change of avirulent strain Brucella melitensis M5-90 (B. melitensis M5-90) during macrophage infection using RNA-seq technology. We detected 601 significant changed genes of which 428 were upregulated after infection. The upregulated gene L31 which involved in ribosome KEGG pathway was selected to illustrate its effect on virulence in a vaccine strain B. melitensis M5-90 and a virulent strain B. melitensis M28. Deletion of L31 significant attenuates the spleen colonization in model of M5-90 or M28 infection mouse at 7, 21 and 35 days post-infection (P < 0.05). We further examine the role of L31 in a macrophage cell infection model, and the result showed a significant reduction of intracellular M28ΔL31 cells at 48 h post-infection (P < 0.001). In total, our study provided a view of transcriptional landscape of B. melitensis M5-90 intracellular, and found L31 gene is required for the full virulence of B. melitensis.


Assuntos
Proteínas de Bactérias/genética , Brucella melitensis/genética , Brucella melitensis/patogenicidade , Macrófagos/microbiologia , Proteínas Ribossômicas/genética , Transcrição Gênica , Fatores de Virulência/genética , Animais , Camundongos , Células RAW 264.7 , RNA-Seq , Baço/microbiologia , Virulência/genética
4.
Int J Mol Sci ; 21(24)2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302421

RESUMO

Brucella species are facultative intracellular bacteria that cause brucellosis, a zoonotic world-wide disease. The live attenuated B. melitensis Rev.1 vaccine strain is widely used for the control of brucellosis in the small ruminant population. However, Rev.1 induces antibodies against the O-polysaccharide (O-PS) of the smooth lipopolysaccharide thus, it is difficult to differentiate between infected and vaccinated animals. Hence, rough Brucella strains lacking the O-PS have been introduced. In the current study, we conducted a comprehensive comparative analysis of the genome sequence of two natural Rev.1 rough strains, isolated from sheep, against that of 24 Rev.1 smooth strains and the virulent reference strain B. melitensis 16M. We identified and characterized eight vital mutations within highly important genes associated with Brucella lipopolysaccharide (LPS) biosynthesis and virulence, which may explain the mechanisms underlying the formation of the Rev.1 rough phenotype and may be used to determine the mechanism underlying virulence attenuation. Further complementation studies aimed to estimate the specific role of these mutations in affecting Brucella morphology and virulence will serve as a basis for the design of new attenuated vaccines for animal immunization against brucellosis.


Assuntos
Vacinas Bacterianas/genética , Brucella melitensis/genética , Genes Bacterianos , Lipopolissacarídeos/biossíntese , Animais , Brucella melitensis/patogenicidade , Lipopolissacarídeos/genética , Mutação , Ovinos/microbiologia , Vacinas Atenuadas/genética , Virulência/genética
5.
Biomed Res Int ; 2020: 1438928, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33274194

RESUMO

In this paper, we first used recombinant influenza viral vector (rIVV) subtype H5N1 expressing from the open reading frame of NS1 80 and NS1 124 amino acids of Brucella outer membrane proteins (Omp) 16 and 19, ribosomal L7/L12, and Cu-Zn superoxide dismutase (SOD) proteins to develop a human brucellosis vaccine. We made 18 combinations of IVVs in mono-, bi-, and tetravalent vaccine formulations and tested them on mice to select the safest and most effective vaccine samples. Then, the most effective vaccine candidates were further tested on guinea pigs. Safety of the rIVV-based vaccine candidate was evaluated by a mouse weight-gain test. Mice and guinea pigs were challenged with the virulent strain B. melitensis 16M. The protective effect of the rIVV-based vaccine candidate was assessed by quantitation of Brucella colonization in tissues and organs of challenged animals. All vaccine formulations were safe in mice. Tested vaccine formulations, as well as the commercial B. melitensis Rev.1 vaccine, have been found to protect mice from B. melitensis 16M infection within the range of 1.6 to 2.97 log10 units (P < 0.05). Tetravalent vaccine formulations from the position of NS1 80 amino acids (0.2 ± 0.4), as well as the commercial B. melitensis Rev.1 vaccine (1.2 ± 2.6), have been found to protect guinea pigs from B. melitensis 16M infection at a significant level (P < 0.05). Thus, tetravalent vaccine formulation Flu-NS1-80-Omp16+Flu-NS1-80-L7/L12+Flu-NS1-80-Omp19+Flu-NS1-80-SOD was chosen as a potential vaccine candidate for further development of an effective human vaccine against brucellosis. These results show a promising future for the development of a safe human vaccine against brucellosis based on rIVVs.


