Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(12): e0260729, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34855852

RESUMO

Intestinal microbiota facilitates food breakdown for energy metabolism and influences the immune response, maintaining mucosal homeostasis. Overall, HIV infection is associated with intestinal dysbiosis and immune activation, which has been related to seroconversion in HIV-exposed individuals. However, it is unclear whether microbiota dysbiosis is the cause or the effect of immune alterations and disease progression or if it could modulate the risk of acquiring the HIV infection. We characterize the intestinal microbiota and determine its association with immune regulation in HIV-exposed seronegative individuals (HESN), HIV-infected progressors (HIV+), and healthy control (HC) subjects. For this, feces and blood were collected. The microbiota composition of HESN showed a significantly higher alpha (p = 0.040) and beta diversity (p = 0.006) compared to HC, but no differences were found compared to HIV+. A lower Treg percentage was observed in HESN (1.77%) than HC (2.98%) and HIV+ (4.02%), with enrichment of the genus Butyrivibrio (p = 0.029) being characteristic of this profile. Moreover, we found that Megasphaera (p = 0.017) and Victivallis (p = 0.0029) also are enriched in the microbiota composition in HESN compared to HC and HIV+ subjects. Interestingly, an increase in Succinivibrio and Prevotella, and a reduction in Bacteroides genus, which is typical of HIV-infected individuals, were observed in both HESN and HIV+, compared to HC. Thus, HESNs have a microbiota profile, similar to that observed in HIV+, most likely because HESN are cohabiting with their HIV+ partners.


Assuntos
Microbioma Gastrointestinal , Infecções por HIV/patologia , Adolescente , Adulto , Butyrivibrio/isolamento & purificação , Estudos de Casos e Controles , Fezes/microbiologia , Feminino , Infecções por HIV/imunologia , Soronegatividade para HIV , Humanos , Masculino , Megasphaera/isolamento & purificação , Pessoa de Meia-Idade , Prevotella/isolamento & purificação , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Células Th17/citologia , Células Th17/imunologia , Células Th17/metabolismo , Adulto Jovem
2.
PLoS One ; 14(11): e0225448, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31770419

RESUMO

To increase intramuscular fat accumulation, Japanese Black cattle are commonly fed a high-grain diet from 10 to 30 months of age although it can result in the abnormal accumulation of organic acids in the rumen. We explored the effect of long-term high-concentrate diet feeding on ruminal pH and fermentation, and its effect on the rumen bacterial community in Japanese Black beef cattle during a 20-month fattening period. Nine castrated and fistulated Japanese Black beef cattle were housed with free access to food and water throughout the study period (10-30 months of age). The fattening stages included Early, Middle, and Late stages (10-14, 15-22, and 23-30 months of age, respectively). Cattle were fed high-concentrate diets for the experimental cattle during fattening. The body weight of the cattle was 439 ± 7.6, 561 ± 11.6, and 712 ± 18.5 kg (mean ± SE) during the Early, Middle, and Late stages, respectively. Ruminal pH was measured continuously during the final 7 days of each stage, and rumen fluid and blood samples were collected on day 4 (fourth day during the final 7 days of the pH measurements). The 24-h mean ruminal pH during the Late stage was significantly lower than that during the Early stage. Total volatile fatty acid (VFA) during the Late stage was significantly lower than during the Early and Middle stages, but no changes were noted in individual VFA components. The lactic acid concentration during the Late stage was significantly higher than that during the Early and Middle stages. The bacterial richness indices decreased significantly during the Late stage in accordance with the 24-h mean ruminal pH. Among the 35 bacterial operational taxonomic units (OTUs) shared by all samples, the relative abundances of OTU8 (Family Ruminococcaceae) and OTU26 (Genus Butyrivibrio) were positively correlated with the 24-h mean ruminal pH. Total VFA concentration was negatively correlated with OTU167 (Genus Intestinimonas), and lactic acid concentration was correlated positively with OTU167 and OTU238 (Family Lachnospiraceae). These results suggested that long-term high-grain diet feeding gradually lowers ruminal pH and total VFA production during the Late fattening stage. However, the ruminal bacterial community adapted to feeding management and the lower pH during the Late stage by preserving their diversity or altering their richness, composition, and function, to enhance lactic acid production in Japanese Black beef cattle.


