Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.283
Filtrar
1.
Drug Dev Res ; 85(4): e22214, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38816986

RESUMO

In this study, the synthesis of N-(5,6-methylenedioxybenzothiazole-2-yl)-2-[(substituted)thio/piperazine]acetamide/propanamide derivatives (3a-3k) and to investigate their acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and ß-secretase 1 (BACE-1) inhibition activity were aimed. Mass, 1H NMR, and 13C NMR spectra were utilized to determine the structure of the synthesized compounds. Compounds 3b, 3c, 3f, and 3j showed AChE inhibitory activity which compound 3c (IC50 = 0.030 ± 0.001 µM) showed AChE inhibitory activity as high as the reference drug donepezil (IC50 = 0.0201 ± 0.0010 µM). Conversely, none of the compounds showed BChE activity. Compounds 3c and 3j showed the highest BACE-1 inhibitory activity and IC50 value was found as 0.119 ± 0.004 µM for compound 3j whereas IC50 value was 0.110 ± 0.005 µM for donepezil, which is one of the reference substance. Molecular docking studies have been carried out using the data retrieved from the server of the Protein Data Bank (PDBID: 4EY7 and 2ZJM). Using in silico approach behavior active compounds (3c and 3j) and their binding modes clarified.


Assuntos
Acetilcolinesterase , Secretases da Proteína Precursora do Amiloide , Butirilcolinesterase , Inibidores da Colinesterase , Simulação de Acoplamento Molecular , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Humanos , Relação Estrutura-Atividade , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Acetamidas/síntese química , Acetamidas/farmacologia , Acetamidas/química , Piperazinas/farmacologia , Piperazinas/química , Piperazinas/síntese química
2.
Molecules ; 29(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38731631

RESUMO

The participation of butyrylcholinesterase (BChE) in the degradation of atropine has been recurrently addressed for more than 70 years. However, no conclusive answer has been provided for the human enzyme so far. In the present work, a steady-state kinetic analysis performed by spectrophotometry showed that highly purified human plasma BChE tetramer slowly hydrolyzes atropine at pH 7.0 and 25 °C. The affinity of atropine for the enzyme is weak, and the observed kinetic rates versus the atropine concentration was of the first order: the maximum atropine concentration in essays was much less than Km. Thus, the bimolecular rate constant was found to be kcat/Km = 7.7 × 104 M-1 min-1. Rough estimates of catalytic parameters provided slow kcat < 40 min-1 and high Km = 0.3-3.3 mM. Then, using a specific organophosphoryl agent, echothiophate, the time-dependent irreversible inhibition profiles of BChE for hydrolysis of atropine and the standard substrate butyrylthiocholine (BTC) were investigated. This established that both substrates are hydrolyzed at the same site, i.e., S198, as for all substrates of this enzyme. Lastly, molecular docking provided evidence that both atropine isomers bind to the active center of BChE. However, free energy perturbations yielded by the Bennett Acceptance Ratio method suggest that the L-atropine isomer is the most reactive enantiomer. In conclusion, the results provided evidence that plasma BChE slowly hydrolyzes atropine but should have no significant role in its metabolism under current conditions of medical use and even under administration of the highest possible doses of this antimuscarinic drug.


Assuntos
Atropina , Butirilcolinesterase , Simulação de Acoplamento Molecular , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Butirilcolinesterase/sangue , Atropina/química , Atropina/metabolismo , Humanos , Cinética , Hidrólise , Modelos Moleculares
3.
Sci Rep ; 14(1): 11266, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760454

RESUMO

Horse welfare is the product of multiple factors, including behavioral and physiological adjustments to cope with stressful situation regarding environment and housing condition. Collectively, it is supposed that a horse kept in the wild has a lower level of stress than other housing system, and the aim of the present study was to investigate the level of stress in domestic horses reared in the wild and then moved to human controlled housing, through saliva analysis. Twelve clinically healthy Catria (Italian local breed) mares, usually reared in the wild, were moved into collective paddocks for a folkloric event. Saliva samples were obtained before and after the change of housing condition to evaluate stress biomarkers including salivary cortisol, salivary alpha-amylase, and butyrylcholinesterase (BChol). The mares were also scored using the Welfare Aggregation and Guidance (WAG) Tool to highlight the presence of abnormal behaviors. Despite the absence of differences in behavioral scores between wild and paddocks, salivary cortisol and BChol were found to be higher in the wild and lower when mares were moved to paddocks. The highest concentrations in stress biomarkers like salivary cortisol and BChol in the wild was unexpected, but the need for managing hierarchical relationships, and the exposure to feral animals, predators, and weather changes, might explain these findings. The overall results of the present study may provide further knowledge toward stress response in domesticated horses living in the wild moved to human controlled housing system.