Assuntos
Vacina contra Brucelose/imunologia , Brucelose/imunologia , Brucelose/prevenção & controle , Composição de Medicamentos , Vetores Genéticos/efeitos adversos , Epitopos Imunodominantes/metabolismo , Influenza Humana/virologia , Proteínas/metabolismo , Animais , Peso Corporal , Brucella melitensis/imunologia , Brucella melitensis/patogenicidade , Chlorocebus aethiops , Cobaias , Humanos , Imunização , Imunização Secundária , Camundongos , Células Vero , Virulência
6.
Genes (Basel) ; 11(9)2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872264

RESUMO

The intracellular pathogenic bacteria belonging to the genus Brucella must cope with acidic stress as they penetrate the host via the gastrointestinal route, and again during the initial stages of intracellular infection. A transcription-level regulation has been proposed to explain this but the specific molecular mechanisms are yet to be determined. We recently reported a comparative transcriptomic analysis of the attenuated vaccine Brucella melitensis strain Rev.1 against the virulent strain 16M in cultures grown under either neutral or acidic conditions. Here, we re-analyze the RNA-seq data of 16M from our previous study and compare it to published transcriptomic data of this strain from both an in cellulo and an in vivo model. We identify 588 genes that are exclusively differentially expressed in 16M grown under acidic versus neutral pH conditions, including 286 upregulated genes and 302 downregulated genes that are not differentially expressed in either the in cellulo or the in vivo model. Of these, we highlight 13 key genes that are known to be associated with a bacterial response to acidic stress and, in our study, were highly upregulated under acidic conditions. These genes provide new molecular insights into the mechanisms underlying the acid-resistance of Brucella within its host.


Assuntos
Ácidos/toxicidade , Proteínas de Bactérias/metabolismo , Brucella melitensis/patogenicidade , Brucelose/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Transcriptoma/efeitos dos fármacos , Animais , Proteínas de Bactérias/genética , Brucella melitensis/isolamento & purificação , Brucelose/tratamento farmacológico , Brucelose/microbiologia , Hibridização Genômica Comparativa , Cabras , Células HeLa , Humanos , Estresse Fisiológico , Virulência
7.
Infect Immun ; 88(11)2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-32778612

RESUMO

Brucella, the causative agent of brucellosis, is a stealthy intracellular pathogen that is highly pathogenic to a range of mammals, including humans. The twin-arginine translocation (Tat) pathway transports folded proteins across the cytoplasmic membrane and has been implicated in virulence in many bacterial pathogens. However, the roles of the Tat system and related substrates in Brucella remain unclear. We report here that disruption of Tat increases the sensitivity of Brucella melitensis M28 to the membrane stressor sodium dodecyl sulfate (SDS), indicating cell envelope defects, as well as to EDTA. In addition, mutating Tat renders M28 bacteria more sensitive to oxidative stress caused by H2O2 Further, loss of Tat significantly attenuates B. melitensis infection in murine macrophages ex vivo Using a mouse model for persistent infection, we demonstrate that Tat is required for full virulence of B. melitensis M28. Genome-wide in silico prediction combined with an in vivo amidase reporter assay indicates that at least 23 proteins are authentic Tat substrates, and they are functionally categorized into solute-binding proteins, oxidoreductases, cell envelope biosynthesis enzymes, and others. A comprehensive deletion study revealed that 6 substrates contribute significantly to Brucella virulence, including an l,d-transpeptidase, an ABC transporter solute-binding protein, and a methionine sulfoxide reductase. Collectively, our work establishes that the Tat pathway plays a critical role in Brucella virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Brucella melitensis/patogenicidade , Brucelose/metabolismo , Sistema de Translocação de Argininas Geminadas/metabolismo , Virulência/fisiologia , Animais , Camundongos , Estresse Fisiológico/fisiologia
8.
Int J Biol Macromol ; 164: 3098-3104, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32827613

