Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Immunohistochem Mol Morphol ; 30(2): 119-125, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34545848

RESUMO

Psoriasis is a chronic, immune-mediated inflammatory disease which pathogenesis is closely linked to γδ T cells. Recently, a critical role for butyrophilin 3A1 (BTN3A1) in mediating the activation of Vγ9Vδ2 T cells, which are reported to redistribute from blood to the perturbed skin lesions in psoriasis, has been proposed. Additional molecular partners, including RhoB and periplakin, have also been speculated to interact with BTN3A1 in modulating Vγ9Vδ2 T-cell activation. Immunohistochemical staining was performed to examine the expressions of BTN3A1, RhoB, and the plakin family members, including periplakin, epiplakin, and envoplakin in the psoriasis vulgaris lesions as compared with the normal control. The expressions of BTN3A1 and RhoB were found significantly upregulated in the psoriatic lesions. Besides, a downregulation of periplakin and an upregulation of epiplakin were noticed in the psoriasis vulgaris lesions. Our data suggest that BTN3A1 and RhoB might participate in the pathogenesis of psoriasis through Vγ9Vδ2 T-cell responses. In addition, a potential involvement of the plakin protein family, especially periplakin and epiplakin, in psoriasis pathology was proposed.


Assuntos
Psoríase , Receptores de Antígenos de Linfócitos T gama-delta , Antígenos CD/metabolismo , Butirofilinas/química , Butirofilinas/metabolismo , Humanos , Plaquinas , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo
2.
J Mol Biol ; 432(22): 5938-5950, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32976909

RESUMO

T cell costimulation is mediated by the interaction of a number of receptors and ligands present on the surface of the T cell and antigen-presenting cell, respectively. Stimulatory or inhibitory signals from these receptor-ligand interactions work in tandem to preserve immune homeostasis. BTNL2 is a type-1 membrane protein that provides inhibitory signal to T cells and plays an important role in several inflammatory and autoimmune diseases. Therefore, manipulation of the molecular interaction of BTNL2 with its putative receptor could provide strategies to restore immune homeostasis in these diseases. Hence, it is imperative to study the structural characteristics of this molecule, which will provide important insights into its function as well. In this study, the membrane-distal ectodomain of murine BTNL2 was expressed in bacteria as inclusion bodies, refolded in vitro and purified for functional and structural characterization. The domain is monomeric in solution as demonstrated by size-exclusion chromatography and analytical ultracentrifugation, and also binds to its putative receptor on naïve B cells and activated T cell subsets. Importantly, for the first time, we report the structure of BTNL2 as determined by solution NMR spectroscopy and also the picosecond-nanosecond timescale backbone dynamics of this domain. The N-terminal ectodomain of BTNL2, which was able to inhibit T cell function as well, exhibits distinctive structural features. The N-terminal ectodomain of BTNL2 has a significantly reduced surface area in the front sheet due to the non-canonical conformation of the CC' loop, which provides important insights into the recognition of its presently unknown binding partner.


Assuntos
Butirofilinas/química , Domínios de Imunoglobulina , Linfócitos T/imunologia , Animais , Butirofilinas/genética , Homeostase , Ligantes , Ativação Linfocitária , Proteínas de Membrana/química , Camundongos , Modelos Moleculares , Conformação Proteica
3.
ChemMedChem ; 15(12): 1030-1039, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32453919

RESUMO

Phosphoantigens (pAgs) are small phosphorus-containing molecules that stimulate Vγ9Vδ2 T cells with sub-nanomolar cellular potency. Recent work has revealed that these compounds work through binding to the transmembrane immunoglobulin butyrophilin 3A1 (BTN3A1) within its intracellular B30.2 domain. Engagement of BTN3A1 is critical to the formation of an immune synapse between cells that contain pAgs and the Vγ9Vδ2 T cells. This minireview summarizes the structure-activity relationships of pAgs and their implications to the mechanisms of butyrophilin 3 activation leading to Vγ9Vδ2 T cell response.


