Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
1.
Microbiol Spectr ; 9(3): e0140021, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34756064

RESUMO

The accumulation of autotoxins and soilborne pathogens in soil was shown to be the primary driver of negative plant-soil feedback (NPSF). There is a concerted understanding that plants could enhance their adaptability to biotic or abiotic stress by modifying the rhizosphere microbiome. However, it is not clear whether autotoxins could enrich microbes to degrade themselves or antagonize soilborne pathogens. Here, we found that the microbiome degraded autotoxic ginsenosides, belonging to triterpenoid glycosides, and antagonized pathogens in the rhizosphere soil of Panax notoginseng (sanqi). Deep analysis by 16S rRNA sequencing showed that the bacterial community was obviously changed in the rhizosphere soil and identified the Burkholderia-Caballeronia-Paraburkholderia (BCP) group as the main ginsenoside-enriched bacteria in the rhizosphere soil. Eight strains belonging to the BCP group were isolated, and Burkholderia isolate B36 showed a high ability to simultaneously degrade autotoxic ginsenosides (Rb1, Rg1, and Rd) and antagonize the soilborne pathogen Ilyonectria destructans. Interestingly, ginsenosides could stimulate the growth and biofilm formation of B36, eventually enhancing the antagonistic ability of B36 to I. destructans and the colonization ability in the rhizosphere soil. In summary, autotoxic ginsenosides secreted by P. notoginseng could enrich beneficial microbes in the rhizosphere to simultaneously degrade autotoxins and antagonize pathogen, providing a novel ecological strategy to alleviate NPSF. IMPORTANCE Autotoxic ginsenosides, secreted by sanqi into soil, could enrich Burkholderia sp. to alleviate negative plant-soil feedback (NPSF) by degrading autotoxins and antagonizing the root rot pathogen. In detail, ginsenosides could stimulate the growth and biofilm formation of Burkholderia sp. B36, eventually enhancing the antagonistic ability of Burkholderia sp. B36 to a soilborne pathogen and the colonization of B36 in soil. This ecological strategy could alleviate NPSF by manipulating the rhizosphere microbiome to simultaneously degrade autotoxins and antagonize pathogen.


Assuntos
Antibiose/fisiologia , Burkholderia/metabolismo , Ginsenosídeos/metabolismo , Hypocreales/crescimento & desenvolvimento , Panax notoginseng/microbiologia , Burkholderia/crescimento & desenvolvimento , Glicosídeos/metabolismo , Microbiota/fisiologia , Doenças das Plantas/microbiologia , Plantas , RNA Ribossômico 16S/genética , Rizosfera , Microbiologia do Solo , Estresse Fisiológico/fisiologia
2.
PLoS One ; 16(9): e0257863, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34591915

RESUMO

The endophytic bacterium Burkholderia contaminans NZ was isolated from jute, which is an important fiber-producing plant. This bacterium exhibits significant growth promotion activity in in vivo pot experiments, and like other plant growth-promoting (PGP) bacteria fixes nitrogen, produces indole acetic acid (IAA), siderophore, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. B. contaminans NZ is considered to exert a promising growth inhibitory effect on Macrophomina phaseolina, a phytopathogen responsible for infecting hundreds of crops worldwide. This study aimed to identify the possibility of B. contaminans NZ as a safe biocontrol agent and assess its effectiveness in suppressing phytopathogenic fungi, especially M. phaseolina. Co-culture of M. phaseolina with B. contaminans NZ on both solid and liquid media revealed appreciable growth suppression of M. phaseolina and its chromogenic aberration in liquid culture. Genome mining of B. contaminans NZ using NaPDoS and antiSMASH revealed gene clusters that displayed 100% similarity for cytotoxic and antifungal substances, such as pyrrolnitrin. GC-MS analysis of B. contaminans NZ culture extracts revealed various bioactive compounds, including catechol; 9,10-dihydro-12'-hydroxy-2'-methyl-5'-(phenylmethyl)- ergotaman 3',6',18-trione; 2,3-dihydro-3,5- dihydroxy-6-methyl-4H-pyran-4-one; 1-(1,6-Dioxooctadecyl)- pyrrolidine; 9-Octadecenamide; and 2- methoxy- phenol. These compounds reportedly exhibit tyrosinase inhibitory, antifungal, and antibiotic activities. Using a more targeted approach, an RP-HPLC purified fraction was analyzed by LC-MS, confirming the existence of pyrrolnitrin in the B. contaminans NZ extract. Secondary metabolites, such as catechol and ergotaman, have been predicted to inhibit melanin synthesis in M. phaseolina. Thus, B. contaminans NZ appears to inhibit phytopathogens by apparently impairing melanin synthesis and other potential biochemical pathways, exhibiting considerable fungistatic activity.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Burkholderia/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Melaninas/biossíntese , Pirrolnitrina/biossíntese , Ascomicetos/efeitos dos fármacos , Ascomicetos/patogenicidade , Agentes de Controle Biológico/farmacologia , Burkholderia/metabolismo , Técnicas de Cocultura , Produtos Agrícolas/microbiologia , Endófitos , Cromatografia Gasosa-Espectrometria de Massas , Ácidos Indolacéticos/metabolismo , Fixação de Nitrogênio , Pirrolnitrina/farmacologia , Sequenciamento Completo do Genoma
3.
Cell Rep ; 35(3): 109012, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33882312