RESUMO

UDP-glucose pyrophosphorylase (UGPase) is an important pyrophosphatase that reversibly catalyzes the synthesis of UDP-glucose during glucose metabolism. We previously found that the deletion of UGPase may affect structure, growth, the virulence of Brucella, and the activation of cellular NF-κB. However, the exact mechanism of activation of NF-κB regulated by Brucella UGPase is still unclear. Here, we found for the first time that UGPase can regulate the expression of virB proteins (virB3, virB4, virB5, virB6, virB8, virB9, virB10, and virB11) of type IV secretion system (T4SS) as well as effectors (vceC, btpA, btpB, ricA, bspB, bspC, and bspF) of Brucella by promoting the expression of ribosomal S12 protein (rpsL), BMEI1825, and quinone of 2,4,5-trihydroxyphenylalanine (topA) proteins, and further inhibits the activation of cellular NF-κB and affects the virulence of Brucella. Our findings provide new insights into the mechanism used by Brucella to escape the immune recognition, which is expected to be of great value in the designing of Brucella vaccines and the screening of drug targets.


Assuntos
Brucella melitensis/patogenicidade , Brucelose/metabolismo , NF-kappa B/metabolismo , Sistemas de Secreção Tipo IV/metabolismo , UTP-Glucose-1-Fosfato Uridililtransferase/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Brucella melitensis/genética , Brucella melitensis/metabolismo , Brucelose/microbiologia , Deleção de Genes , Células HEK293 , Humanos , Camundongos , Modelos Biológicos , Proteômica , Células RAW 264.7 , Transdução de Sinais , Fatores de Virulência/metabolismo
9.
Infect Immun ; 88(10)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32690632

RESUMO

Reproductive failure is the hallmark of brucellosis in animals. An uncommon but important complication in pregnant women who become acutely infected with Brucella melitensis is spontaneous pregnancy loss or vertical transmission to the fetus. Unfortunately, the mechanism behind reproductive failure is still obscure, partially due to the lack of a proper study model. Recently, it was demonstrated that intratracheal (IT) inoculation of nonpregnant guinea pigs would replicate features of clinical disease in humans. To determine if IT inoculation would induce reproductive disease, guinea pigs were infected at mid-gestation and monitored daily for fever and abortions. Fever developed between day 14 to 18 postinoculation, and by 3 weeks postinoculation, 75% of pregnant guinea pigs experienced stillbirths or spontaneous abortions mimicking natural disease. Next, to investigate the guinea pig as a model for evaluating vaccine efficacy during pregnancy, nonpregnant guinea pigs were vaccinated with S19, 16MΔvjbR + Quil-A, or 100 µl PBS + Quil-A (as control). Guinea pigs were bred and vaccinated guinea pigs were challenged at mid-gestation with B. melitensis IT inoculation and monitored for fever and abortions. Vaccination with both vaccines prevented fever and protected against abortion. Together, this study indicates that pregnant guinea pigs are an appropriate animal model to study reproductive disease and offer an improved model to evaluate the ability of vaccine candidates to protect against a serious manifestation of disease.