Assuntos
Antígenos CD/metabolismo , Butirofilinas/metabolismo , Organofosfatos/farmacologia , Antígenos CD/química , Sítios de Ligação , Butirofilinas/química , Humanos , Linfócitos Intraepiteliais/efeitos dos fármacos , Ligantes , Estrutura Molecular , Organofosfatos/química , Organofosfatos/metabolismo , Ligação Proteica , Domínios Proteicos , Relação Estrutura-Atividade
4.
Immunity ; 52(3): 487-498.e6, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32155411

RESUMO

Vγ9Vδ2 T cells respond in a TCR-dependent fashion to both microbial and host-derived pyrophosphate compounds (phosphoantigens, or P-Ag). Butyrophilin-3A1 (BTN3A1), a protein structurally related to the B7 family of costimulatory molecules, is necessary but insufficient for this process. We performed radiation hybrid screens to uncover direct TCR ligands and cofactors that potentiate BTN3A1's P-Ag sensing function. These experiments identified butyrophilin-2A1 (BTN2A1) as essential to Vγ9Vδ2 T cell recognition. BTN2A1 synergised with BTN3A1 in sensitizing P-Ag-exposed cells for Vγ9Vδ2 TCR-mediated responses. Surface plasmon resonance experiments established Vγ9Vδ2 TCRs used germline-encoded Vγ9 regions to directly bind the BTN2A1 CFG-IgV domain surface. Notably, somatically recombined CDR3 loops implicated in P-Ag recognition were uninvolved. Immunoprecipitations demonstrated close cell-surface BTN2A1-BTN3A1 association independent of P-Ag stimulation. Thus, BTN2A1 is a BTN3A1-linked co-factor critical to Vγ9Vδ2 TCR recognition. Furthermore, these results suggest a composite-ligand model of P-Ag sensing wherein the Vγ9Vδ2 TCR directly interacts with both BTN2A1 and an additional ligand recognized in a CDR3-dependent manner.


Assuntos
Antígenos/imunologia , Butirofilinas/imunologia , Células Germinativas/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/imunologia , Animais , Antígenos/metabolismo , Antígenos CD/química , Antígenos CD/imunologia , Antígenos CD/metabolismo , Butirofilinas/química , Butirofilinas/metabolismo , Células CHO , Cricetinae , Cricetulus , Células Germinativas/metabolismo , Células HEK293 , Humanos , Fosforilação , Ligação Proteica , Multimerização Proteica , Receptores de Antígenos de Linfócitos T gama-delta/química , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Linfócitos T/metabolismo
5.
Science ; 367(6478)2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31919129

RESUMO

Gamma delta (γδ) T cells are essential to protective immunity. In humans, most γδ T cells express Vγ9Vδ2+ T cell receptors (TCRs) that respond to phosphoantigens (pAgs) produced by cellular pathogens and overexpressed by cancers. However, the molecular targets recognized by these γδTCRs are unknown. Here, we identify butyrophilin 2A1 (BTN2A1) as a key ligand that binds to the Vγ9+ TCR γ chain. BTN2A1 associates with another butyrophilin, BTN3A1, and these act together to initiate responses to pAg. Furthermore, binding of a second ligand, possibly BTN3A1, to a separate TCR domain incorporating Vδ2 is also required. This distinctive mode of Ag-dependent T cell activation advances our understanding of diseases involving pAg recognition and creates opportunities for the development of γδ T cell-based immunotherapies.


Assuntos
Antígenos de Neoplasias/imunologia , Butirofilinas/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/imunologia , Antígenos CD/química , Antígenos CD/imunologia , Butirofilinas/química , Butirofilinas/genética , Linhagem Celular Tumoral , Humanos , Ligantes , Ativação Linfocitária , Fosforilação , Domínios Proteicos , Multimerização Proteica
6.
Immunity ; 51(5): 813-825.e4, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31628053