RESUMO

Caspase-11 sensing of intracellular lipopolysaccharide (LPS) plays critical roles during infections and sepsis. However, the key cell types that sense intracellular LPS and their contributions to the host responses at the organismal level are not completely clear. Here, we show that macrophage/monocyte-specific caspase-11 plays a dominant role in mediating the pathological manifestations of endotoxemia, including gasdermin D (GSDMD) activation, interleukin (IL)-1ß, IL-18, and damage-associated molecular pattern (DAMP) release, tissue damage, and death. Surprisingly, caspase-11 expression in CD11c+ cells and intestinal epithelial cells (IECs) plays minor detrimental roles in LPS shock. In contrast, caspase-11 expression in neutrophils is dispensable for LPS-induced lethality. Importantly, caspase-11 sensing of intracellular LPS in LyzM+ myeloid cells and MRP8+ neutrophils, but not CD11c+ cells and IECs, is necessary for bacterial clearance and host survival during intracellular bacterial infection. Thus, we reveal hierarchical cell-type-specific roles of caspase-11 that govern the host-protective and host-detrimental functions of the cytosolic LPS surveillance.


Assuntos
Caspases Iniciadoras/genética , Lipopolissacarídeos/toxicidade , Macrófagos Peritoneais/imunologia , Neutrófilos/imunologia , Choque Séptico/imunologia , Baço/imunologia , Animais , Burkholderia/crescimento & desenvolvimento , Burkholderia/patogenicidade , Antígenos CD11/genética , Antígenos CD11/imunologia , Calgranulina A/genética , Calgranulina A/imunologia , Caspases Iniciadoras/imunologia , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Feminino , Regulação da Expressão Gênica , Interleucina-18/genética , Interleucina-18/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Fígado/imunologia , Fígado/microbiologia , Macrófagos Peritoneais/microbiologia , Masculino , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/imunologia , Monócitos/imunologia , Monócitos/microbiologia , Neutrófilos/microbiologia , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/imunologia , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/imunologia , Choque Séptico/genética , Choque Séptico/microbiologia , Choque Séptico/mortalidade , Transdução de Sinais , Baço/microbiologia , Análise de Sobrevida
4.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649233

RESUMO

Most animals harbor a gut microbiota that consists of potentially pathogenic, commensal, and mutualistic microorganisms. Dual oxidase (Duox) is a well described enzyme involved in gut mucosal immunity by the production of reactive oxygen species (ROS) that antagonizes pathogenic bacteria and maintains gut homeostasis in insects. However, despite its nonspecific harmful activity on microorganisms, little is known about the role of Duox in the maintenance of mutualistic gut symbionts. Here we show that, in the bean bug Riptortus pedestris, Duox-dependent ROS did not directly contribute to epithelial immunity in the midgut in response to its mutualistic gut symbiont, Burkholderia insecticola Instead, we found that the expression of Duox is tracheae-specific and its down-regulation by RNAi results in the loss of dityrosine cross-links in the tracheal protein matrix and a collapse of the respiratory system. We further demonstrated that the establishment of symbiosis is a strong oxygen sink triggering the formation of an extensive network of tracheae enveloping the midgut symbiotic organ as well as other organs, and that tracheal breakdown by Duox RNAi provokes a disruption of the gut symbiosis. Down-regulation of the hypoxia-responsive transcription factor Sima or the regulators of tracheae formation Trachealess and Branchless produces similar phenotypes. Thus, in addition to known roles in immunity and in the formation of dityrosine networks in diverse extracellular matrices, Duox is also a crucial enzyme for tracheal integrity, which is crucial to sustain mutualistic symbionts and gut homeostasis. We expect that this is a conserved function in insects.


Assuntos
Burkholderia/crescimento & desenvolvimento , Oxidases Duais/metabolismo , Heterópteros , Proteínas de Insetos/metabolismo , Intestinos , Simbiose/fisiologia , Animais , Oxidases Duais/genética , Heterópteros/enzimologia , Heterópteros/genética , Heterópteros/microbiologia , Proteínas de Insetos/genética , Intestinos/enzimologia , Intestinos/microbiologia
5.
World J Microbiol Biotechnol ; 37(3): 39, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33544268

RESUMO

In this study, experiments were conducted to isolate, characterize, and evaluate rice rhizosphere bacteria for their arsenic (As) tolerance ability and zinc (Zn) solubilization potential in culture media and soil. Among 20 bacterial isolates recovered, six were found to solubilize inorganic Zn salt(s) efficiently under in vitro culture conditions. 16S rRNA gene sequence-based phylogenetic analysis indicated the affiliation of efficient Zn solubilizing bacteria (ZSB) to Burkholderia vietnamiensis and Burkholderia seminalis. Zinc solubilizing efficiency (ZSE) of the bacteria varied with the concentrations and types of Zn salts used in the experiments. Increasing trend in ZSE of the bacteria was noticed when the percentage of ZnO increased from 0.1 to 0.5 but the same decreased at 1.0%. Increased Zn solubilization was noticed when bacteria were incubated with lower concentration of Zn3(PO4)2 and ZnCO3. In general, Zn solubilization increased with increasing incubation time in lower volume medium, while some isolates failed to solubilize one or more tested Zn salts. However, enriched concentrated cells of the ZSB in glucose amended medium with 0.5% ZnO showed an increasing trend of Zn solubilization with time and were able to solubilize more than 300 mg/L Zn. This increased rate of Zn release by the ZSB was attributed to marked decline in pH that might be due to the enhanced gluconic acid production from glucose. As evident from the decreased ZSE of the bacteria in the presence of As(V) in particular, it seems arsenic imparts a negative effect on Zn solubilization. The ZSB were also able to increase the rate of Zn release in soil. A microcosm-based soil incubation study amending the enriched bacteria and 0.5% ZnO in soil showed an elevated level of both water-soluble and available Zn compared to un-inoculated control. During Zn solubilization in microcosms, viable cells in terms of colony-forming unit (CFU) declined by the same order of magnitude both in the presence and absence of ZnO that might be due to the nutrients limiting condition aroused during the incubation period rather than Zn toxicity. The bacteria in this study also exhibited plant growth promoting traits, such as growth in nitrogen-free medium, production of indole acetic acid (IAA), and solubilization of potassium and phosphate. Our findings suggested that Burkholderia spp. could be the potential candidates for enhancing Zn dissolution in the soil that might reduce the rate of inorganic Zn fertilization in agricultural soil.