Assuntos
Vacina contra Brucelose/administração & dosagem , Brucella melitensis/imunologia , Brucelose/prevenção & controle , Modelos Animais de Doenças , Complicações Infecciosas na Gravidez/prevenção & controle , Animais , Anticorpos Antibacterianos/sangue , Brucella melitensis/patogenicidade , Brucelose/microbiologia , Brucelose/patologia , Feminino , Cobaias , Humanos , Glândulas Mamárias Animais/microbiologia , Glândulas Mamárias Animais/patologia , Placenta/microbiologia , Placenta/patologia , Gravidez , Complicações Infecciosas na Gravidez/microbiologia , Complicações Infecciosas na Gravidez/patologia , Vacinação
10.
Mol Cell Probes ; 53: 101581, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32428653

RESUMO

The genus Brucella includes several genetically monomorphic species but with different phenotypic and virulence characteristics. In this study, proteins of two Brucella species, B. melitensis type strain 16 M and B. ovis REO198 were compared by proteomics approach, in order to explain the phenotypic and pathophysiological differences among Brucella species and correlate them with virulence factors. Protein extracts from the two Brucella species were separated by SDS-PAGE and 5 areas, which resulted qualitatively and quantitatively different, were analyzed by nLC-MS/MS. A total of 880 proteins (274 proteins of B. melitensis and 606 proteins of B. ovis) were identified; their functional and structural features were analyzed by bioinformatics tools. Four unique peptides belonging to 3 proteins for B. ovis and 10 peptides derived from 7 proteins for B. melitensis were chosen for the high amount of predicted B-cell epitopes exposed to the solvent. Among these proteins, outer-membrane immunogenic protein (N8LTS7) and 25 kDa outer-membrane immunogenic protein (Q45321), respectively of B. ovis and B. melitensis, could be interesting candidates for improving diagnostics tests and vaccines. Moreover, 8 and 13 outer and periplasmic non homologue proteins of B. ovis and B. melitensis were identified to screen the phenotypic differences between the two Brucella strains. These proteins will be used to unravel pathogenesis and ameliorate current diagnostic assays.


Assuntos
Brucella melitensis/patogenicidade , Brucella ovis/patogenicidade , Biologia Computacional/métodos , Proteômica/métodos , Fatores de Virulência/metabolismo , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Brucella melitensis/imunologia , Brucella melitensis/metabolismo , Brucella ovis/imunologia , Brucella ovis/metabolismo , Cromatografia Líquida , Epitopos de Linfócito B/análise , Nanotecnologia , Espectrometria de Massas em Tandem , Fatores de Virulência/imunologia
12.
Can J Microbiol ; 66(5): 351-358, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32040345

RESUMO

Iron is a fundamental element required by most organisms, including Brucella. Several researchers have suggested that the iron response regulator (irr) and rhizobial iron regulator (rirA) genes regulate iron acquisition by Brucella abortus, influencing heme synthesis by and virulence of this pathogen. However, little is known about another Brucella species, Brucella melitensis. In this research, we successfully constructed two mutants: M5-90Δirr and M5-90ΔrirA. The adhesion, invasion, and intracellular survivability of these two mutants were evaluated in RAW264.7 cells infected with 1 × 106 CFU of M5-90Δirr, M5-90ΔrirA, or M5-90. We also tested the sensitivity of cells to hydrogen peroxide and their ability to grow. In addition, the virulence of these two mutants was evaluated in BALB/c mice. The results showed that the ability of these two mutants to invade and adhere inside the murine macrophages RAW264.7 was attenuated but their ability to replicate intracellularly was strengthened, enhancing the resistance to hydrogen peroxide. The M5-90Δirr mutant showed stronger growth ability than the parental strain under iron-limiting conditions. No differences were observed in the number of bacteria in spleen between M5-90 and M5-90Δirr at 7 or 15 days postinfection. However, the number of M5-90ΔrirA in spleen reduced significantly at 15 days postinfection. The splenic index of the M5-90Δirr group is evidently lower than that of M5-90. This is the first report that irr and rirA genes of B. melitensis are associated not only with virulence but also with growth ability. Together, our data suggest that M5-90Δirr is a promising Brucella vaccine candidate.