Assuntos
Dieta/veterinária , Microbioma Gastrointestinal , Ácido Láctico/metabolismo , Rúmen/microbiologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Peso Corporal , Butyrivibrio/genética , Butyrivibrio/isolamento & purificação , Bovinos , Clostridiales/genética , Clostridiales/isolamento & purificação , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Ácidos Graxos Voláteis/metabolismo , Concentração de Íons de Hidrogênio , Análise de Componente Principal , Rúmen/química
3.
Appl Environ Microbiol ; 86(1)2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31653790

RESUMO

Plant polysaccharide breakdown by microbes in the rumen is fundamental to digestion in ruminant livestock. Bacterial species belonging to the rumen genera Butyrivibrio and Pseudobutyrivibrio are important degraders and utilizers of lignocellulosic plant material. These bacteria degrade polysaccharides and ferment the released monosaccharides to yield short-chain fatty acids that are used by the ruminant for growth and the production of meat, milk, and fiber products. Although rumen Butyrivibrio and Pseudobutyrivibrio species are regarded as common rumen inhabitants, their polysaccharide-degrading and carbohydrate-utilizing enzymes are not well understood. In this study, we analyzed the genomes of 40 Butyrivibrio and 6 Pseudobutyrivibrio strains isolated from the plant-adherent fraction of New Zealand dairy cows to explore the polysaccharide-degrading potential of these important rumen bacteria. Comparative genome analyses combined with phylogenetic analysis of their 16S rRNA genes and short-chain fatty acid production patterns provide insight into the genomic diversity and physiology of these bacteria and divide Butyrivibrio into 3 species clusters. Rumen Butyrivibrio bacteria were found to encode a large and diverse spectrum of degradative carbohydrate-active enzymes (CAZymes) and binding proteins. In total, 4,421 glycoside hydrolases (GHs), 1,283 carbohydrate esterases (CEs), 110 polysaccharide lyases (PLs), 3,605 glycosyltransferases (GTs), and 1,706 carbohydrate-binding protein modules (CBM) with predicted activities involved in the depolymerization and transport of the insoluble plant polysaccharides were identified. Butyrivibrio genomes had similar patterns of CAZyme families but varied greatly in the number of genes within each category in the Carbohydrate-Active Enzymes database (CAZy), suggesting some level of functional redundancy. These results suggest that rumen Butyrivibrio species occupy similar niches but apply different degradation strategies to be able to coexist in the rumen.IMPORTANCE Feeding a global population of 8 billion people and climate change are the primary challenges facing agriculture today. Ruminant livestock are important food-producing animals, and maximizing their productivity requires an understanding of their digestive systems and the roles played by rumen microbes in plant polysaccharide degradation. Members of the genera Butyrivibrio and Pseudobutyrivibrio are a phylogenetically diverse group of bacteria and are commonly found in the rumen, where they are a substantial source of polysaccharide-degrading enzymes for the depolymerization of lignocellulosic material. Our findings have highlighted the immense enzymatic machinery of Butyrivibrio and Pseudobutyrivibrio species for the degradation of plant fiber, suggesting that these bacteria occupy similar niches but apply different degradation strategies in order to coexist in the competitive rumen environment.


Assuntos
Butyrivibrio/genética , Metabolismo dos Carboidratos/genética , Rúmen/microbiologia , Animais , Butyrivibrio/classificação , Butyrivibrio/isolamento & purificação , Butyrivibrio/metabolismo , Bovinos , Esterases/genética , Genoma Bacteriano , Genômica , Glicosídeo Hidrolases/genética , Glicosiltransferases/genética , Liases/genética , Filogenia , Polissacarídeos/metabolismo , RNA Ribossômico 16S/genética
4.
Clin Rheumatol ; 38(5): 1437-1445, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30628011

RESUMO

OBJECTIVES: We have previously demonstrated that the phylum Actinobacteria, the family Lactobacillaceae, and the genus Bifidobacterium increased in relative abundance of gut microbiota in patients with Behcet's disease (BD). The phylum Firmicutes and the class Clostridia were predominant in the feces of normal individuals. The class Clostridia includes short-chain fatty acid-producing bacteria, important for the balance between regulatory T cells and helper T type 17 (Th17) cells. It is possible that the bacterial compositional alteration causes low intestinal short-chain fatty acid concentrations, leading to skewed immune functions in patients with BD. METHODS: To test the hypothesis, we examined species composition and gene functions from the 16S rRNA data by utilizing PICRUSt software. RESULTS: We have shown that relative abundance of Eggerthella lenta, Acidaminococcus species, Lactobacillus mucosae, Bifidobacterium bifidum, Lactobacillus iners, Streptococcus species, and Lactobacillus salivarius increased significantly in patients with BD. Relative abundance of Megamonas hypermegale, Butyrivibrio species, Streptococcus infantis, and Filifactor species increased significantly in normal individuals compared with BD patients. In the functional annotation analysis by PICRUSt, we found prevalent gene functions of the pentose phosphate pathway and the inosine monophosphate biosynthesis in patients with BD. The data suggested that BD gut microbes altered nucleic acid and fatty acid synthesis. CONCLUSIONS: These compositional and functional alterations of gut microbes may accompany unfavorable molecular exchanges between intestinal immunocompetent cells and gut microbes, and these interactions may have an association with the immune aberration in patients with BD.