Assuntos
Burkholderia/classificação , Oryza/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Zinco/química , Arsênio/farmacologia , Burkholderia/crescimento & desenvolvimento , Burkholderia/isolamento & purificação , Burkholderia/metabolismo , DNA Bacteriano/genética , DNA Ribossômico/genética , Farmacorresistência Bacteriana , Oryza/crescimento & desenvolvimento , Filogenia , Rizosfera , Microbiologia do Solo , Solubilidade
6.
PLoS Pathog ; 16(12): e1008893, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33326490

RESUMO

Bacterial bloodstream infections (BSI) are a major health concern and can cause up to 40% mortality. Pseudomonas aeruginosa BSI is often of nosocomial origin and is associated with a particularly poor prognosis. The mechanism of bacterial persistence in blood is still largely unknown. Here, we analyzed the behavior of a cohort of clinical and laboratory Pseudomonas aeruginosa strains in human blood. In this specific environment, complement was the main defensive mechanism, acting either by direct bacterial lysis or by opsonophagocytosis, which required recognition by immune cells. We found highly variable survival rates for different strains in blood, whatever their origin, serotype, or the nature of their secreted toxins (ExoS, ExoU or ExlA) and despite their detection by immune cells. We identified and characterized a complement-tolerant subpopulation of bacterial cells that we named "evaders". Evaders shared some features with bacterial persisters, which tolerate antibiotic treatment. Notably, in bi-phasic killing curves, the evaders represented 0.1-0.001% of the initial bacterial load and displayed transient tolerance. However, the evaders are not dormant and require active metabolism to persist in blood. We detected the evaders for five other major human pathogens: Acinetobacter baumannii, Burkholderia multivorans, enteroaggregative Escherichia coli, Klebsiella pneumoniae, and Yersinia enterocolitica. Thus, the evaders could allow the pathogen to persist within the bloodstream, and may be the cause of fatal bacteremia or dissemination, in particular in the absence of effective antibiotic treatments.


Assuntos
Infecções Bacterianas/sangue , Infecções Bacterianas/imunologia , Ativação do Complemento/imunologia , Acinetobacter baumannii/crescimento & desenvolvimento , Acinetobacter baumannii/patogenicidade , Bacteriemia/sangue , Bacteriemia/imunologia , Bacteriemia/microbiologia , Bactérias , Burkholderia/crescimento & desenvolvimento , Burkholderia/patogenicidade , Proteínas do Sistema Complemento/imunologia , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/patogenicidade , Humanos , Klebsiella pneumoniae/crescimento & desenvolvimento , Klebsiella pneumoniae/patogenicidade , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/sangue , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/patogenicidade , Yersinia enterocolitica/crescimento & desenvolvimento , Yersinia enterocolitica/patogenicidade
7.
PLoS One ; 15(9): e0238174, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32881891

RESUMO

Burkholderia pseudomallei is a facultative intracellular pathogen and the causative agent of melioidosis, a potentially life-threatening disease endemic in Southeast Asia and Northern Australia. Treatment of melioidosis is a long and costly process and the pathogen is inherently resistant to several classes of antibiotics, therefore there is a need for new treatments that can help combat the pathogen. Previous work has shown that the combination of interferon-gamma, an immune system activator, and the antibiotic ceftazidime synergistically reduced the bacterial burden of RAW 264.7 macrophages that had been infected with either B. pseudomallei or Burkholderia thailandensis. The mechanism of the interaction was found to be partially dependent on interferon-gamma-induced production of reactive oxygen species inside the macrophages. To further confirm the role of reactive oxygen species in the effectiveness of the combination treatment, we investigated the impact of the antioxidant and reactive oxygen species scavenger, seleno-L-methionine, on intracellular and extracellular bacterial burden of the infected macrophages. In a dose-dependent manner, high concentrations of seleno-L-methionine (1000 µM) were protective towards infected macrophages, resulting in a reduction of bacteria, on its own, that exceeded the reduction caused by the antibiotic alone and rivaled the effect of ceftazidime and interferon-gamma combined. Seleno-L-methionine treatment also resulted in improved viability of infected macrophages compared to untreated controls. We show that the protective effect of seleno-L-methionine was partly due to its inhibition of bacterial growth. In summary, our study shows a role for high dose seleno-L-methionine to protect and treat macrophages infected with B. thailandensis.