Assuntos
Proteínas de Bactérias/genética , Brucella melitensis/genética , Brucella melitensis/patogenicidade , Regulação Bacteriana da Expressão Gênica/fisiologia , Ferro/metabolismo , Fatores de Transcrição/genética , Animais , Anti-Infecciosos Locais/toxicidade , Western Blotting , Vacina contra Brucelose/imunologia , Brucelose/prevenção & controle , Contagem de Colônia Microbiana , Feminino , Peróxido de Hidrogênio/toxicidade , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Baço/microbiologia , Virulência/genética
13.
Biochem J ; 477(2): 491-508, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31922183

RESUMO

Acyl carrier proteins (ACPs) are small helical proteins found in all kingdoms of life, primarily involved in fatty acid and polyketide biosynthesis. In eukaryotes, ACPs are part of the fatty acid synthase (FAS) complex, where they act as flexible tethers for the growing lipid chain, enabling access to the distinct active sites in FAS. In the type II synthesis systems found in bacteria and plastids, these proteins exist as monomers and perform various processes, from being a donor for synthesis of various products such as endotoxins, to supplying acyl chains for lipid A and lipoic acid FAS (quorum sensing), but also as signaling molecules, in bioluminescence and activation of toxins. The essential and diverse nature of their functions makes ACP an attractive target for antimicrobial drug discovery. Here, we report the structure, dynamics and evolution of ACPs from three human pathogens: Borrelia burgdorferi, Brucella melitensis and Rickettsia prowazekii, which could facilitate the discovery of new inhibitors of ACP function in pathogenic bacteria.


Assuntos
Proteína de Transporte de Acila/ultraestrutura , Infecções Bacterianas/microbiologia , Ácido Graxo Sintases/ultraestrutura , Conformação Proteica , Proteína de Transporte de Acila/química , Proteína de Transporte de Acila/genética , Sequência de Aminoácidos/genética , Infecções Bacterianas/tratamento farmacológico , Borrelia burgdorferi/química , Borrelia burgdorferi/patogenicidade , Borrelia burgdorferi/ultraestrutura , Brucella melitensis/química , Brucella melitensis/patogenicidade , Brucella melitensis/ultraestrutura , Domínio Catalítico , Ácido Graxo Sintases/química , Ácido Graxo Sintases/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Lipídeo A/química , Lipídeo A/genética , Simulação de Dinâmica Molecular , Complexos Multienzimáticos , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica/genética , Percepção de Quorum/genética , Rickettsia prowazekii/química , Rickettsia prowazekii/patogenicidade , Rickettsia prowazekii/ultraestrutura
14.
J Microbiol Biotechnol ; 30(4): 497-504, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-31986561

RESUMO

For control of brucellosis in small ruminants, attenuated B. melitensis Rev1 is used but it can be virulent for animals and human. Based on these aspects, it is essential to identify potential immunogens to avoid these problems in prevention of brucellosis. The majority of OMPs in the Omp25/31 family have been studied because these proteins are relevant in maintaining the integrity of the outer membrane but their implication in the virulence of the different species of this genus is not clearly described. Therefore, in this work we studied the role of Omp31 on virulence by determining the residual virulence and detecting lesions in spleen and testis of mice inoculated with the B. melitensis LVM31 mutant strain. In addition, we evaluated the conferred protection in mice immunized with the mutant strain against the challenge with the B. melitensis Bm133 virulent strain. Our results showed that the mutation of omp31 caused a decrease in splenic colonization without generating apparent lesions or histopathological changes apparent in both organs in comparison with the control strains and that the mutant strain conferred similar protection as the B. melitensis Rev1 vaccine strain against the challenge with B. melitensis Bm133 virulent strain. These results allow us to conclude that Omp31 plays an important role on the virulence of B. melitensis in the murine model, and due to the attenuation shown by the strain, it could be considered a vaccine candidate for the prevention of goat brucellosis.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Vacina contra Brucelose/administração & dosagem , Brucella melitensis/imunologia , Brucelose/prevenção & controle , Animais , Proteínas da Membrana Bacteriana Externa/imunologia , Vacina contra Brucelose/genética , Brucella melitensis/genética , Brucella melitensis/patogenicidade , Modelos Animais de Doenças , Feminino , Imunização , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Baço/efeitos dos fármacos , Baço/patologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Virulência/genética
15.
Int J Med Microbiol ; 310(1): 151363, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31699441