Assuntos
Síndrome de Behçet/microbiologia , Butyrivibrio/isolamento & purificação , Firmicutes/isolamento & purificação , Microbioma Gastrointestinal , Intestinos/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética
5.
Appl Microbiol Biotechnol ; 101(14): 5937-5948, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28536735

RESUMO

Ruminal microbiota (RM) were co-inoculated with anaerobic sludge (AS) at different ratios to study the digestion of rice straw in batch experiments. The CH4 yield reached 273.64 mL/g volatile solid (VS) at a co-inoculum ratio of 1:1. The xylanase and cellulase activities were 198.88-212.88 and 24.51-29.08 U/mL in co-inoculated samples, respectively, and were significantly different compared to the results for single inoculum (p < 0.05). Higher ratios of AS enhanced acetoclastic methanogenesis, and propionate accumulation could be the main reason for the longer lag phase observed in samples with a higher RM ratio. The microbial compositions were clearly altered after digestion. Fibrobacter, Ruminococcus and Butyrivibrio from the rumen did not settle in the co-inoculated system, whereas Clostridiales members became the main polysaccharide degraders. Microbial interactions involving hydrolytic bacteria and acetoclastic methanogens in the residue were considered to be significant for hydrolysis activities and methane production. Syntrophy involving propionate oxidizers with associated methanogens occurred in the liquid phase. Our findings provide a better understanding of the anaerobic digestion of rice straw that is driven by specific microbial populations.


Assuntos
Consórcios Microbianos/fisiologia , Microbiota , Oryza , Rúmen/microbiologia , Esgotos/microbiologia , Anaerobiose , Animais , Butyrivibrio/isolamento & purificação , Celulase/metabolismo , Clostridiales/isolamento & purificação , Endo-1,4-beta-Xilanases/metabolismo , Fibrobacter/isolamento & purificação , Hidrólise , Metano/biossíntese , Caules de Planta/metabolismo , Propionatos/metabolismo , Ruminococcus/isolamento & purificação
6.
PLoS One ; 11(6): e0156836, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27258373

RESUMO

This study investigated the effects of ensiled mulberry leaves (EML) and sun-dried mulberry fruit pomace (SMFP) on the ruminal bacterial and archaeal community composition of finishing steers. Corn grain- and cotton meal-based concentrate was partially replaced with EML or SMFP. The diets had similar crude protein (CP), neutral detergent fiber (NDF), and metabolizable energy. Following the feeding trial, the steers were slaughtered and ruminal liquid samples were collected to study the ruminal microbiome. Extraction of DNA, amplification of the V4 region of the 16S rRNA gene, and Illumina MiSeq pyrosequencing were performed for each sample. Following sequence de-noising, chimera checking, and quality trimming, an average of 209,610 sequences were generated per sample. Quantitative real-time PCR was performed to examine the selected bacterial species in the rumen. Our results showed that the predominant phyla were Bacteroidetes (43.90%), Firmicutes (39.06%), Proteobacteria (4.31%), and Tenericutes (2.04%), and the predominant genera included Prevotella (13.82%), Ruminococcus (2.51%), Butyrivibrio (2.38%), and Succiniclasticum (2.26%). Compared to the control group, EML and SMFP groups had a higher abundance of total bacteria (p < 0.001); however, the bacterial community composition was similar among the three groups. At the phylum level, there were no significant differences in Firmicutes (p = 0.7932), Bacteroidetes (p = 0.2330), Tenericutes (p = 0.2811), or Proteobacteria (p = 0.0680) levels among the three groups; however, Fibrobacteres decreased in EML (p = 0.0431). At the genus level, there were no differences in Prevotella (p = 0.4280), Ruminococcus (p = 0.2639), Butyrivibrio (p = 0.4433), or Succiniclasticum (p = 0.0431) levels among the groups. Additionally, the dietary treatments had no significant effects on the archaeal community composition in the rumen. Therefore, EML and SMFP supplementation had no significant effects on the ruminal bacterial or archaeal community composition of finishing steers.