Assuntos
Hidrocortisona , Saliva , Animais , Cavalos , Saliva/metabolismo , Saliva/química , Hidrocortisona/metabolismo , Hidrocortisona/análise , Feminino , Animais Selvagens/fisiologia , Biomarcadores/metabolismo , Butirilcolinesterase/metabolismo , Estresse Psicológico/metabolismo , Estresse Fisiológico , Bem-Estar do Animal , Abrigo para Animais , Comportamento Animal/fisiologia , alfa-Amilases/metabolismo , Animais Domésticos
4.
Biomolecules ; 14(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38785995

RESUMO

Olesoxime, a cholesterol derivative with an oxime group, possesses the ability to cross the blood-brain barrier, and has demonstrated excellent safety and tolerability properties in clinical research. These characteristics indicate it may serve as a centrally active ligand of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), whose disruption of activity with organophosphate compounds (OP) leads to uncontrolled excitation and potentially life-threatening symptoms. To evaluate olesoxime as a binding ligand and reactivator of human AChE and BChE, we conducted in vitro kinetic studies with the active metabolite of insecticide parathion, paraoxon, and the warfare nerve agents sarin, cyclosarin, tabun, and VX. Our results showed that both enzymes possessed a binding affinity for olesoxime in the mid-micromolar range, higher than the antidotes in use (i.e., 2-PAM, HI-6, etc.). While olesoxime showed a weak ability to reactivate AChE, cyclosarin-inhibited BChE was reactivated with an overall reactivation rate constant comparable to that of standard oxime HI-6. Moreover, in combination with the oxime 2-PAM, the reactivation maximum increased by 10-30% for cyclosarin- and sarin-inhibited BChE. Molecular modeling revealed productive interactions between olesoxime and BChE, highlighting olesoxime as a potentially BChE-targeted therapy. Moreover, it might be added to OP poisoning treatment to increase the efficacy of BChE reactivation, and its cholesterol scaffold could provide a basis for the development of novel oxime antidotes.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Humanos , Butirilcolinesterase/metabolismo , Butirilcolinesterase/química , Acetilcolinesterase/metabolismo , Acetilcolinesterase/química , Ligantes , Oximas/química , Oximas/farmacologia , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Colestenonas/farmacologia , Colestenonas/química , Cinética , Sarina/química , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/antagonistas & inibidores , Antídotos/farmacologia , Antídotos/química , Colesterol/metabolismo , Colesterol/química , Compostos Organofosforados
5.
Phytochemistry ; 223: 114114, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38697240

RESUMO

Huperzia serrata, belonging to the Lycopodiaceae family, has been traditionally utilized for the management of treating rheumatic numbness, arthritic pain, dysmenorrhea, and contusions. This plant is a rich source of lycopodium alkaloids, some of which have demonstrated notable cholinesterase inhibitory activity. The objective of this study was to identify lycopodium alkaloids with cholinesterase inhibitory properties from H. serrata. The structures of these alkaloids were elucidated by HRESIMS, NMR (including a 1H-15N HMBC experiment), ECD methods and single-crystal X-ray diffraction. The inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) were assessed using a modified Ellman's method. Consequently, sixteen lycopodium alkaloids (1-16), including ten previously undescribed ones named huperradines A-G and huperradines I-K (1-7 and 9-11), along with one previously undescribed naturally occurring compound, huperradine H (8), were isolated from H. serrata. Among these, compounds 7 and 1 exhibited potent and moderate AChE inhibition, with IC50 values of 0.876 ± 0.039 µM and 13.125 ± 0.521 µM, respectively. Our results suggest that huperradine G (7) may be a promising lead compound for the development of new AChE inhibitors for Alzheimer's disease.


Assuntos
Acetilcolinesterase , Alcaloides , Butirilcolinesterase , Inibidores da Colinesterase , Huperzia , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/isolamento & purificação , Alcaloides/química , Alcaloides/farmacologia , Alcaloides/isolamento & purificação , Huperzia/química , Acetilcolinesterase/metabolismo , Acetilcolinesterase/efeitos dos fármacos , Butirilcolinesterase/metabolismo , Estrutura Molecular , Lycopodium/química , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga
6.
Eur J Med Chem ; 271: 116450, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38701714