RESUMO

Brucella melitensis Rev.1 is the live attenuated Elberg-originated vaccine strain of the facultative intracellular Brucella species, and is widely used to control brucellosis in small ruminants. However, Rev.1 may cause abortions in small ruminants that have been vaccinated during the last trimester of gestation, it is pathogenic to humans, and it induces antibodies directed at the O-polysaccharide (O-PS) of the smooth lipopolysaccharide, thus making it difficult to distinguish between vaccinated and infected animals. Rough Brucella strains, which lack O-PS and are considered less pathogenic, have been introduced to address these drawbacks; however, as Rev.1 confers a much better immunity than the rough mutants, it is still considered the reference vaccine for the prophylaxis of brucellosis in small ruminants. Therefore, developing an improved vaccine strain, which lacks the Rev.1 drawbacks, is a highly evaluated task, which requires a better understanding of the molecular mechanisms underlying the virulence attenuation of Rev.1 smooth strains and of natural Rev.1 rough strains, which are currently only partly understood. As the acidification of the Brucella-containing vacuole during the initial stages of infection is crucial for their survival, identifying the genes that contribute to their survival in an acidic environment versus a normal environment will greatly assist our understanding of the molecular pathogenic mechanisms and the attenuated virulence of the Rev.1 strain. Here, we compared the transcriptomes of the smooth and natural rough Rev.1 strains, each grown under either normal or acidic conditions. We found 12 key genes that are significantly downregulated in the Rev.1 rough strains under normal pH, as compared with Rev.1 smooth strains, and six highly important genes that are significantly upregulated in the smooth strains under acidic conditions, as compared with Rev.1 rough strains. All 18 differentially expressed genes are associated with bacterial virulence and survival and may explain the attenuated virulence of the rough Rev.1 strains versus smooth Rev.1 strains, thus providing new insights into the virulence attenuation mechanisms of Brucella. These highly important candidate genes may facilitate the design of new and improved brucellosis vaccines.


Assuntos
Vacinas Bacterianas/genética , Brucella melitensis/genética , Brucella melitensis/patogenicidade , Perfilação da Expressão Gênica , Virulência/genética , Regulação para Baixo , Expressão Gênica , Mutação , Fenótipo , Análise de Sequência de RNA , Regulação para Cima , Vacinas Atenuadas
16.
BMC Infect Dis ; 19(1): 1038, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31818269

RESUMO

BACKGROUND: To investigate the risk factors for brucellosis in suspected cases of the disease. METHODS: A self-designed questionnaire was developed to collect data from 3557 people whose initial visit site was the Songyuan Center for Disease Control and Prevention (CDC) from January 1st, 2009 to December 31st, 2012. After collecting blood samples, a plate agglutination test (PAT) and serum agglutination test (SAT) were used to distinguish the patients with brucellosis from the suspected cases. RESULTS: Sex, occupation (farmers and herdsmen), contact with abortion products, and contact with feces were the main risk factors for brucellosis in the suspected cases (all P < 0.05). No difference existed between the confirmed cases and suspected cases in the demographic characteristics, contact with animals (except swine), contact with substances, or clinical symptoms (except fever). However, the confirmed cases showed significant differences from people without brucellosis in demographic characteristics, contact with animals (except cattle and swine), contact with substances, and clinical symptoms. Suspected cases exhibited significant differences from people without brucellosis in the demographic characteristics (except education), contact with animals (except swine), contact with substances (except dust), and clinical symptoms (except chills and acratia). Brucella was cultured from the blood samples of three of 30 suspected cases with fever. Using AMOS-PCR and agarose electrophoresis, the detailed species of Brucella strain was identified as Brucella melitensis. CONCLUSIONS: Abortion products and feces are the main risk factors for brucellosis in suspected cases of the disease. Pyrexia in suspected cases with a history of contact with abortion products or feces should raise suspicion for the disease.