Assuntos
Antioxidantes/farmacologia , Burkholderia/efeitos dos fármacos , Selenometionina/farmacologia , Animais , Burkholderia/crescimento & desenvolvimento , Burkholderia/fisiologia , Interferon gama/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Camundongos , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo
8.
J Bacteriol ; 202(23)2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32900830

RESUMO

Burkholderia thailandensis is a soil saprophyte that is closely related to the pathogen Burkholderia pseudomallei, the etiological agent of melioidosis in humans. The environmental niches and infection sites occupied by these bacteria are thought to contain only limited concentrations of oxygen, where they can generate energy via denitrification. However, knowledge of the underlying molecular basis of the denitrification pathway in these bacteria is scarce. In this study, we employed a transposon sequencing (Tn-Seq) approach to identify genes conferring a fitness benefit for anaerobic growth of B. thailandensis Of the 180 determinants identified, several genes were shown to be required for growth under denitrifying conditions: the nitrate reductase operon narIJHGK2K1, the aniA gene encoding a previously unknown nitrite reductase, and the petABC genes encoding a cytochrome bc1, as well as three novel regulators that control denitrification. Our Tn-Seq data allowed us to reconstruct the entire denitrification pathway of B. thailandensis and shed light on its regulation. Analyses of growth behaviors combined with measurements of denitrification metabolites of various mutants revealed that nitrate reduction provides sufficient energy for anaerobic growth, an important finding in light of the fact that some pathogenic Burkholderia species can use nitrate as a terminal electron acceptor but are unable to complete denitrification. Finally, we demonstrated that a nitrous oxide reductase mutant is not affected for anaerobic growth but is defective in biofilm formation and accumulates N2O, which may play a role in the dispersal of B. thailandensis biofilms.IMPORTANCEBurkholderia thailandensis is a soil-dwelling saprophyte that is often used as surrogate of the closely related pathogen Burkholderia pseudomallei, the causative agent of melioidosis and a classified biowarfare agent. Both organisms are adapted to grow under oxygen-limited conditions in rice fields by generating energy through denitrification. Microoxic growth of B. pseudomallei is also considered essential for human infections. Here, we have used a Tn-Seq approach to identify the genes encoding the enzymes and regulators required for growth under denitrifying conditions. We show that a mutant that is defective in the conversion of N2O to N2, the last step in the denitrification process, is unaffected in microoxic growth but is severely impaired in biofilm formation, suggesting that N2O may play a role in biofilm dispersal. Our study identified novel targets for the development of therapeutic agents to treat meliodiosis.


Assuntos
Burkholderia/genética , Burkholderia/metabolismo , Genoma Bacteriano , Burkholderia/crescimento & desenvolvimento , Mapeamento Cromossômico , Elementos de DNA Transponíveis , Desnitrificação , Regulação Bacteriana da Expressão Gênica , Mutagênese Insercional , Nitratos/metabolismo , Óperon
9.
Appl Microbiol Biotechnol ; 104(13): 5873-5887, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32415321

RESUMO

Microbial tolerance to phenolic pollutants is the key to their efficient biodegradation. However, the metabolic mechanisms that allow some microorganisms to adapt to high phenol concentrations remain unclear. In this study, to reveal the underlying mechanisms of how Burkholderia sp. adapt to high phenol concentrations, the strain's tolerance ability and time-course transcriptome in combination with cell phenotype were evaluated. Surprisingly, Burkholderia sp. still grew normally after a long adaptation to a relatively high phenol concentration (1500 mg/L) and exhibited some time-dependent changes compared to unstressed cells prior to the phenol addition. Time-course transcriptome analysis results revealed that the mechanism of adaptations to phenol was an evolutionary process that transitioned from tolerance to positive degradation through precise gene regulation at appropriate times. Specifically, basal stress gene expression was upregulated and contributed to phenol tolerance, which involved stress, DNA repair, membrane, efflux pump and antioxidant protein-coding genes, while a phenol degradation gene cluster was specifically induced. Interestingly, both the catechol and protocatechuate branches of the ß-ketoadipate pathway contributed to the early stage of phenol degradation, but only the catechol branch was used in the late stage. In addition, pathways involving flagella, chemotaxis, ATP-binding cassette transporters and two-component systems were positively associated with strain survival under phenolic stress. This study provides the first insights into the specific response of Burkholderia sp. to high phenol stress and shows potential for application in remediation of polluted environments. KEY POINTS: • Shock, DNA repair and antioxidant-related genes contributed to phenol tolerance. • ß-Ketoadipate pathway branches differed at different stages of phenol degradation. • Adaptation mechanisms transitioned from negative tolerance to positive degradation.


Assuntos
Adaptação Fisiológica/genética , Burkholderia/metabolismo , Fenóis/metabolismo , Biodegradação Ambiental , Burkholderia/genética , Burkholderia/crescimento & desenvolvimento , Catecóis/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Fenótipo , Estresse Fisiológico/genética
10.
Microbiol Res ; 236: 126451, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32146294

RESUMO

Burkholderia species have different lifestyles establishing mutualist or pathogenic associations with plants and animals. Changes in the ecological behavior of these bacteria may depend on genetic variations in response to niche adaptation. Here, we studied 15 Burkholderia strains isolated from different environments with respect to genetic and phenotypic traits. By Multilocus Sequence Analysis (MLSA) these isolates fell into 6 distinct groups. MLSA clusters did not correlate with strain antibiotic sensitivity, but with the bacterial ability to produce antimicrobial compounds and control orchid necrosis. Further, the B. seminalis strain TC3.4.2R3, a mutualistic bacterium, was inoculated into orchid plants and the interaction with the host was evaluated by analyzing the plant response and the bacterial oxidative stress response in planta. TC3.4.2R3 responded to plant colonization by increasing its own growth rate and by differential gene regulation upon oxidative stress caused by the plant, while reducing the plant's membrane lipid peroxidation. The bacterial responses to oxidative stress were recapitulated by bacterial exposure to the herbicide paraquat. We suggest that the ability of Burkholderia species to successfully establish in the rhizosphere correlates with genetic variation, whereas traits associated with antibiotic resistance are more likely to be categorized as strain specific.