RESUMO

Butyrophilin (BTN) and butyrophilin-like (BTNL/Btnl) heteromers are major regulators of human and mouse γδ T cell subsets, but considerable contention surrounds whether they represent direct γδ T cell receptor (TCR) ligands. We demonstrate that the BTNL3 IgV domain binds directly and specifically to a human Vγ4+ TCR, "LES" with an affinity (∼15-25 µM) comparable to many αß TCR-peptide major histocompatibility complex interactions. Mutations in germline-encoded Vγ4 CDR2 and HV4 loops, but not in somatically recombined CDR3 loops, drastically diminished binding and T cell responsiveness to BTNL3-BTNL8-expressing cells. Conversely, CDR3γ and CDR3δ loops mediated LES TCR binding to endothelial protein C receptor, a clonally restricted autoantigen, with minimal CDR1, CDR2, or HV4 contributions. Thus, the γδ TCR can employ two discrete binding modalities: a non-clonotypic, superantigen-like interaction mediating subset-specific regulation by BTNL/BTN molecules and CDR3-dependent, antibody-like interactions mediating adaptive γδ T cell biology. How these findings might broadly apply to γδ T cell regulation is also examined.


Assuntos
Antígenos/imunologia , Butirofilinas/metabolismo , Seleção Clonal Mediada por Antígeno/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Sequência de Aminoácidos , Animais , Antígenos/química , Butirofilinas/química , Linhagem Celular , Epitopos/imunologia , Células Germinativas/metabolismo , Humanos , Região Variável de Imunoglobulina/química , Região Variável de Imunoglobulina/imunologia , Região Variável de Imunoglobulina/metabolismo , Ligantes , Camundongos , Ligação Proteica/imunologia , Domínios e Motivos de Interação entre Proteínas , Receptores de Antígenos de Linfócitos T gama-delta/química , Relação Estrutura-Atividade
7.
J Med Chem ; 62(14): 6814-6823, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31268699

RESUMO

Small-molecule phosphoantigens such as (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate stimulate human Vγ9Vδ2 T cells after binding to the intracellular B30.2 domain of the immune receptor butyrophilin 3 isoform A1 (BTN3A1). To understand the ligand-target interaction in greater detail, we performed molecular docking. Based on the docking results, we synthesized the novel ligand (E)-(7-hydroxy-6-methylhept-5-en-1-yl)phosphonate and mutated proposed binding site residues. We evaluated the impact on butyrophilin binding of existing and novel ligands using a newly developed high-throughput fluorescence polarization assay. We also evaluated the ability of the compounds to stimulate proliferation and interferon-γ production of Vγ9Vδ2 T cells. Mutation of H381 fully blocked ligand binding, whereas mutations to charged surface residues impacted diphosphate interactions. Monophosphonate analogs bind similarly to BTN3A1, although they differ in their antigenicity, demonstrating that binding and efficacy are not linearly correlated. These results further define the structure-activity relationships underlying BTN3A1 ligand binding and antigenicity and support further structure-guided drug design.


Assuntos
Antígenos CD/metabolismo , Butirofilinas/metabolismo , Organofosfonatos/química , Organofosfonatos/farmacologia , Antígenos CD/química , Sítios de Ligação/efeitos dos fármacos , Butirofilinas/química , Desenho de Fármacos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Domínios Proteicos/efeitos dos fármacos , Relação Estrutura-Atividade , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
8.
Immunity ; 50(4): 1043-1053.e5, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30902636

RESUMO

Human Vγ9Vδ2 T cells respond to microbial infections and malignancy by sensing diphosphate-containing metabolites called phosphoantigens, which bind to the intracellular domain of butyrophilin 3A1, triggering extracellular interactions with the Vγ9Vδ2 T cell receptor (TCR). Here, we examined the molecular basis of this "inside-out" triggering mechanism. Crystal structures of intracellular butyrophilin 3A proteins alone or in complex with the potent microbial phosphoantigen HMBPP or a synthetic analog revealed key features of phosphoantigens and butyrophilins required for γδ T cell activation. Analyses with chemical probes and molecular dynamic simulations demonstrated that dimerized intracellular proteins cooperate in sensing HMBPP to enhance the efficiency of γδ T cell activation. HMBPP binding to butyrophilin doubled the binding force between a γδ T cell and a target cell during "outside" signaling, as measured by single-cell force microscopy. Our findings provide insight into the "inside-out" triggering of Vγ9Vδ2 T cell activation by phosphoantigen-bound butyrophilin, facilitating immunotherapeutic drug design.