Assuntos
Brucelose/diagnóstico , Brucelose/transmissão , Aborto Animal/microbiologia , Adolescente , Adulto , Testes de Aglutinação/métodos , Animais , Brucella melitensis/genética , Brucella melitensis/isolamento & purificação , Brucella melitensis/patogenicidade , Brucelose/etiologia , Bovinos , China , Fazendeiros , Fezes/microbiologia , Feminino , Febre/microbiologia , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Gravidez , Fatores de Risco , Suínos , Adulto Jovem
17.
Biomed Res Int ; 2019: 7368627, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31662995

RESUMO

Brucellar spondylodiscitis, the most prevalent and significant osteoarticular presentation of human Brucellosis, is difficult to diagnose and usually yields irreversible neurologic deficits and spinal deformities. However, no animal models of Brucellar spondylodiscitis exist, allowing for preclinical investigations. The present study investigated whether intraosseous injection of attenuated Brucella melitensis vaccine into rabbits' lumbar vertebrae imitates the radiographic and histopathological characteristics of human Brucellar spondylodiscitis. Radiographic and histopathological analyses at 8 weeks postoperatively revealed radiographic changes within vertebral bodies and intervertebral discs, abscesses formation within the paravertebral soft tissue, and typical prominent inflammation response without caseous necrosis, which were largely comparable to human Brucellar spondylodiscitis. Such a medium-sized, surgically feasible rabbit model provides a promising in vivo setting for further preclinical investigation of Brucellar spondylodiscitis.


Assuntos
Brucella melitensis/patogenicidade , Brucelose/microbiologia , Brucelose/patologia , Discite/microbiologia , Discite/patologia , Animais , Vacinas Bacterianas/imunologia , Brucella melitensis/imunologia , Modelos Animais de Doenças , Feminino , Vértebras Lombares/microbiologia , Coelhos , Vértebras Torácicas/microbiologia , Vértebras Torácicas/patologia
18.
Microb Pathog ; 136: 103669, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31445124

RESUMO

Brucella melitensis is one of the leading zoonotic pathogens with significant economic implications in animal industry worldwide. Lipopolysaccharide, however, remains by far the major virulence with substantial role in diseases pathogenesis. Nonetheless, the effect of B. melitensis and its lipopolysaccharide on immunopathophysiological aspects largely remains an enigma. This study examines the effect of B.melitensis and its lipopolysaccharide on immunopathophysiological parameters following experimental infection using mouse model. Eighty four (n = 84) mice, BALB/c, both sexes with equal gender distribution and 6-8 weeks-old were randomly assigned into three groups. Group 1-2 (n = 72) were orally inoculated with 0.4 mL containing 109 CFU/mL of B. melitensis and its LPS, respectively. Group 3 (n = 12) was challenged orally with phosphate buffered saline and served as a control group. Animals were observed for clinical signs, haematological and histopathological analysis for a period of 24 days post-infection. We hereby report that B.melitensis infected group demonstrated significant clinical signs and histopathological changes than LPS infected group. However, both infected groups showed elevated levels of interleukins (IL-1ß and IL-6) and antibody levels (IgM and IgG) with varying degrees of predominance in LPS infected group than B. melitensis infected group. For hormone analysis, low levels of progesterone, estradiol and testosterone were observed in both B. melitensis and LPS groups throughout the study period. Moreover, in B. melitensis infected group, the organism was re-isolated from the organs and tissues of gastrointestinal, respiratory and reproductive systems thereby confirming the infection and transmission dynamics. This report is the first detailed investigation comparing the infection progression and host responses in relation to the immunopathophysiological aspects in a mouse model after oral inoculation with B. melitensis and its lipopolysaccharide.