RESUMO

The complexity and multifaceted nature of Alzheimer's disease (AD) have driven us to further explore quinazoline scaffolds as multi-targeting agents for AD treatment. The lead optimization strategy was utilized in designing of new series of derivatives (AK-1 to AK-14) followed by synthesis, characterization, and pharmacological evaluation against human cholinesterase's (hChE) and ß-secretase (hBACE-1) enzymes. Amongst them, compounds AK-1, AK-2, and AK-3 showed good and significant inhibitory activity against both hAChE and hBACE-1 enzymes with favorable permeation across the blood-brain barrier. The most active compound AK-2 revealed significant propidium iodide (PI) displacement from the AChE-PAS region and was non-neurotoxic against SH-SY5Y cell lines. The lead molecule (AK-2) also showed Aß aggregation inhibition in a self- and AChE-induced Aß aggregation, Thioflavin-T assay. Further, compound AK-2 significantly ameliorated Aß-induced cognitive deficits in the Aß-induced Morris water maze rat model and demonstrated a significant rescue in eye phenotype in the Aꞵ-phenotypic drosophila model of AD. Ex-vivo immunohistochemistry (IHC) analysis on hippocampal rat brains showed reduced Aß and BACE-1 protein levels. Compound AK-2 suggested good oral absorption via pharmacokinetic studies and displayed a good and stable ligand-protein interaction in in-silico molecular modeling analysis. Thus, the compound AK-2 can be regarded as a lead molecule and should be investigated further for the treatment of AD.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Peptídeos beta-Amiloides , Inibidores da Colinesterase , Desenho de Fármacos , Quinazolinas , Quinazolinas/farmacologia , Quinazolinas/síntese química , Quinazolinas/química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Humanos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Acetilcolinesterase/metabolismo , Ratos , Relação Estrutura-Atividade , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Estrutura Molecular , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Relação Dose-Resposta a Droga , Butirilcolinesterase/metabolismo , Masculino
7.
Molecules ; 29(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38792196

RESUMO

The search for selective anticholinergic agents stems from varying cholinesterase levels as Alzheimer's Disease progresses from the mid to late stage. In this computational study, we probed the selectivity of FDA-approved and metabolite compounds against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with molecular-docking-based virtual screening. The results were evaluated using locally developed codes for the statistical methods. The docking-predicted selectivity for AChE and BChE was predominantly the consequence of differences in the volume of the active site and the narrower entrance to the bottom of the active site gorge of AChE.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Domínio Catalítico , Inibidores da Colinesterase , Simulação de Acoplamento Molecular , Acetilcolinesterase/metabolismo , Acetilcolinesterase/química , Butirilcolinesterase/metabolismo , Butirilcolinesterase/química , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , United States Food and Drug Administration , Estados Unidos
8.
Molecules ; 29(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38792217

RESUMO

The ß-adrenergic drug Mirabegron, a drug initially used for the treatment of an overactive bladder, has new potential indications and is hydrolyzed by butyrylcholinesterase (BChE). This compound is one of the only arylacylamide substrates to be catabolized by BChE. A steady-state kinetic analysis at 25 °C and pH 7.0 showed that the enzyme behavior is Michaelian with this substrate and displays a long pre-steady-state phase characterized by a burst. The induction time, τ, increased with substrate concentration (τ ≈ 18 min at maximum velocity). The kinetic behavior was interpreted in terms of hysteretic behavior, resulting from a slow equilibrium between two enzyme active forms, E and E'. The pre-steady-state phase with the highest activity corresponds to action of the E form, and the steady state corresponds to action of the E' form. The catalytic parameters were determined as kcat = 7.3 min-1 and Km = 23.5 µM for the initial (burst) form E, and kcat = 1.6 min-1 and Km = 3.9 µM for the final form E'. Thus, the higher affinity of E' for Mirabegron triggers the slow enzyme state equilibrium toward a slow steady state. Despite the complexity of the reaction mechanism of Mirabegron with BChE, slow BChE-catalyzed degradation of Mirabegron in blood should have no impact on the pharmacological activities of this drug.


Assuntos
Acetanilidas , Butirilcolinesterase , Tiazóis , Butirilcolinesterase/metabolismo , Butirilcolinesterase/química , Acetanilidas/química , Tiazóis/química , Cinética , Hidrólise , Humanos , Catálise
9.
SAR QSAR Environ Res ; 35(5): 391-410, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38769919