Assuntos
Antígenos CD/química , Butirofilinas/química , Ativação Linfocitária , Organofosfatos/metabolismo , Subpopulações de Linfócitos T/imunologia , Antígenos CD/metabolismo , Sítios de Ligação , Butirofilinas/metabolismo , Cristalografia por Raios X , Dimerização , Desenho de Fármacos , Humanos , Ligação de Hidrogênio , Imunoterapia , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Domínios Proteicos , Isoformas de Proteínas/química , Processamento de Proteína Pós-Traducional , Receptores de Antígenos de Linfócitos T gama-delta , Análise de Célula Única , Relação Estrutura-Atividade , Subpopulações de Linfócitos T/metabolismo
9.
J Med Chem ; 61(19): 8658-8669, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30199251

RESUMO

Small organophosphorus compounds stimulate Vγ9 Vδ2 T cells if they serve as ligands of butyrophilin 3A1. Because the most potent natural ligand is ( E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP), which is the last intermediate in bacterial biosynthesis of isoprenoids that is not found in mammalian metabolism, activation of these T cells represents an important component of the immune response to bacterial infections. To identify butyrophilin ligands that may have greater plasma stability, and clinical potential, we have prepared a set of aryl phosphonamidate derivatives (9a-i) of the natural ligand. Testing of these new compounds in assays of T cell response has revealed that this strategy can provide compounds with high potency for expansion of Vγ9 Vδ2 T cells (9f, EC50 = 340 pM) and interferon γ production in response to loaded K562 cells (9e, EC50 = 62 nM). Importantly, all compounds of this class display extended plasma stability ( t1/2 > 24 h). These findings increase our understanding of metabolism of butyrophilin ligands and the structure-activity relationships of phosphonamidate prodrugs.


Assuntos
Butirofilinas/metabolismo , Sobrevivência Celular , Ativação Linfocitária/imunologia , Compostos Organofosforados/química , Plasma/química , Pró-Fármacos/farmacologia , Linfócitos T/imunologia , Butirofilinas/química , Estabilidade de Medicamentos , Humanos , Interferon gama/metabolismo , Células K562 , Ligantes , Pró-Fármacos/química , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
10.
Front Immunol ; 9: 930, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29765375

RESUMO

γδ T cells recognize a wide variety of ligands in mammals, among them members of the butyrophilin (BTN) family. Nothing is known about γδ T cell ligands in chickens, despite there being many such cells in blood and lymphoid tissues, as well as in mucosal surfaces. The major histocompatibility complex (MHC) of chickens was discovered because of polymorphic BG genes, part of the BTN family. All but two BG genes are located in the BG region, oriented head-to-tail so that unequal crossing-over has led to copy number variation (CNV) as well as hybrid (chimeric) genes, making it difficult to identify true alleles. One approach is to examine BG genes expressed in particular cell types, which likely have the same functions in different BG haplotypes and thus can be considered "functional alleles." We cloned nearly full-length BG transcripts from peripheral T cells of four haplotypes (B2, B15, B19, and B21), and compared them to the BG genes of the B12 haplotype that previously were studied in detail. A dominant BG gene was found in each haplotype, but with significant levels of subdominant transcripts in three haplotypes (B2, B15, and B19). For three haplotypes (B15, B19, and B21), most sequences are closely-related to BG8, BG9, and BG12 from the B12 haplotype. We found that variation in the extracellular immunoglobulin-variable-like (Ig-V) domain is mostly localized to the membrane distal loops but without evidence for selection. However, variation in the cytoplasmic tail composed of many amino acid heptad repeats does appear to be selected (although not obviously localized), consistent with an intriguing clustering of charged and polar residues in an apparent α-helical coiled-coil. By contrast, the dominantly-expressed BG gene in the B2 haplotype is identical to BG13 from the B12 haplotype, and most of the subdominant sequences are from the BG5-BG7-BG11 clade. Moreover, alternative splicing leading to intron read-through results in dramatically truncated cytoplasmic tails, particularly for the dominantly-expressed BG gene of the B2 haplotype. The approach of examining "functional alleles" has yielded interesting data for closely-related genes, but also thrown up unexpected findings for at least one haplotype.