Assuntos
Brucella melitensis/crescimento & desenvolvimento , Brucella melitensis/patogenicidade , Brucelose/imunologia , Brucelose/patologia , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/toxicidade , Administração Oral , Estruturas Animais/microbiologia , Animais , Modelos Animais de Doenças , Feminino , Histocitoquímica , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Interleucinas/sangue , Masculino , Camundongos , Camundongos Endogâmicos BALB C
19.
Cell Microbiol ; 21(10): e13080, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31265755

RESUMO

Brucella melitensis infection causes acute necrotizing inflammation in pregnant animals; however, the pathophysiological mechanisms leading to placentitis are unknown. Here, we demonstrate that high-mobility group box 1 (HMGB1) acts as a mediator of placenta inflammation in B. melitensis-infected pregnant mice model. HMGB1 levels were increased in trophoblasts or placental explant during B. melitensis infection. Inhibition of HMGB1 activity with neutralising antibody significantly reduced the secretion of inflammatory cytokines in B. melitensis-infected trophoblasts or placenta, whereas administration of recombinant HMGB1 (rHMGB1) increased the inflammatory response. Mechanistically, this decreased inflammatory response results from inhibition of HMGB1 activity, which cause the suppression of both mitogen-activated protein kinases and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. Moreover, neutralising antibody to HMGB1 prevented B. melitensis infection-induced activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in trophoblasts. In contrast, in vitro stimulation of trophoblasts with rHMGB1 caused activation of NADPH oxidase and increased the production of ROS, which contributes to high bacterial burden within trophoblasts or placenta. In vivo, treatment with anti-HMGB1 antibody increases the number of Brucella survival within placenta in B. melitensis-infected pregnant mice but successfully reduced the severity of placentitis and abortion.


Assuntos
Brucella melitensis/fisiologia , Brucelose/imunologia , Proteína HMGB1/metabolismo , Placenta/imunologia , Trofoblastos/metabolismo , Trofoblastos/microbiologia , Aborto Espontâneo/genética , Aborto Espontâneo/metabolismo , Aborto Espontâneo/microbiologia , Animais , Brucella melitensis/genética , Brucella melitensis/metabolismo , Brucella melitensis/patogenicidade , Brucelose/genética , Brucelose/metabolismo , Citocinas/metabolismo , Replicação do DNA/imunologia , Feminino , Proteína HMGB1/administração & dosagem , Proteína HMGB1/antagonistas & inibidores , Proteína HMGB1/genética , Inflamação/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NADPH Oxidases/química , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Fosforilação , Placenta/microbiologia , Placenta/patologia , Gravidez , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Trofoblastos/enzimologia
20.
BMC Infect Dis ; 19(1): 666, 2019 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-31351446

RESUMO

BACKGROUND: Human brucellosis is endemic in China and commonly occurs through contact with infected animals from working with livestock or consumption of unpasteurized dairy products. Although rare, human-to-human, and possible sexual transmission, of Brucella has been reported. In this report, we describe a case of likely mother-to-child transmission of Brucella in Hunan Province, China. CASE PRESENTATION: Between June and October 2016, a 28-year old man sought care for testicular swelling and pain at several health facilities. His 26-year old wife developed intermittent fever along with right thigh and hip pain between November 2016 and February 2017 respectively. On April 5, 2017, the female patient delivered a male neonate at 34 weeks of gestation through natural labor. The child's venal blood sample was cultured on April 5, 2017. Brucella was isolated and identified on April 12, 2017. On the same date, serum antibodies of the father and mother were above 1:100 (based on the serum agglutination test [SAT]). The strains isolated from the mother and neonate were identified as Brucella melitensis biotype 1. CONCLUSIONS: This report highlights a family cluster of brucellosis. Culture results strongly support mother-to-child transmission, and a high probability of sexual transmission from husband to wife.


Assuntos
Brucelose/transmissão , Transmissão Vertical de Doenças Infecciosas , Adulto , Brucella melitensis/isolamento & purificação , Brucella melitensis/patogenicidade , Brucelose/tratamento farmacológico , Brucelose/epidemiologia , Brucelose/etiologia , China/epidemiologia , Feminino , Humanos , Recém-Nascido , Masculino , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...