RESUMO

Alpinia officinarum is a commonly used spice with proven folk uses in various traditional medicines. In the current study, six compounds were isolated from its rhizomes, compounds 1-3 were identified as diarylheptanoids, while 4-6 were identified as flavonoids and phenolic acids. The isolated compounds were subjected to virtual screening against α-glucosidase, butyrylcholinesterase (BChE), and acetylcholinesterase (AChE) enzymes to evaluate their potential antidiabetic and anti-Alzheimer's activities. Molecular docking and dynamics studies revealed that 3 exhibited a strong binding affinity to human a α- glucosidase crystal structure compared to acarbose. Furthermore, 2 and 5 demonstrated high potency against AChE. The virtual screening results were further supported by in vitro assays, which assessed the compounds' effects on α-glucosidase, cholinesterases, and their antioxidant activities. 5-Hydroxy-7-(4-hydroxy-3-methoxyphenyl)-1-phenylheptan-3-one (2) showed potent antioxidant effect in both ABTs and ORAC assays, while p-hydroxy cinnamic acid (6) was the most potent in the ORAC assay. In contrary, kaempferide (4) and galangin (5) showed the most potent effect in metal chelation assay. 5-Hydroxy-1,7-diphenylhepta-4,6-dien-3-one (3) and 6 revealed the most potent effect as α-glucosidase inhibitors where compound 3 showed more potent effect compared to acarbose. Galangin (5) revealed a higher selectivity to BChE, while 2 showed the most potent activity to (AChE).


Assuntos
Acetilcolinesterase , Alpinia , Antioxidantes , Butirilcolinesterase , Inibidores da Colinesterase , Inibidores de Glicosídeo Hidrolases , Simulação de Acoplamento Molecular , Rizoma , Alpinia/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/isolamento & purificação , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Rizoma/química , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , alfa-Glucosidases/metabolismo , Relação Quantitativa Estrutura-Atividade , Flavonoides/química , Flavonoides/farmacologia , Flavonoides/isolamento & purificação , Hidroxibenzoatos/farmacologia , Hidroxibenzoatos/química , Hidroxibenzoatos/isolamento & purificação , Humanos
10.
Front Biosci (Landmark Ed) ; 29(5): 183, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38812295

RESUMO

BACKGROUND: The present study aimed to investigate the in-vitro anti-diabetic, anti-cholinesterase, and anti-inflammatory potential of extracts from different parts of Ficus benghalensis, including leaves, stem, and roots, as well as isolated column fractions (F-B-1 C, F-B-2 C, F-B-3 C, and F-B-4 C). METHODS: The extracts and subsequent fractions were evaluated for their inhibitory activity against key enzymes involved in diabetes [α-glucosidase and α-amylase], neurodegenerative diseases [acetylcholinesterase and butyrylcholinesterase], and inflammation (cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX)). RESULTS: The results showed that F. benghalensis leaf extract exhibited the highest α-glucosidase inhibitory activity (73.84%) and α-amylase inhibitory activity (76.29%) at 1000 µg/mL. The stem extract (65.50%) and F-B-2 C fraction (69.67%) also demonstrated significant α-glucosidase inhibitory activity. In terms of anti-cholinesterase activity, the extracts of roots, leaves, and stem showed promising inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), with half maximal inhibitory concentration (IC50) values ranging from 50.50 to 474.83 µg/mL. The derived fractions (F-B-1 C, F-B-2 C, F-B-3 C, and F-B-4 C) also exhibited notable inhibition of AChE and BChE, with IC50 values from 91.85 to 337.94 µg/mL. Moreover, the F-B-3 C fraction demonstrated the highest COX-2 inhibitory potential (85.72%), followed by F-B-1 C (83.13%), the stem extract (80.85%), and the leaves extract (79.00%). The F-B-1 C fraction showed the highest 5-LOX inhibitory activity (87.63%), while the root extract exhibited the lowest inhibition (73.39%). CONCLUSIONS: The results demonstrated promising bioactivity, suggesting the potential of F. benghalensis as a source of natural compounds with therapeutic applications. Further studies are required to identify and isolate the active components responsible for these effects and to evaluate their in-vivo efficacy and safety.


Assuntos
Anti-Inflamatórios , Inibidores da Colinesterase , Ficus , Hipoglicemiantes , Extratos Vegetais , Ficus/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/isolamento & purificação , Inibidores da Colinesterase/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Folhas de Planta/química , Butirilcolinesterase/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , alfa-Amilases/antagonistas & inibidores , Inibidores de Lipoxigenase/farmacologia , Inibidores de Lipoxigenase/isolamento & purificação , Acetilcolinesterase/metabolismo , Araquidonato 5-Lipoxigenase/metabolismo , Raízes de Plantas/química
11.
Eur J Med Chem ; 272: 116463, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704944