Assuntos
Archaea/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Dieta/veterinária , Microbioma Gastrointestinal/efeitos dos fármacos , Morus/química , Extratos Vegetais/farmacologia , Rúmen/microbiologia , Animais , Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Bacteroidetes/efeitos dos fármacos , Bacteroidetes/isolamento & purificação , Butyrivibrio/efeitos dos fármacos , Butyrivibrio/isolamento & purificação , Bovinos , Firmicutes/efeitos dos fármacos , Firmicutes/isolamento & purificação , Frutas/química , Folhas de Planta/química , Prevotella/efeitos dos fármacos , Prevotella/isolamento & purificação , Proteobactérias/efeitos dos fármacos , Proteobactérias/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Ruminococcus/efeitos dos fármacos , Ruminococcus/isolamento & purificação , Tenericutes/efeitos dos fármacos , Tenericutes/isolamento & purificação
7.
J Appl Microbiol ; 120(1): 29-40, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26481197

RESUMO

AIMS: To determine if Butyrivibrio fibrisolvens strain 3071 is able to use fructose polymers for growth and to identify the enzymes involved in their digestion. METHODS AND RESULTS: Strain 3071 utilized 97, 89, 85 and 60% of sucrose, timothy grass fructan, inulin oligosaccharides and inulin, respectively, in the growth medium. A cell extract from timothy grass fructan-grown bacteria was used for identification of fructanolytic enzymes by anion exchange chromatography, gel filtration, zymography and thin-layer chromatography. The bacterium synthesizes a specific endolevanase and a nonspecific ß-fructofuranosidase. Both enzymes occurred in two forms differing in molecular weight. The ß-fructofuranosidase was not able to digest long-chain inulin or timothy grass fructan, but degraded inulin oligosaccharides and sucrose. Addition of 1,4-dithioerythritol to an enzyme solution did not affect the activity of endolevanase(s), but increased the ability of ß-fructofuranosidase to digest sucrose. The digestion of timothy grass fructan by endolevanase(s) was described by Michaelis-Menten kinetics in which Km  = 2·82 g l(-1) and Vmax  = 4·01 µmoles reducing sugar equivalents × mg(-1)  × min(-1) . CONCLUSION: Strain 3071 synthesizes enzymes enabling it to use grass fructans for growth. SIGNIFICANCE AND IMPACT OF THE STUDY: Butyrivibrio fibrisolvens strain 3071 can be considered a member of the rumen fructanolytic guild.


Assuntos
Butyrivibrio/metabolismo , Frutanos/metabolismo , Rúmen/microbiologia , Animais , Proteínas de Bactérias/metabolismo , Butyrivibrio/classificação , Butyrivibrio/genética , Butyrivibrio/isolamento & purificação , Bovinos , Frutose/metabolismo , Inulina/metabolismo , Oligossacarídeos/metabolismo , Sacarose/metabolismo , beta-Frutofuranosidase/metabolismo
8.
FEMS Microbiol Ecol ; 92(1)2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26542074

RESUMO

This study investigated successional colonization of fresh perennial ryegrass (PRG) by the rumen microbiota over time. Fresh PRG was incubated in sacco in the rumens of three Holstein × Friesian cows over a period of 8 h, with samples recovered at various times. The diversity of attached bacteria was assessed using 454 pyrosequencing of 16S rRNA (cDNA). Results showed that plant epiphytic communities either decreased to low relative abundances or disappeared following rumen incubation, and that temporal colonization of the PRG by the rumen bacteria was biphasic with primary (1 and 2 h) and secondary (4-8 h) events evident with the transition period being with 2-4 h. A decrease in sequence reads pertaining to Succinivibrio spp. and increases in Pseudobutyrivibrio, Roseburia and Ruminococcus spp. (the latter all order Clostridiales) were evident during secondary colonization. Irrespective of temporal changes, the continually high abundances of Butyrivibrio, Fibrobacter, Olsenella and Prevotella suggest that they play a major role in the degradation of the plant. It is clear that a temporal understanding of the functional roles of these microbiota within the rumen is now required to unravel the role of these bacteria in the ruminal degradation of fresh PRG.


Assuntos
Bactérias/metabolismo , Microbioma Gastrointestinal/genética , Lolium/microbiologia , Rúmen/microbiologia , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Butyrivibrio/genética , Butyrivibrio/isolamento & purificação , Butyrivibrio/metabolismo , Bovinos , Feminino , Fibrobacter/genética , Fibrobacter/isolamento & purificação , Fibrobacter/metabolismo , Microbioma Gastrointestinal/fisiologia , Prevotella/genética , Prevotella/isolamento & purificação , Prevotella/metabolismo , RNA Ribossômico 16S/genética , Ruminococcus/genética , Ruminococcus/isolamento & purificação , Ruminococcus/metabolismo , Succinivibrionaceae/genética , Succinivibrionaceae/isolamento & purificação , Succinivibrionaceae/metabolismo
9.
J Dairy Sci ; 98(12): 8940-51, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26409956