Assuntos
Alelos , Butirofilinas/genética , Galinhas/genética , Galinhas/imunologia , Família Multigênica , Linfócitos T/imunologia , Linfócitos T/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Animais , Butirofilinas/química , Clonagem Molecular , Éxons , Expressão Gênica , Haplótipos , Íntrons , Modelos Moleculares , Filogenia , Conformação Proteica , Análise de Sequência de DNA , Relação Estrutura-Atividade
11.
Molecules ; 23(2)2018 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-29401697

RESUMO

Butyrophilins (BTNs) are a group of the moonlighting proteins, some members of which are secreted in milk. They constitute a large family of structurally similar type 1 transmembrane proteins from the immunoglobulin superfamily. Although the founding member of this family is related to lactation, participating in the secretion, formation and stabilization of milk fat globules, it may also have a cell surface receptor function. Generally, the BTN family members are known to modulate co-stimulatory responses, T cell selection, differentiation, and cell fate determination. Polymorphism of these genes was shown to be associated with the pathology of several human diseases. Despite their biological significance, structural information on human butyrophilins is rather limited. Based on their remarkable multifunctionality, butyrophilins seem to belong to the category of moonlighting proteins, which are known to contain intrinsically disordered protein regions (IDPRs). However, the disorder status of human BTNs was not systematically investigated as of yet. The goal of this study is to fill this gap and to evaluate peculiarities of intrinsic disorder predisposition of the members of human BTN family, and to find if they have IDPRs that can be attributed to the multifunctionality of these important proteins.


Assuntos
Butirofilinas/química , Imunidade Inata , Proteínas Intrinsicamente Desordenadas/química , Leite/imunologia , Animais , Apresentação de Antígeno , Células Apresentadoras de Antígenos/citologia , Células Apresentadoras de Antígenos/imunologia , Sítios de Ligação , Butirofilinas/classificação , Butirofilinas/genética , Butirofilinas/imunologia , Feminino , Expressão Gênica , Humanos , Proteínas Intrinsicamente Desordenadas/classificação , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/imunologia , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Leite/química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Homologia Estrutural de Proteína , Linfócitos T/citologia , Linfócitos T/imunologia
12.
Proc Natl Acad Sci U S A ; 115(5): 1039-1044, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29339503

RESUMO

The long-held view that gamma delta (γδ) T cells in mice and humans are fundamentally dissimilar, as are γδ cells in blood and peripheral tissues, has been challenged by emerging evidence of the cells' regulation by butyrophilin (BTN) and butyrophilin-like (BTNL) molecules. Thus, murine Btnl1 and the related gene, Skint1, mediate T cell receptor (TCR)-dependent selection of murine intraepithelial γδ T cell repertoires in gut and skin, respectively; BTNL3 and BTNL8 are TCR-dependent regulators of human gut γδ cells; and BTN3A1 is essential for TCR-dependent activation of human peripheral blood Vγ9Vδ2+ T cells. However, some observations concerning BTN/Btnl molecules continue to question the extent of mechanistic conservation. In particular, murine and human gut γδ cell regulation depends on pairings of Btnl1 and Btnl6 and BTNL3 and BTNL8, respectively, whereas blood γδ cells are reported to be regulated by BTN3A1 independent of other BTNs. Addressing this paradox, we show that BTN3A2 regulates the subcellular localization of BTN3A1, including functionally important associations with the endoplasmic reticulum (ER), and is specifically required for optimal BTN3A1-mediated activation of Vγ9Vδ2+ T cells. Evidence that BTNL3/BTNL8 and Btnl1/Btnl6 likewise associate with the ER reinforces the prospect of broadly conserved mechanisms underpinning the selection and activation of γδ cells in mice and humans, and in blood and extralymphoid sites.