RESUMO

Butyrylcholinesterase (BChE) has attracted wide interest as a promising target in Alzheimer's disease (AD) investigation. BChE is considered to play a compensable role of hydrolyzing acetylcholine (ACh), and its positive correlation with ß-amyloid (Aß) deposition also promotes disease progression. Herein, we uncovered a selective potent BChE inhibitor S21-1011 (eqBChE IC50 = 0.059 ± 0.006 µM, hBChE IC50 = 0.162 ± 0.069 µM), which presented satisfactory druggability and therapeutic efficacy in AD models. In pharmacokinetics (PK) studies, S21-1011 showed excellent blood-brain barrier (BBB) permeability, metabolism stability and high oral-bioavailability. In pharmacodynamic (PD) studies, it protected neural cells from toxicity and inflammation stimulation in vitro. Besides, it also exerted anti-inflammatory effect and alleviated cognitive impairment in mice models induced by lipopolysaccharides (LPS) and Aß. Generally, this compound has been confirmed to function as a neuroprotector and cognition improver in various AD pathology-like models. Therefore, S21-1011, a novel potent BChE inhibitor, could be considered as a potential anti-AD candidate worthy of more profound investigation.


Assuntos
Doença de Alzheimer , Butirilcolinesterase , Inibidores da Colinesterase , Quinolinas , Butirilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/síntese química , Camundongos , Humanos , Relação Estrutura-Atividade , Quinolinas/química , Quinolinas/farmacologia , Quinolinas/síntese química , Descoberta de Drogas , Estrutura Molecular , Masculino , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Relação Dose-Resposta a Droga , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/síntese química , Piperazinas/farmacologia , Piperazinas/química , Piperazinas/síntese química , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/síntese química , Inflamação/tratamento farmacológico , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos
12.
Molecules ; 29(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611753

RESUMO

The fruits of Cornus officinalis are used not only as a popular health food to tonify the liver and kidney, but also as staple materials to treat dementia and other age-related diseases. The pharmacological function of C. officinalis fruits with or without seeds is controversial for treating some symptoms in a few herbal prescriptions. However, the related metabolite and pharmacological information between its pericarps and seeds are largely deficient. Here, comparative metabolomics analysis between C. officinalis pericarps and seeds were conducted using an ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry, and therapeutic effects were also evaluated using several in vitro bioactivity arrays (antioxidant activity, α-glucosidase and cholinesterase inhibitory activities, and cell inhibitory properties). A total of 499 secondary metabolites were identified. Thereinto, 77 metabolites were determined as key differential metabolites between C. officinalis pericarps and seeds, and the flavonoid biosynthesis pathway was identified as the most significantly different pathway. Further, 47 metabolites were determined as potential bioactive constituents. In summary, C. officinalis seeds, which demonstrated higher contents in total phenolics, stronger in vitro antioxidant activities, better α-glucosidase and butyrylcholinesterase inhibitory activities, and stronger anticancer activities, exhibited considerable potential for food and health fields. This work provided insight into the metabolites and bioactivities of C. officinalis pericarps and seeds, contributing to their precise development and utilization.


Assuntos
Cornus , Frutas , Butirilcolinesterase , alfa-Glucosidases , Sementes , Compostos Fitoquímicos/farmacologia
13.
Eur J Med Chem ; 270: 116353, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38579622

RESUMO

Due to the putative role of butyrylcholinesterase (BChE) in regulation of acetylcholine levels and functions in the late stages of the Alzheimer's disease (AD), the potential of selective inhibitors (BChEIs) has been envisaged as an alternative to administration of acetylcholinesterase inhibitors (AChEIs). Starting from our recent findings, herein the synthesis and in vitro evaluation of cholinesterase (ChE) inhibition of a novel series of some twenty 3,4,5,6-tetrahydroazepino[4,3-b]indol-1(2H)-one derivatives, bearing at the indole nitrogen diverse alkyl-bridged 4-arylalkylpiperazin-1-yl chains, are reported. The length of the spacers, as well as the type of arylalkyl group affected the enzyme inhibition potency and BChE/AChE selectivity. Two compounds, namely 14c (IC50 = 163 nM) and 14d (IC50 = 65 nM), bearing at the nitrogen atom in position 6 a n-pentyl- or n-heptyl-bridged 4-phenethylpiperazin-1-yl chains, respectively, proved to be highly potent mixed-type inhibitors of both equine and human BChE isoforms, showing more than two order magnitude of selectivity over AChE. The study of binding kinetics through surface plasmon resonance (SPR) highlighted differences in their BChE residence times (8 and 47 s for 14c and 14d, respectively). Moreover, 14c and 14d proved to hit other mechanisms known to trigger neurodegeneration underlying AD and other CNS disorders. Unlike 14c, compound 14d proved also capable of inhibiting by more than 60% the in vitro self-induced aggregation of neurotoxic amyloid-ß (Aß) peptide at 100 µM concentration. On the other hand, 14c was slightly better than 14d in counteracting, at 1 and 10 µM concentration, glutamate excitotoxicity, due to over-excitation of NMDA receptors, and hydrogen peroxide-induced oxidative stress assessed in neuroblastoma cell line SH-SY5Y. This paper is dedicated to Prof. Marcello Ferappi, former dean of the Faculty of Pharmacy of the University of Bari, in the occasion of his 90th birthday.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Animais , Cavalos , Inibidores da Colinesterase/química , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/tratamento farmacológico , Linhagem Celular Tumoral , Nitrogênio , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular
14.
Org Biomol Chem ; 22(17): 3425-3438, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38590227