RESUMO

Seven multiparous Holstein cows with a ruminal fistula were used to investigate the changes in rumen microbiota, gene expression of the ruminal epithelium, and blood biomarkers of metabolism and inflammation during the transition period. Samples of ruminal digesta, biopsies of ruminal epithelium, and blood were obtained during -14 through 28d in milk (DIM). A total of 35 genes associated with metabolism, transport, inflammation, and signaling were evaluated by quantitative reverse transcription-PCR. Among metabolic-related genes, expression of HMGCS2 increased gradually from -14 to a peak at 28 DIM, underscoring its central role in epithelial ketogenesis. The decrease of glucose and the increase of nonesterified fatty acids and ß-hydroxybutyrate in the blood after calving confirmed the state of negative energy balance. Similarly, increases in bilirubin and decreases in albumin concentrations after calving were indicative of alterations in liver function and inflammation. Despite those systemic signs, lower postpartal expression of TLR2, TLR4, CD45, and NFKB1 indicated the absence of inflammation within the epithelium. Alternatively, these could reflect an adaptation to react against inducers of the immune system arising in the rumen (e.g., bacterial endotoxins). The downregulation of RXRA, INSR, and RPS6KB1 between -14 and 10 DIM indicated a possible increase in insulin resistance. However, the upregulation of IRS1 during the same time frame could serve to restore sensitivity to insulin of the epithelium as a way to preserve its proliferative capacity. The upregulation of TGFB1 from -14 and 10 DIM coupled with upregulation of both EGFR and EREG from 10 to 28 DIM indicated the existence of 2 waves of epithelial proliferation. However, the downregulation of TGFBR1 from -14 through 28 DIM indicated some degree of cell proliferation arrest. The downregulation of OCLN and TJP1 from -14 to 10 DIM indicated a loss of tight-junction integrity. The gradual upregulation of membrane transporters MCT1 and UTB to peak levels at 28 DIM reflected the higher intake and fermentability of the lactation diet. In addition, those changes in the diet after calving resulted in an increase of butyrate and a decrease of ruminal pH and acetate, which partly explain the increase of Anaerovibrio lipolytica, Prevotella bryantii, and Megasphaera elsdenii and the decrease of fibrolytic bacteria (Fibrobacter succinogenes, Butyrivibrio proteoclasticus). Overall, these multitier changes revealed important features associated with the transition into lactation. Alterations in ruminal epithelium gene expression could be driven by nutrient intake-induced changes in microbes; microbial metabolism; and the systemic metabolic, hormonal, and immune changes. Understanding causes and mechanisms driving the interaction among ruminal bacteria and host immunometabolic responses merits further study.


Assuntos
Epitélio/metabolismo , Microbioma Gastrointestinal , Expressão Gênica , Rúmen/microbiologia , Ácido 3-Hidroxibutírico/sangue , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Butyrivibrio/isolamento & purificação , Bovinos , Proliferação de Células , Regulação para Baixo , Ingestão de Energia , Metabolismo Energético , Receptores ErbB/genética , Receptores ErbB/metabolismo , Ácidos Graxos não Esterificados/sangue , Feminino , Fermentação , Fibrobacter/isolamento & purificação , Concentração de Íons de Hidrogênio , Hidroximetilglutaril-CoA Sintase/genética , Hidroximetilglutaril-CoA Sintase/metabolismo , Inflamação/veterinária , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Lactação , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/metabolismo , Megasphaera/isolamento & purificação , Leite/química , Leite/metabolismo , Subunidade p50 de NF-kappa B/genética , Subunidade p50 de NF-kappa B/metabolismo , Prevotella/isolamento & purificação , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Regulação para Cima
10.
Br J Nutr ; 114(3): 358-67, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26123320

RESUMO

The ruminant provides a powerful model for understanding the temporal dynamics of gastrointestinal microbial communities. Diet-induced milk fat depression (MFD) in the dairy cow is caused by rumen-derived bioactive fatty acids, and is commonly attributed to the changes in the microbial population. The aim of the present study was to determine the changes occurring in nine ruminal bacterial taxa with well-characterised functions, and abundance of total fungi, ciliate protozoa and bacteria during the induction of and recovery from MFD. Interactions between treatment and time were observed for ten of the twelve populations. The total number of both fungi and ciliate protozoa decreased rapidly (days 4 and 8, respectively) by more than 90% during the induction period and increased during the recovery period. The abundance of Streptococcus bovis (amylolytic) peaked at 350% of control levels on day 4 of induction and rapidly decreased during the recovery period. The abundance of Prevotella bryantii (amylolytic) decreased by 66% from day 8 to 20 of the induction period and increased to the control levels on day 12 of the recovery period. The abundance of Megasphaera elsdenii and Selenomonas ruminantium (lactate-utilising bacteria) increased progressively until day 12 of induction (>170%) and decreased during the recovery period. The abundance of Fibrobacter succinogenes (fibrolytic) decreased by 97% on day 4 of induction and increased progressively to an equal extent during the recovery period, although smaller changes were observed for other fibrolytic bacteria. The abundance of the Butyrivibrio fibrisolvens/Pseudobutyrivibrio group decreased progressively during the induction period and increased during the recovery period, whereas the abundance of Butyrivibrio hungatei was not affected by treatment. Responsive taxa were modified rapidly, with the majority of changes occurring within 8 d and their time course was similar to the time course of the induction of MFD, demonstrating a strong correlation between changes in ruminal microbial populations and MFD.