Assuntos
Adaptação Biológica/genética , Infecções por Burkholderia , Burkholderia , Interações entre Hospedeiro e Microrganismos , Orchidaceae/microbiologia , Aclimatação/genética , Anti-Infecciosos/farmacologia , Agentes de Controle Biológico/farmacologia , Burkholderia/genética , Burkholderia/crescimento & desenvolvimento , Burkholderia/isolamento & purificação , Burkholderia/metabolismo , Resistência Microbiana a Medicamentos/genética , Endófitos/genética , Endófitos/crescimento & desenvolvimento , Endófitos/isolamento & purificação , Endófitos/metabolismo , Genes Bacterianos , Ilhas Genômicas , Genótipo , Peroxidação de Lipídeos , Tipagem de Sequências Multilocus , Orchidaceae/fisiologia , Estresse Oxidativo/genética , Fenótipo , Filogenia , Doenças das Plantas/microbiologia , Doenças das Plantas/terapia , RNA Ribossômico 16S/genética , Simbiose , Transcriptoma
11.
Can J Microbiol ; 66(3): 256-262, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31917612

RESUMO

Optical density (OD) measurement is the standard method used in microbiology for estimating bacterial concentrations in cultures. However, most studies do not compare these measurements with viable cell counts and assume that they reflect the real cell concentration. Burkholderia thailandensis was recently identified as a polyhydroxyalkanoate (PHA) producer. PHA biosynthesis seems to be coded by an orthologue of the Cupriavidus necator phaC gene. When growing cultures of wild-type strain E264 and an isogenic phaC mutant, we noted a difference in their OD600 values, although viable cell counts indicated similar growth. Investigating the cellular morphologies of both strains, we found that under our conditions the wild-type strain was full of PHA granules, deforming the cells, while the mutant contained no granules. These factors apparently affected the light scattering, making the OD600 values no longer representative of cell density. We show a direct correlation between OD600 values and the accumulation of PHA. We conclude that OD measurement is unreliable for growth evaluation of B. thailandensis because of PHA production. This study also suggests that B. thailandensis could represent an excellent candidate for PHA bioproduction. Correlation between OD measurements and viable cell counts should be verified in any study performed with B. thailandensis.


Assuntos
Burkholderia/crescimento & desenvolvimento , Burkholderia/metabolismo , Técnicas Microbiológicas/métodos , Poli-Hidroxialcanoatos/metabolismo , Aciltransferases/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Burkholderia/genética
12.
BMC Med Genomics ; 12(1): 127, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492148

RESUMO

BACKGROUND: Burkholderia mallei (Bm) is a facultative intracellular bacterial pathogen causing highly-fatal glanders in solipeds and humans. The ability of Bm to thrive intracellularly is thought to be related to exploitation of host immune response-related genes and pathways. Relatively little is known of the molecular strategies employed by this pathogen to modulate these pathways and evade intracellular killing. This manuscript seeks to fill gaps in the understanding of the interface between Bm and innate immunity by examining gene expression changes during infection of host monocytes. METHODS: The transcriptome of Bm-infected human Mono Mac-6 (MM6) monocytes was profiled on Affymetrix Human Transcriptome GeneChips 2.0. Gene expression changes in Bm-infected monocytes were compared to those of Burkholderia thailandensis (Bt)-infected monocytes and to uninfected monocytes. The resulting dataset was normalized using Robust Multichip Average and subjected to statistical analyses employing a univariate F test with a random variance model. Differentially expressed genes significant at p < 0.001 were subjected to leave-one-out cross-validation studies and 1st and 3rd nearest neighbor prediction model. Significant probe sets were used to populate human pathways in Ingenuity Pathway Analysis, with statistical significance determined by Fisher's exact test or z-score. RESULTS: The Pattern Recognition Receptor (PRR) pathway was represented among significantly enriched immune response-related human canonical pathways, with evidence of upregulation across both infections. Among members of this pathway, pentraxin-3 was significantly upregulated by Bm- or Bt-infected monocytes. Pentraxin-3 (PTX3) was demonstrated to bind to both Bt and Burkholderia pseudomallei (Bp), but not Bm. Subsequent assays did not identify a role for PTX3 in potentiating complement-mediated lysis of Bt or in enhancing phagocytosis or replication of Bt in human monocytes. CONCLUSION: We report on the novel binding of PTX3 to Bt and Bp, with lack of interaction with Bm, suggesting that a possible evasive mechanism by Bm warrants further exploration. We determined that (1) PTX3 may not play a role in activating the lytic pathway of complement in different bacterial species and that (2) the opsonophagocytic properties of PTX3 should be investigated in different primary or immortalized cell lines representing host phagocytes, given lack of binding of PTX3 to MM6 monocytes.