RESUMO

We have applied the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction to prepare a library of ten coumarin-azasugar-benzyl conjugates and two phthalimide-azasugar-benzyl conjugates with potential anti-Alzheimer and anti-cancer properties. The compounds were evaluated as cholinesterase inhibitors, demonstrating a general preference, of up to 676-fold, for the inhibition of butyrylcholinesterase (BuChE) over acetylcholinesterase (AChE). Nine of the compounds behaved as stronger BuChE inhibitors than galantamine, one of the few drugs in clinical use against Alzheimer's disease. The most potent BuChE inhibitor (IC50 = 74 nM) was found to exhibit dual activities, as it also showed high activity (GI50 = 5.6 ± 1.1 µM) for inhibiting the growth of WiDr (colon cancer cells). In vitro studies on this dual-activity compound on Cerebellar Granule Neurons (CGNs) demonstrated that it displays no neurotoxicity.


Assuntos
Antineoplásicos , Butirilcolinesterase , Proliferação de Células , Inibidores da Colinesterase , Cumarínicos , Cumarínicos/química , Cumarínicos/farmacologia , Cumarínicos/síntese química , Butirilcolinesterase/metabolismo , Humanos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/síntese química , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Animais , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Aza/química , Compostos Aza/farmacologia , Compostos Aza/síntese química , Relação Dose-Resposta a Droga , Neurônios/efeitos dos fármacos
15.
ACS Chem Neurosci ; 15(9): 1813-1827, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38621296

RESUMO

Acetylcholinesterase (AChE) inhibition by organophosphorus (OP) compounds poses a serious health risk to humans. While many therapeutics have been tested for treatment after OP exposure, there is still a need for efficient reactivation against all kinds of OP compounds, and current oxime therapeutics have poor blood-brain barrier penetration into the central nervous system, while offering no recovery in activity from the OP-aged forms of AChE. Herein, we report a novel library of 4-amidophenol quinone methide precursors (QMP) that provide effective reactivation against multiple OP-inhibited forms of AChE in addition to resurrecting the aged form of AChE after exposure to a pesticide or some phosphoramidates. Furthermore, these QMP compounds also reactivate OP-inhibited butyrylcholinesterase (BChE) which is an in vivo, endogenous scavenger of OP compounds. The in vitro efficacies of these QMP compounds were tested for reactivation and resurrection of soluble forms of human AChE and BChE and for reactivation of cholinesterases within human blood as well as blood and brain samples from a humanized mouse model. We identify compound 10c as a lead candidate due to its broad-scope efficacy against multiple OP compounds as well as both cholinesterases. With methylphosphonates, compound 10c (250 µM, 1 h) shows >60% recovered activity from OEt-inhibited AChE in human blood as well as mouse blood and brain, thus highlighting its potential for future in vivo analysis. For 10c, the effective concentration (EC50) is less than 25 µM for reactivation of three different methylphosphonate-inhibited forms of AChE, with a maximum reactivation yield above 80%. Similarly, for OP-inhibited BChE, 10c has EC50 values that are less than 150 µM for two different methylphosphonate compounds. Furthermore, an in vitro kinetic analysis show that 10c has a 2.2- and 92.1-fold superior reactivation efficiency against OEt-inhibited and OiBu-inhibited AChE, respectively, when compared to an oxime control. In addition to 10c being a potent reactivator of AChE and BChE, we also show that 10c is capable of resurrecting (ethyl paraoxon)-aged AChE, which is another current limitation of oximes.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Inibidores da Colinesterase , Reativadores da Colinesterase , Compostos Organofosforados , Animais , Inibidores da Colinesterase/farmacologia , Humanos , Acetilcolinesterase/metabolismo , Acetilcolinesterase/efeitos dos fármacos , Camundongos , Butirilcolinesterase/metabolismo , Compostos Organofosforados/farmacologia , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Indolquinonas/farmacologia
16.
Drug Dev Res ; 85(3): e22183, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38628078