Assuntos
Dieta/veterinária , Gorduras/análise , Leite/química , Rúmen/microbiologia , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Carga Bacteriana , Butyrivibrio/isolamento & purificação , Butyrivibrio/metabolismo , Bovinos , Dieta/efeitos adversos , Ácidos Graxos/biossíntese , Ácidos Graxos/farmacologia , Feminino , Fibrobacter/isolamento & purificação , Fibrobacter/metabolismo , Lactação , Lipídeos , Megasphaera/isolamento & purificação , Megasphaera/metabolismo , Microbiota/fisiologia , Prevotella/isolamento & purificação , Prevotella/metabolismo , Selenomonas/isolamento & purificação , Selenomonas/metabolismo , Streptococcus bovis/isolamento & purificação , Streptococcus bovis/metabolismo
11.
J Dairy Sci ; 98(2): 1145-56, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25434333

RESUMO

The aim of the study was to evaluate milk fatty acid (FA) profile, animal performance, and rumen microbial population in response to diets containing soybean oil supplemented or not with chestnut and quebracho tannins in dairy ewes. Eighteen Comisana ewes at 122±6 d in milking were allotted into 3 experimental groups. Diets were characterized by chopped grass hay administered ad libitum and by 800 g/head and day of 3 experimental concentrates containing 84.5 g of soybean oil/kg of dry matter (DM) and 52.8 g/kg of DM of bentonite (control diet), chestnut tannin extract (CHT diet), or quebracho tannin extract (QUE diet). The trial lasted 4 wk. Milk yield was recorded daily, and milk composition and blood parameters were analyzed weekly. At the end of the experiment, samples of rumen fluid were collected to analyze pH, volatile fatty acid profile, and the relative proportions of Butyrivibrio fibrisolvens and Butyrivibrio proteoclasticus in the rumen microbial population. Hepatic functionality, milk yield, and gross composition were not affected by tannin extracts, whereas milk FA composition was characterized by significant changes in the concentration of linoleic acid (CHT +2.77% and QUE +9.23%), vaccenic acid (CHT +7.07% and QUE +13.88%), rumenic acid (CHT -1.88% and QUE +24.24%), stearic acid (CHT + 8.71% and QUE -11.45%), and saturated fatty acids (CHT -0.47% and QUE -3.38%). These differences were probably due to the ability of condensed versus hydrolyzable tannins to interfere with rumen microbial metabolism, as indirectly confirmed by changes in the relative proportions of B. fibrisolvens and B. proteoclasticus populations and by changes in the molar proportions of volatile fatty acids. The effect of the CHT diet on the milk FA profile and microbial species considered in this trial was intermediate between that of QUE and the control diet, suggesting a differential effect of condensed and hydrolyzable tannins on rumen microbes. Compared with control animals, the presence of B. fibrisolvens increased about 3 times in ewes fed CHT and about 5 times in animals fed QUE. In contrast, the abundance of B. proteoclasticus decreased about 5- and 15-fold in rumen liquor of ewes fed CHT and QUE diets, respectively. The use of soybean oil and a practical dose of QUE or CHT extract in the diet of dairy ewes can be an efficient strategy to improve the nutritional quality of milk.