Assuntos
Burkholderia/imunologia , Proteína C-Reativa/metabolismo , Perfilação da Expressão Gênica , Imunidade Inata , Monócitos/imunologia , Monócitos/microbiologia , Componente Amiloide P Sérico/metabolismo , Anticorpos/metabolismo , Burkholderia/crescimento & desenvolvimento , Linhagem Celular , Proteínas do Sistema Complemento/metabolismo , Humanos , Imunidade Inata/genética , Viabilidade Microbiana , Proteínas Opsonizantes/metabolismo , Fagocitose , Ligação Proteica , Regulação para Cima/genética
13.
PLoS One ; 14(7): e0219199, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31295286

RESUMO

Bacterial Panicle Blight (BPB), caused by Burkholderia glumae, is a bacterial disease in rice (Oryza sativa) that reduces rice yield and quality for producers and consequently creates higher market prices for consumers. BPB is caused by the simultaneous occurrence of high daily minimum temperatures (~22°C) and relative humidity (~77%), which may increase under the current scenario of global warming. This study hypothesized that the economic damage from warming may cause an increase in economic losses, though at a decreasing rate per degree. Thus, this study estimates the yield losses associated with BPB occurrences at the county level in the Mid-South United States (US) for annual rice production in 2003-2013 and under +1-3°C warming scenarios using daily weather information with appropriate thresholds. From the estimated losses, the total production potential of a BPB-resistant rice was quantified using a spatial equilibrium trade model to further estimate market welfare changes with the counterfactual scenario that all US county-level rice production were BPB resistant. Results from the study indicate that the alleviation of BPB would represent a $69 million USD increase in consumer surplus in the US and a concomitant increase in rice production that would feed an additional 1.46 million people annually assuming a global average consumption of 54 Kg per person. Under the 1°C warming scenario, BPB occurrences and production losses would cause price increases for rice and subsequently result in a $112 million USD annual decrease in consumer surplus in the US and a loss of production equivalent to feeding 2.17 million people. Under a 3°C warming scenario, production losses due to BPB cause an annual reduction of $204 million USD in consumer surplus in the US, and a loss in production sufficient to feed 3.98 million people a year. As global warming intensifies, BPB could become a more common and formidable rice disease to combat, and breeding for BPB resistance would be the primary line-of-defense as currently no effective chemical options are available. The results of this study inform agriculturalists, policymakers, and economists about the value of BPB-resistance in the international rice market and also help support efforts to focus future breeding toward climate change impact resilience.


Assuntos
Burkholderia/patogenicidade , Aquecimento Global , Oryza/microbiologia , Doenças das Plantas/microbiologia , Cruzamento , Burkholderia/crescimento & desenvolvimento , Mudança Climática , Temperatura Alta , Oryza/crescimento & desenvolvimento , Estados Unidos
14.
J Appl Microbiol ; 127(5): 1521-1531, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31359569

RESUMO

AIMS: The recently sequenced Burkholderia mesoacidophila (previously Pseudomonas mesoacidophila) is a soil organism and as such will be exposed to multiple concurrent stresses in the natural environment. The combinatorial stress potentially experienced by microbes in soil has not been investigated in detail. METHODS AND RESULTS: The impact of combinatorial stress on growth was investigated using tripartite variables-temperature, nutritional environment and either osmotic or oxidative stress. In nutritionally stringent conditions, increasing diamide concentration had no effect on growth while increasing H2 O2 concentration reduced both growth rate and maximum density. Metabolomic studies with oxidative stress revealed specific (unidentified) metabolites associated with diamide tolerance, and an overwhelming dominance of sugars and sugar alcohols in nutritionally stringent conditions with and without the additional stressor. CONCLUSIONS: Combinatorial stress tolerance is complex. Temperature had the greatest independent impact on growth, while the impact of the nutritional environment played a key role in oxidative stress tolerance. In nutritionally stringent conditions, the metabolome suggested different tolerance mechanisms for different types of oxidative stress. SIGNIFICANCE AND IMPACT OF THE STUDY: This work demonstrates the specificity of the stress response, and the need to consider multiple environmental factors to meaningfully investigate tolerance. Both environmental and clinical settings subject bacteria to combinatorial stress and this should be considered in the design of further studies.


Assuntos
Burkholderia/crescimento & desenvolvimento , Burkholderia/metabolismo , Burkholderia/isolamento & purificação , Complexo Burkholderia cepacia , Meio Ambiente , Peróxido de Hidrogênio/metabolismo , Metaboloma , Metabolômica , Estresse Oxidativo , Microbiologia do Solo , Estresse Fisiológico , Temperatura
15.
FEBS J ; 286(20): 4036-4059, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31177633

RESUMO

The 3-(3-hydroxyalkanoyloxy)alkanoate (HAA) synthase RhlA is an essential enzyme involved in the biosynthesis of HAAs in Pseudomonas and Burkholderia species. RhlA modulates the aliphatic chain length in rhamnolipids, conferring distinct physicochemical properties to these biosurfactants exhibiting promising industrial and pharmaceutical value. A detailed molecular understanding of substrate specificity and catalytic performance in RhlA could offer protein engineering tools to develop designer variants involved in the synthesis of novel rhamnolipid mixtures for tailored eco-friendly products. However, current directed evolution progress remains limited due to the absence of high-throughput screening methodologies and lack of an experimentally resolved RhlA structure. In the present work, we used comparative modeling and chimeric-based approaches to perform a comprehensive semi-rational mutagenesis of RhlA from Pseudomonas aeruginosa. Our extensive RhlA mutational variants and chimeric hybrids between the Pseudomonas and Burkholderia homologs illustrate selective modulation of rhamnolipid alkyl chain length in both Pseudomonas aeruginosa and Burkholderia glumae. Our results also demonstrate the implication of a putative cap-domain motif that covers the catalytic site of the enzyme and provides substrate specificity to RhlA. This semi-rational mutant-based survey reveals promising 'hot-spots' for the modulation of RL congener patterns and potential control of enzyme activity, in addition to uncovering residue positions that modulate substrate selectivity between the Pseudomonas and Burkholderia functional homologs. DATABASE: Model data are available in the PMDB database under the accession number PM0081867.