Assuntos
Butirofilinas/imunologia , Butirofilinas/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Motivos de Aminoácidos , Animais , Antígenos CD/química , Antígenos CD/imunologia , Antígenos CD/metabolismo , Butirofilinas/química , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Ativação Linfocitária , Camundongos , Multimerização Proteica
13.
Proc Natl Acad Sci U S A ; 114(35): E7311-E7320, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28807997

RESUMO

Human Vγ9Vδ2 T cells respond to microbial infections as well as certain types of tumors. The key initiators of Vγ9Vδ2 activation are small, pyrophosphate-containing molecules called phosphoantigens (pAgs) that are present in infected cells or accumulate intracellularly in certain tumor cells. Recent studies demonstrate that initiation of the Vγ9Vδ2 T cell response begins with sensing of pAg via the intracellular domain of the butyrophilin 3A1 (BTN3A1) molecule. However, it is unknown how downstream events can ultimately lead to T cell activation. Here, using NMR spectrometry and molecular dynamics (MD) simulations, we characterize a global conformational change in the B30.2 intracellular domain of BTN3A1 induced by pAg binding. We also reveal by crystallography two distinct dimer interfaces in the BTN3A1 full-length intracellular domain, which are stable in MD simulations. These interfaces lie in close proximity to the pAg-binding pocket and contain clusters of residues that experience major changes of chemical environment upon pAg binding. This suggests that pAg binding disrupts a preexisting conformation of the BTN3A1 intracellular domain. Using a combination of biochemical, structural, and cellular approaches we demonstrate that the extracellular domains of BTN3A1 adopt a V-shaped conformation at rest, and that locking them in this resting conformation without perturbing their membrane reorganization properties diminishes pAg-induced T cell activation. Based on these results, we propose a model in which a conformational change in BTN3A1 is a key event of pAg sensing that ultimately leads to T cell activation.


Assuntos
Antígenos CD/fisiologia , Butirofilinas/fisiologia , Linfócitos Intraepiteliais/efeitos dos fármacos , Antígenos/imunologia , Antígenos CD/química , Antígenos CD/metabolismo , Butirofilinas/química , Cristalografia por Raios X , Células HEK293 , Humanos , Linfócitos Intraepiteliais/fisiologia , Ativação Linfocitária/imunologia , Ativação Linfocitária/fisiologia , Espectroscopia de Ressonância Magnética/métodos , Fosforilação , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Relação Estrutura-Atividade , Linfócitos T/imunologia
14.
FASEB J ; 31(11): 4697-4706, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28705810

RESUMO

Small isoprenoid diphosphates, such as (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP), are ligands of the internal domain of BTN3A1. Ligand binding in target cells promotes activation of Vγ9Vδ2 T cells. We demonstrate by small-angle X-ray scattering (SAXS) that HMBPP binding to the internal domain of BTN3A1 induces a conformational change in the position of the B30.2 domain relative to the juxtamembrane (JM) region. To better understand the molecular details of this conformational rearrangement, NMR spectroscopy was used to discover that the JM region interacts with HMBPP, specifically at the diphosphate. The spectral location of the affected amide peaks, partial NMR assignments, and JM mutants (ST296AA or T304A) investigated, confirm that the backbone amide of at least one Thr (Thr304), adjacent to conserved Ser, comes close to the HMBPP diphosphate, whereas double mutation of nonconserved residues (Ser/Thr296/297) may perturb the local fold. Cellular mutation of either of the identified Thr residues reduces the activation of Vγ9Vδ2 T cells by HMBPP, zoledronate, and POM2-C-HMBP, but not by a partial agonist BTN3 antibody. Taken together, our results show that ligand binding to BTN3A1 induces a conformational change within the intracellular domain that involves the JM region and is required for full activation.-Nguyen, K., Li, J., Puthenveetil, R., Lin, X., Poe, M. M., Hsiao, C.-H. C., Vinogradova, O., Wiemer, A. J. The butyrophilin 3A1 intracellular domain undergoes a conformational change involving the juxtamembrane region.


Assuntos
Antígenos CD/química , Butirofilinas/química , Organofosfatos/química , Substituição de Aminoácidos , Antígenos CD/genética , Antígenos CD/metabolismo , Butirofilinas/genética , Butirofilinas/metabolismo , Humanos , Células K562 , Mutação de Sentido Incorreto , Ressonância Magnética Nuclear Biomolecular , Organofosfatos/metabolismo , Domínios Proteicos , Difração de Raios X
15.
Chemistry ; 23(49): 11945-11954, 2017 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-28631855