Assuntos
Ácidos Graxos/análise , Ácido Linoleico/administração & dosagem , Leite/química , Rúmen/microbiologia , Ovinos/fisiologia , Taninos/administração & dosagem , Animais , Butyrivibrio/isolamento & purificação , Indústria de Laticínios , Dieta/veterinária , Suplementos Nutricionais , Digestão , Ácidos Graxos Voláteis/análise , Feminino , Lactação/fisiologia , Valor Nutritivo , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Óleo de Soja/administração & dosagem
12.
J Dairy Sci ; 97(9): 5763-85, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24997657

RESUMO

Late-lactation Holstein cows (n=144) that were offered 15kg dry matter (DM)/cow per day of perennial ryegrass to graze were randomized into 24 groups of 6. Each group contained a fistulated cow and groups were allocated to 1 of 3 feeding strategies: (1) control (10 groups): cows were fed crushed wheat grain twice daily in the milking parlor and ryegrass silage at pasture; (2) partial mixed ration (PMR; 10 groups): PMR that was isoenergetic to the control diet and fed twice daily on a feed pad; (3) PMR+canola (4 groups): a proportion of wheat in the PMR was replaced with canola meal to produce more estimated metabolizable protein than other groups. Supplements were fed to the control and PMR cows at 8, 10, 12, 14, or 16kg of DM/d, and to the PMR+canola cows at 14 or 16kg of DM/d. The PMR-fed cows had a lower incidence of ruminal acidosis compared with controls, and ruminal acidosis increased linearly and quadratically with supplement fed. Yield of milk fat was highest in the PMR+canola cows fed 14 or 16kg of total supplement DM/d, followed by the PMR-fed cows, and was lowest in controls fed at these amounts; a similar trend was observed for milk fat percentage. Milk protein yield was higher in the PMR+canola cows fed 14 or 16kg of total supplement DM/d. Milk yield and milk protein percentage were not affected by feeding strategy. Milk, energy-corrected milk, and milk protein yields increased linearly with supplement fed, whereas milk fat percentage decreased. Ruminal butyrate and d-lactate concentrations, acetate-to-propionate ratio, (acetate + butyrate)/propionate, and pH increased in PMR-fed cows compared with controls for all supplement amounts, whereas propionate and valerate concentrations decreased. Ruminal acetate, butyrate, and ammonia concentrations, acetate-to-propionate ratio, (acetate + butyrate)/propionate, and pH linearly decreased with amounts of supplement fed. Ruminal propionate concentration linearly increased and valerate concentration linearly and quadratically increased with supplement feeding amount. The Bacteroidetes and Firmicutes were the dominant bacterial phyla identified. The Prevotellaceae, Ruminococcaceae, and Lachnospiraceae were the dominant bacterial families, regardless of feeding group, and were influenced by feeding strategy, supplement feeding amount, or both. The Veillonellaceae family decreased in relative abundance in PMR-fed cows compared with controls, and the Streptococcaeae and Lactobacillaceae families were present in only minor relative abundances, regardless of feeding group. Despite large among- and within-group variation in bacterial community composition, distinct bacterial communities occurred among feeding strategies, supplement amounts, and sample times and were associated with ruminal fermentation measures. Control cows fed 16kg of DM of total supplement per day had the most distinct ruminal bacterial community composition. Bacterial community composition was most significantly associated with supplement feeding amount and ammonia, butyrate, valerate, and propionate concentrations. Feeding supplements in a PMR reduced the incidence of ruminal acidosis and altered ruminal bacterial communities, regardless of supplement feeding amount, but did not result in increased milk measures compared with isoenergetic control diets component-fed to late-lactation cows.


Assuntos
Acidose/veterinária , Leite/química , Leite/metabolismo , Rúmen/microbiologia , Acetatos/metabolismo , Animais , Biomassa , Butiratos/metabolismo , Butyrivibrio/isolamento & purificação , Bovinos , DNA Bacteriano/genética , Dieta/veterinária , Gorduras na Dieta/análise , Ácidos Graxos Voláteis/análise , Feminino , Fermentação , Concentração de Íons de Hidrogênio , Lactação , Ácido Láctico/metabolismo , Lactobacillus/isolamento & purificação , Lolium , Megasphaera/isolamento & purificação , Proteínas do Leite/análise , Prevotella/isolamento & purificação , Propionatos/metabolismo , Estudos Prospectivos , RNA Ribossômico 16S/genética , Rúmen/metabolismo , Selenomonas/isolamento & purificação , Análise de Sequência de DNA , Silagem/análise , Streptococcus/isolamento & purificação , Triticum , Veillonella/isolamento & purificação
13.
Antonie Van Leeuwenhoek ; 103(5): 1057-68, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23354907