RESUMO

One of the worst long-term health issues of the past few decades is Alzheimer's disease (AD). Unfortunately, there are currently insufficient choices for treating and caring for AD, which makes it a popular subject for drug development research. Studies on the development of drugs for AD have primarily concentrated on the use of multitarget directed ligands. Following this strategy, we designed new ChE inhibitors with additional antioxidant and metal chelator effects. In this research, eight novel N'-(quinolin-4-ylmethylene)propanehydrazide derivatives were synthesized and characterized. We then evaluated the inhibition potency of all the final compounds for cholinesterase enzymes. Among them, 4e (IC50 acetylcholinesterase [AChE] = 0.69 µM and butyrylcholinesterase [BChE]= 26.00 µM) and 4h (IC50's AChE= 7.04 µM and BChE= 16.06 µM) were found to be the most potent AChE and BChE inhibitors, respectively.


Assuntos
Doença de Alzheimer , Butirilcolinesterase , Humanos , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Relação Estrutura-Atividade , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Simulação de Acoplamento Molecular
17.
AANA J ; 92(2): 139-143, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38564210

RESUMO

Administration of succinylcholine to patients with a variant in the butyrylcholinesterase (BChE) gene increases the risk of anesthesia emergence prior to recovery from neuromuscular blockade (NMB). Application of quantitative neuromuscular monitoring (NMM) can identify residual NMB. We present two patients with abnormal BChE gene variants. In the first case, quantitative monitoring was applied too late to prevent awareness, but allowed diagnosis and prevented admission to the intensive care unit. In the second case, monitoring was applied prior to NMB, which enabled early diagnosis and prevented premature awakening from anesthesia. These cases illustrate the importance of quantitative NMM, even in short cases and with short-acting depolarizing agents such as succinylcholine. The clinical implications of this report include a more consistent use of NMM to identify and manage patients with undiagnosed abnormal BChE and to prevent premature anesthesia emergence.


Assuntos
Anestesia , Butirilcolinesterase , Humanos , Butirilcolinesterase/genética , Monitoração Neuromuscular , Succinilcolina , Diagnóstico Precoce
18.
BMC Neurol ; 24(1): 116, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594621

RESUMO

BACKGROUND: The authors sought to examine the impact of the K-variant of butyrylcholinesterase (BCHE-K) carrier status on age-at-diagnosis of Alzheimer disease (AD) in APOE4 carriers. METHODS: Patients aged 50-74 years with cerebrospinal fluid (CSF) biomarker-confirmed AD, were recruited to clinical trial (NCT03186989 since June 14, 2017). Baseline demographics, disease characteristics, and biomarkers were evaluated in 45 patients according to BCHE-K and APOE4 allelic status in this post-hoc study. RESULTS: In APOE4 carriers (N = 33), the mean age-at-diagnosis of AD in BCHE-K carriers (n = 11) was 6.4 years earlier than in BCHE-K noncarriers (n = 22, P < .001, ANOVA). In APOE4 noncarriers (N = 12) there was no observed influence of BCHE-K. APOE4 carriers with BCHE-K also exhibited slightly higher amyloid and tau accumulations compared to BCHE-K noncarriers. A predominantly amyloid, limited tau, and limbic-amnestic phenotype was exemplified by APOE4 homozygotes with BCHE-K. In the overall population, multiple regression analyses demonstrated an association of amyloid accumulation with APOE4 carrier status (P < .029), larger total brain ventricle volume (P < .021), less synaptic injury (Ng, P < .001), and less tau pathophysiology (p-tau181, P < .005). In contrast, tau pathophysiology was associated with more neuroaxonal damage (NfL, P = .002), more synaptic injury (Ng, P < .001), and higher levels of glial activation (YKL-40, P = .01). CONCLUSION: These findings have implications for the genetic architecture of prognosis in early AD, not the genetics of susceptibility to AD. In patients with early AD aged less than 75 years, the mean age-at-diagnosis of AD in APOE4 carriers was reduced by over 6 years in BCHE-K carriers versus noncarriers. The functional status of glia may explain many of the effects of APOE4 and BCHE-K on the early AD phenotype. TRIAL REGISTRATION: NCT03186989 since June 14, 2017.