Assuntos
Aminoácidos/química , Proteínas de Bactérias/metabolismo , Burkholderia/metabolismo , Evolução Molecular , Glicolipídeos/metabolismo , Mutação , Pseudomonas aeruginosa/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Aminoácidos/genética , Aminoácidos/metabolismo , Proteínas de Bactérias/genética , Burkholderia/genética , Burkholderia/crescimento & desenvolvimento , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Homologia de Sequência , Especificidade por Substrato
16.
Ars pharm ; 60(2): 93-100, abr.-jun. 2019. tab, graf
Artigo em Espanhol | IBECS | ID: ibc-186012

RESUMO

Objetivo: Dentro del complejo Burkholderia cepacia (cBc), el Taxón K, integrado por B. contaminans y B. lata, es frecuentemente aislado de muestras clínicas e industriales. Los métodos para aislar bacterias del cBc están consensuados en el ámbito clínico pero no para muestras de origen industrial y tampoco hay información documentada sobre la capacidad de recuperación de los medios de cultivo frente a especies del Taxón K. Dada la importancia del uso correcto de medios selectivos para la recuperación de microorganismos, el objetivo de este trabajo fue comparar el agar Trypan Blue-Tetraciclina (TB-T), el agar selectivo para Burkholderia cepacia (BCSA) y el BCSA comercial modificado (BCSAm) en el aislamiento de cepas del Taxón K. Métodos: empleamos el método ecométrico utilizado en el control de calidad de medios de cultivo. Analizamos criterios de productividad, selectividad y especificidad frente a cepas de referencia del cBc, aislamientos clínicos e industriales del Taxón K y cepas de otras especies. Resultados: no se observaron diferencias de productividad y selectividad entre los medios BCSA. Con ambos se obtuvo adecuada productividad y selectividad parcial por permitir el crecimiento de especies taxonómicamente cercanas al cBc. El medio TB-T presentó menor productividad (especialmente con B. contaminans) y menor selectividad. Por otra parte, no se observaron diferencias atribuibles al origen clínico o industrial de los aislamientos. Conclusión: los resultados permiten sugerir al BCSA o BCSAm como los medios selectivos de elección para el aislamiento del Taxón K, tanto en muestras de origen clínico como industrial


Objective: Within the Burkholderia cepacia complex (Bcc), the so called Taxon K, integrated by B. contaminans and B. lata, is frequently isolated from clinical and industrial samples. There is consensus in the use of culture media for the isolation of Bcc from clinical origin but not for industrial samples. By the other side there is no documented information about the performance of culture media recovering Taxon K species. Regarding the importance of the proper use of selective media in the recovery of microorganisms from clinical and industrial samples, the objective of this work was to compare Trypan Blue-Tetracycline agar (TB-T), Burkholderia cepacia selective agar (BCSA) and commercial modified Burkholderia cepacia selective agar (BCSAm) in the isolation of Taxon K strains. Methods: we employed the ecometric method for culture media quality control. Productivity, selectivity and specificity criteria were analyzed by testing Bcc reference strains, clinical and industrial Taxon K isolates and non Bcc strains. Results: no differences in terms of productivity and selectivity were observed between BCSA and BCSAm. Both medium, displayed adequate productivity and partial selectivity since the growth of non Bcc isolates was observed. Productivity (especially with B. contaminans isolates) and selectivity in TB-T was lower than BCSA medium. No differences were observed related to the clinical or industrial origin of isolates. Conclusion: results allow us to suggest BCSA or BCSAm selective media for the isolation of Taxon K strains in clinical or industrial samples


Assuntos
Humanos , Meios de Cultura , Burkholderia cepacia/isolamento & purificação , Ágar/classificação , Ágar/farmacologia , Meios de Cultura/normas , Burkholderia/classificação , Burkholderia/crescimento & desenvolvimento , Controle de Qualidade
17.
BMC Microbiol ; 19(1): 97, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092204

RESUMO

BACKGROUND: Burkholderia pseudomallei is a human pathogen causing severe infections in tropical and subtropical regions and is classified as a bio-threat agent. B. thailandensis strain E264 has been proposed as less pathogenic surrogate for understanding the interactions of B. pseudomallei with host cells. RESULTS: We show that, unlike B. thailandensis strain E264, the pattern of growth of B. thailandensis strain E555 in macrophages is similar to that of B. pseudomallei. We have genome sequenced B. thailandensis strain E555 and using the annotated sequence identified genes and proteins up-regulated during infection. Changes in gene expression identified more of the known B. pseudomallei virulence factors than changes in protein levels and used together we identified 16% of the currently known B. pseudomallei virulence factors. These findings demonstrate the utility of B. thailandensis strain E555 to study virulence of B. pseudomallei. CONCLUSIONS: A weakness of studies using B. thailandensis as a surrogate for B. pseudomallei is that the strains used replicate at a slower rate in infected cells. We show that the pattern of growth of B. thailandensis strain E555 in macrophages closely mirrors that of B. pseudomallei. Using this infection model we have shown that virulence factors of B. pseudomallei can be identified as genes or proteins whose expression is elevated on the infection of macrophages. This finding confirms the utility of B. thailandensis strain E555 as a surrogate for B. pseudomallei and this strain should be used for future studies on virulence mechanisms.