RESUMO

Vγ9Vδ2 T cells play an important role in the cross talk of the innate and adaptive immune system. For their activation by phosphoantigens (PAgs), both cell surface receptors, the eponymous Vγ9Vδ2 T cell antigen receptors (Vγ9Vδ2 TCRs) on Vγ9Vδ2 T cells and butyrophilin 3A1 (BTN3A1) on the phosphoantigen-"presenting" cell, are mandatory. To find yet undetected but further contributing proteins, a biotinylated, photo-crosslinkable benzophenone probe BioBP-HMBPP (2) was synthesized from a known allyl alcohol in nine steps and overall 16 % yield. 2 is based on the picomolar PAg (E)-4-hydroxy-3-methylbut-2-enyl diphosphate (HMBPP, 1). Laser irradiation of 2 at 308 nm initiated the photo-crosslinking reaction with proteins. When the B30.2 domain of BTN3A1, which contains a positively charged PAg-binding pocket, was exposed to increasing amounts of HMBPP (1), labeling by BioBP-HMBPP (2) was reduced significantly. Because BSA labeling was not impaired, 2 clearly binds to the same site as natural ligand 1. Thus, BioBP-HMBPP (2) is a suitable tool to identify co-ligands or receptors involved in PAg-mediated T cell activation.


Assuntos
Antígenos CD/metabolismo , Biotina/análogos & derivados , Butirofilinas/metabolismo , Compostos Organofosforados/química , Animais , Antígenos/imunologia , Antígenos/metabolismo , Antígenos CD/química , Antígenos de Diferenciação de Linfócitos T/metabolismo , Biotina/síntese química , Biotinilação/efeitos da radiação , Butirofilinas/química , Bovinos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Humanos , Lasers , Lectinas Tipo C/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Compostos Organofosforados/síntese química , Compostos Organofosforados/farmacologia , Ligação Proteica , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Espectrofotometria , Linfócitos T/citologia , Linfócitos T/metabolismo , Regulação para Cima/efeitos dos fármacos
16.
J Immunol ; 198(11): 4228-4234, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28461569

RESUMO

Vγ9Vδ2 T lymphocytes are the major human peripheral γδ T cell subset, with broad reactivity against stressed human cells, including tumor cells. Vγ9Vδ2 T cells are specifically activated by small phosphorylated metabolites called phosphoantigens (PAg). Stress-induced changes in target cell PAg levels are specifically detected by butyrophilin (BTN)3A1, using its intracellular B30.2 domain. This leads to the activation of Vγ9Vδ2 T cells. In this study, we show that changes in the juxtamembrane domain of BTN3A1, but not its transmembrane domain, induce a markedly enhanced or reduced γδ T cell reactivity. There is thus a specific requirement for BTN3A1's juxtamembrane domain for correct γδ T cell-related function. This work identified, as being of particular importance, a juxtamembrane domain region of BTN3A molecules identified as a possible dimerization interface and that is located close to the start of the B30.2 domain.


Assuntos
Antígenos CD/química , Antígenos CD/imunologia , Butirofilinas/química , Butirofilinas/imunologia , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Subpopulações de Linfócitos T/imunologia , Antígenos/química , Antígenos/imunologia , Antígenos CD/metabolismo , Butirofilinas/metabolismo , Células HEK293 , Humanos , Proteínas Mutantes Quiméricas/imunologia , Fosforilação
17.
Immunogenetics ; 69(6): 379-390, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28382515

RESUMO

The butyrophilin 3 (BTN3) receptors are implicated in the T lymphocytes regulation and present a wide plasticity in mammals. In order to understand how these genes have been diversified, we studied their evolution and show that the three human BTN3 are the result of two successive duplications in Primates and that the three genes are present in Hominoids and the Old World Monkey groups. A thorough phylogenetic analysis reveals a concerted evolution of BTN3 characterized by a strong and recurrent homogenization of the region encoding the signal peptide and the immunoglobulin variable (IgV) domain in Hominoids, where the sequences of BTN3A1 or BTN3A3 are replaced by BTN3A2 sequence. In human, the analysis of the diversity of these genes in 1683 individuals representing 26 worldwide populations shows that the three genes are polymorphic, with more than 46 alleles for each gene, and marked by extreme homogenization of the IgV sequences. The same analysis performed for the BTN2 genes shows also a concerted evolution; however, it is not as strong and recurrent as for BTN3. This study shows that BTN3 receptors are marked by extreme concerted evolution at the IgV domain and that BTN3A2 plays a central role in this evolution.