Assuntos
Doença de Alzheimer , Criança , Humanos , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Butirilcolinesterase/genética , Fenótipo
19.
Eur Rev Med Pharmacol Sci ; 28(6): 2522-2537, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38567612

RESUMO

OBJECTIVE: Alzheimer's disease (AD) is identified by neuropathological symptoms, and there is now no effective treatment for the condition. A lack of the brain neurotransmitter acetylcholine has been related to the etiology of Alzheimer's disease. Acetylcholinesterase is an enzyme that breaks down acetylcholine to an inactive form and causes the death of cholinergic neurons. Conventional treatments were used but had less effectiveness. Therefore, there is a crucial need to identify alternative compounds with potential anti-cholinesterase agents and minimal undesirable effects. MATERIALS AND METHODS: Fluoroquinolones and benzimidazole-benzothiazole derivatives offer antimicrobial, anti-inflammatory, anti-oxidant, anti-diabetic, and anti-Alzheimer activities. To enhance the chemical portfolio of cholinesterase inhibitors, a variety of fluoroquinolones and benzimidazole-benzothiazole compounds were evaluated against acetylcholinesterase (AChE) butyrylcholinesterase (BChE) enzymes. For this purpose, molecular docking and adsorption, distribution, metabolism, excretion, and toxicology ADMET models were used for in-silico studies for both AChE and BChE enzymes to investigate possible binding mechanisms and drug-likeness of the compounds. The inhibitory effect of docked heterocyclic compounds was also verified in vitro against AChE and BChE enzymes. Fluoroquinolones (Z, Z3, Z4, Z6, Z8, Z12, Z15, and Z9) and benzimidazole-benzothiazole compounds (TBIS-16, TBAF-1 to 9) passed through the AChE inhibition assay and their IC50 values were calculated. RESULTS: The compound 1-ethyl-6-fluoro-7-(4-(2-(4-nitrophenylamino)-2-oxoethyl)piperazin-1-yl) -4-oxo-1,4 di-hydroquinoline-3-carboxylic acid and 2-((1H-benzo[d]imidazol-2-yl)methyl)-N'-(3-bromobenzyl)-4-hydroxy-2H-thiochromene-3-carbohydrazide 1,1-dioxide (Z-9 and TBAF-6) showed the lowest IC50 values against AChE/BChE (0.37±0.02/2.93±0.03 µM and 0.638±0.001/1.31±0.01 µM, respectively) than the standard drug, donepezil (3.9±0.01/4.9±0.05 µM). During the in-vivo investigation, behavioral trials were performed to analyze the neuroprotective impact of Z-9 and TBAF-6 compounds on AD mouse models. The groups treated with Z-9 and TBAF-6 compounds had better cognitive behavior than the standard drug. CONCLUSIONS: This study found that Z-9 (Fluoroquinolones) and TBAF-6 (benzimidazole-benzothiazole) compounds improve behavioral and biochemical parameters, thus treating neurodegenerative disorders effectively.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Camundongos , Animais , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Acetilcolinesterase/metabolismo , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Butirilcolinesterase/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Acetilcolina , Simulação de Acoplamento Molecular , Benzotiazóis/uso terapêutico , Benzimidazóis/uso terapêutico , Fluoroquinolonas/uso terapêutico , Relação Estrutura-Atividade
20.
Molecules ; 29(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38611900

RESUMO

Triazoles and triazolium salts are very common subunits in the structures of various drugs. Medicaments with a characteristic 1,2,3-triazole core are also being developed to treat neurodegenerative disorders associated with cholinesterase enzyme activity. Several naphtho- and thienobenzo-triazoles from our previous research emerged as being particularly promising in that sense. For this reason, in this research, new naphtho- and thienobenzo-triazoles 23-34, as well as 1,2,3-triazolium salts 44-51, were synthesized and tested. Triazolium salts 44-46 showed excellent activity while salts 47 and 49 showed very good inhibition toward both butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) enzymes. In contrast, neutral photoproducts were shown to be selective towards BChE but with very good inhibition potential as molecules 24-27. The representative of newly prepared compounds, 45 and 50, were stable in aqueous solution and revealed intriguing fluorimetric properties, characterized by a strong Stokes shift of >160 nm. Despite their condensed polycyclic structure shaped similarly to well-known DNA-intercalator ethidium bromide, the studied compounds did not show any interaction with ds-DNA, likely due to the unfavorable steric hindrance of substituents. However, the studied dyes bind proteins, particularly showing very diverse inhibition properties toward AChE and BChE. In contrast, neutral photoproducts were shown to be selective towards a certain enzyme but with moderate inhibition potential. The molecular docking of the best-performing candidates to cholinesterases' active sites identified cation-π interactions as the most responsible for the stability of the enzyme-ligand complexes. As genotoxicity studies are crucial when developing new active substances and finished drug forms, in silico studies for all the compounds synthesized have been performed.


Assuntos
Butirilcolinesterase , Inibidores da Colinesterase , Inibidores da Colinesterase/farmacologia , Acetilcolinesterase , Simulação de Acoplamento Molecular , Sais , Complexos Multienzimáticos , Triazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...