Assuntos
Burkholderia pseudomallei/crescimento & desenvolvimento , Burkholderia/crescimento & desenvolvimento , Macrófagos/microbiologia , Viabilidade Microbiana , Animais , Burkholderia/classificação , Burkholderia pseudomallei/patogenicidade , Linhagem Celular , Perfilação da Expressão Gênica , Genoma Bacteriano , Interações Hospedeiro-Patógeno , Camundongos , Virulência , Fatores de Virulência/genética , Sequenciamento Completo do Genoma
18.
Sci Rep ; 9(1): 5477, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940828

RESUMO

Involvement of biofilm formation process during phosphate (P) solubilization by rhizobacterial strains is not clearly understood. Scanning electron microscopic observations revealed prominent biofilm development on tricalcium phosphate as well as on four different rock phosphate granules by two P solubilizing rhizobacteria viz. Burkholderia tropica P4 and B. unamae P9. Variation in the biofilm developments were also observed depending on the total P content of insoluble P used. Biofilm quantification suggested a strong correlation between the amounts of available P and degrees of biofilm formation. Lower concentrations of soluble P directed both the organisms towards compact biofilm development with maximum substratum coverage. Variation in the production of extracellular polymeric substances (EPS) in the similar pattern also suggested its close relationship with biofilm formation by the isolates. Presence of BraI/R quorum sensing (QS) system in both the organisms were detected by PCR amplification and sequencing of two QS associated genes viz. braR and rsaL, which are probably responsible for biofilm formation during P solubilization process. Overall observations help to hypothesize for the first time that, biofilm on insoluble P granules creates a close environment for better functioning of organic acids secreted by Burkholderia strains for maximum P solubilization during P deficient conditions.


Assuntos
Biofilmes/crescimento & desenvolvimento , Burkholderia/crescimento & desenvolvimento , Fosfatos/deficiência , Proteínas de Bactérias/genética , Burkholderia/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Regulação Bacteriana da Expressão Gênica , Microscopia de Força Atômica , Percepção de Quorum , Análise de Sequência de DNA
19.
Sci Rep ; 9(1): 5486, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940839

RESUMO

Burkholderia seminalis strain TC3.4.2R3 is an endophytic bacterium isolated from sugarcane roots that produces antimicrobial compounds, facilitating its ability to act as a biocontrol agent against phytopathogenic bacteria. In this study, we investigated the thermoregulation of B. seminalis TC3.4.2R3 at 28 °C (environmental stimulus) and 37 °C (host-associated stimulus) at the transcriptional and phenotypic levels. The production of biofilms and exopolysaccharides such as capsular polysaccharides and the biocontrol of phytopathogenic fungi were enhanced at 28 °C. At 37 °C, several metabolic pathways were activated, particularly those implicated in energy production, stress responses and the biosynthesis of transporters. Motility, growth and virulence in the Galleria mellonella larvae infection model were more significant at 37 °C. Our data suggest that the regulation of capsule expression could be important in virulence against G. mellonella larvae at 37 °C. In contrast, B. seminalis TC3.4.2R3 failed to cause death in infected BALB/c mice, even at an infective dose of 107 CFU.mL-1. We conclude that temperature drives the regulation of gene expression in B. seminalis during its interactions with the environment.


Assuntos
Burkholderia/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Mariposas/efeitos dos fármacos , Polissacarídeos Bacterianos/genética , Adaptação Fisiológica , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Regulação da Temperatura Corporal , Burkholderia/genética , Burkholderia/metabolismo , Regulação Bacteriana da Expressão Gênica , Larva/efeitos dos fármacos , Larva/microbiologia , Camundongos , Mariposas/crescimento & desenvolvimento , Mariposas/microbiologia , Fenótipo , Polissacarídeos Bacterianos/metabolismo , Polissacarídeos Bacterianos/farmacologia , Temperatura
20.
Pathog Dis ; 77(2)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30759239

RESUMO

Melioidosis associated with opportunistic pathogen Burkholderia pseudomallei imparts a huge medical burden in Southeast Asia and Australia. At present there is no available human vaccine that protects against B. pseudomallei infection and antibiotic treatments are limited particularly for drug-resistant strains and bacteria in biofilm forms. Biofilm forming bacteria exhibit phenotypic features drastically different to their planktonic states, often exhibiting a diminished response to antimicrobial therapies. Our earlier work on global profiling of bacterial biofilms using transcriptomics and proteomics revealed transcript-decoupled protein abundance in bacterial biofilms. Here we employed reverse phase liquid chromatography tandem mass spectrometry (LC-MS/MS) to deduce temporal proteomic differences in planktonic and biofilm forms of Burkholderia thailandensis, which is weakly surrogate model of pathogenic B. pseudomallei as sharing a key element in genomic similarity. The proteomic analysis of B. thailandensis in biofilm versus planktonic states revealed that proteome changes support biofilm survival through decreased abundance of metabolic proteins while increased abundance of stress-related proteins. Interestingly, the protein abundance including for the transcription protein TEX, outer periplasmic TolB protein, and the exopolyphosphatase reveal adaption in bacterial biofilms that facilitate antibiotic tolerance through a non-specific mechanism. The present proteomics study of B. thailandensis biofilms provides a global snapshot of protein abundance differences and antimicrobial sensitivities in planktonic and sessile bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes , Burkholderia/metabolismo , Proteoma , Proteômica , Anti-Infecciosos , Burkholderia/efeitos dos fármacos , Burkholderia/crescimento & desenvolvimento , Cromatografia Líquida , Biologia Computacional/métodos , Testes de Sensibilidade Microbiana , Proteômica/métodos , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...