Assuntos
Butirofilinas/genética , Evolução Molecular , Família Multigênica , Polimorfismo Genético , Alelos , Sequência de Aminoácidos , Animais , Butirofilinas/química , Butirofilinas/metabolismo , Códon , Feminino , Genômica/métodos , Genótipo , Humanos , Filogenia , Primatas/genética , Domínios Proteicos/genética , Recombinação Genética
18.
Open Biol ; 6(9)2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27628321

RESUMO

Mammalian butyrophilins have various important functions, one for lipid binding but others as ligands for co-inhibition of αß T cells or for stimulation of γδ T cells in the immune system. The chicken BG homologues are dimers, with extracellular immunoglobulin variable (V) domains joined by cysteines in the loop equivalent to complementarity-determining region 1 (CDR1). BG genes are found in three genomic locations: BG0 on chromosome 2, BG1 in the classical MHC (the BF-BL region) and many BG genes in the BG region just outside the MHC. Here, we show that BG0 is virtually monomorphic, suggesting housekeeping function(s) consonant with the ubiquitous tissue distribution. BG1 has allelic polymorphism but minimal sequence diversity, with the few polymorphic residues at the interface of the two V domains, suggesting that BG1 is recognized by receptors in a conserved fashion. Any phenotypic variation should be due to the intracellular region, with differential exon usage between alleles. BG genes in the BG region can generate diversity by exchange of sequence cassettes located in loops equivalent to CDR1 and CDR2, consonant with recognition of many ligands or antigens for immune defence. Unlike the mammalian butyrophilins, there are at least three modes by which BG genes evolve.


Assuntos
Proteínas Aviárias/genética , Proteínas Aviárias/fisiologia , Butirofilinas/genética , Butirofilinas/fisiologia , DNA Complementar/metabolismo , Variação Genética , Alelos , Processamento Alternativo , Sequência de Aminoácidos , Animais , Proteínas Aviárias/química , Sequência de Bases , Butirofilinas/química , Galinhas , Cromossomos/genética , DNA Complementar/genética , Evolução Molecular , Éxons , Modelos Químicos , Glicoproteína Mielina-Oligodendrócito/química , Glicoproteína Mielina-Oligodendrócito/genética , Glicoproteína Mielina-Oligodendrócito/fisiologia , RNA/genética , RNA/metabolismo
19.
Cell Rep ; 15(9): 1973-85, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27210746

RESUMO

Human Vγ9Vδ2 T cells respond to tumor cells by sensing elevated levels of phosphorylated intermediates of the dysregulated mevalonate pathway, which is translated into activating signals by the ubiquitously expressed butyrophilin A1 (BTN3A1) through yet unknown mechanisms. Here, we developed an unbiased, genome-wide screening method that identified RhoB as a critical mediator of Vγ9Vδ2 TCR activation in tumor cells. Our results show that Vγ9Vδ2 TCR activation is modulated by the GTPase activity of RhoB and its redistribution to BTN3A1. This is associated with cytoskeletal changes that directly stabilize BTN3A1 in the membrane, and the subsequent dissociation of RhoB from BTN3A1. Furthermore, phosphoantigen accumulation induces a conformational change in BTN3A1, rendering its extracellular domains recognizable by Vγ9Vδ2 TCRs. These complementary events provide further evidence for inside-out signaling as an essential step in the recognition of tumor cells by a Vγ9Vδ2 TCR.


Assuntos
Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Proteína rhoB de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/metabolismo , Antígenos/metabolismo , Antígenos CD/química , Antígenos CD/metabolismo , Butirofilinas/química , Butirofilinas/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Loci Gênicos , Células HEK293 , Humanos , Ativação Linfocitária/imunologia , Modelos Biológicos , Células-Tronco Neoplásicas/metabolismo , Fosforilação , Polimorfismo de Nucleotídeo Único/genética , Ligação Proteica , Conformação Proteica , Multimerização Proteica , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...