RESUMO

The effect of neutral detergent soluble fibre (NDSF) to neutral detergent fibre (NDF) dietary ratio (0.29, LR and 0.43, HR) on the caecal ecosystem of lactating does and their offspring was studied. From the 17th day of lactation, each diet was given to four does, allowing for free access to their litters. Does were sampled at 17 and 28 days of lactation, and also two pups per litter at 17 (milk-fed only), 28 (milk and solid fed) and 49 days of age. DGGE was used to study bacterial caecal biodiversity, and total bacterial concentration and relative proportions of Ruminococcus albus and Butyrivibrio fibrisolvens were quantified by real time PCR. In does, diet did not affect (P > 0.10) diversity indexes, total bacterial concentration or relative abundance of B. fibrisolvens, but at 28 days of lactation the proportion of R. albus was higher with LR (interaction Diet × Time, P = 0.037). Caecal communities of pups of 17 days were grouped by litter, but the influence of the mother was reduced at 28 days with solid feed intake, and at 49 days rabbits clustered by diet. Caecal biodiversity increased from 17 to 28 days, and was reduced at 49 days (Shannon index of 3.60, 3.71 and 3.57, respectively; P = 0.049). Total bacterial concentration and relative abundance of R. albus and B. fibrisolvens increased with solid feed intake from 17 to 28 days (P < 0.01), remaining unaffected thereafter. Access of pups to solid feed from 17 days of age modulates the development and composition of the caecal microbiota at weaning.


Assuntos
Biodiversidade , Ceco/microbiologia , Dieta/métodos , Fibras na Dieta/metabolismo , Animais , Animais Recém-Nascidos , Carga Bacteriana , Butyrivibrio/isolamento & purificação , DNA Bacteriano/genética , Eletroforese em Gel de Gradiente Desnaturante , Detergentes , Lactação , Coelhos , Ruminococcus/isolamento & purificação
14.
Can J Microbiol ; 57(7): 617-21, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21774627

RESUMO

Strains of Butyrivibrio are principal cellulytic bacteria in the rumen of the High Arctic Svalbard reindeer ( Rangifer tarandus platyrhynchus ). According to phylogenetic analysis based on 16S rRNA gene sequencing, Butyrivibrio can be divided into three subgroups within the Clostridia class of the phylum Firmicutes, but the current phenotypic and genotypic differentiation within the family Lachnospiraceae is insufficient. This current study describes the sequence diversity of the 16S-23S rRNA intergenic transcribed spacer (ITS) region of Butyrivibrio isolates from reindeer. A total of 17 different ITS sequences with sizes between 449 and 784 nt were obtained. Genes encoding tRNA(Ile) and tRNA(Ala) were identified in four of the sequences. Phylogenetic neighbor-joining trees were constructed based on the ITS sequence and compared with a phylogenetic neighbor-joining tree based on 16S rRNA gene sequences previously obtained for the same isolates. These comparisons indicated a better differentiation between strains in the ITS sequence than the 16S rRNA gene based tree. Through this study, a better means for identifying and tracking fibrolytic and potentially probiotic Butyrivibrio strains in reindeer and other ruminants has been provided.


Assuntos
Butyrivibrio/classificação , DNA Espaçador Ribossômico/química , Variação Genética , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Rena/microbiologia , Animais , Butyrivibrio/genética , Butyrivibrio/isolamento & purificação , Genes de RNAr , Filogenia , RNA de Transferência/genética , Rúmen/microbiologia
15.
Appl Environ Microbiol ; 76(8): 2549-55, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20173064

RESUMO

This study evaluated the effects of tannins on ruminal biohydrogenation (BH) due to shifts in the ruminal microbial environment in sheep. Thirteen lambs (45 days of age) were assigned to two dietary treatments: seven lambs were fed a barley-based concentrate (control group) while the other six lambs received the same concentrate with supplemental quebracho tannins (9.57% of dry matter). At 122 days of age, the lambs were slaughtered, and the ruminal contents were subjected to fatty acid analysis and sampled to quantify populations of Butyrivibrio fibrisolvens, which converts C(18:2) c9-c12 (linoleic acid [LA]) to C(18:2) c9-t11 (rumenic acid [RA]) and then RA to C(18:1) t11 (vaccenic acid [VA]); we also sampled for Butyrivibrio proteoclasticus, which converts VA to C(18:0) (stearic acid [SA]). Tannins increased (P < 0.005) VA in the rumen compared to the tannin-free diet. The concentration of SA was not affected by tannins. The SA/VA ratio was lower (P < 0.005) for the tannin-fed lambs than for the controls, suggesting that the last step of the BH process was inhibited by tannins. The B. proteoclasticus population was lower (-30.6%; P < 0.1), and B. fibrisolvens and protozoan populations were higher (+107% and +56.1%, respectively; P < 0.05) in the rumen of lambs fed the tannin-supplemented diet than in controls. These results suggest that quebracho tannins altered BH by changing ruminal microbial populations.


Assuntos
Dieta/métodos , Ácidos Graxos/análise , Rúmen/microbiologia , Rúmen/parasitologia , Ovinos/fisiologia , Taninos/administração & dosagem , Animais , Butyrivibrio/isolamento & purificação , Contagem de Colônia Microbiana , Eucariotos/isolamento & purificação , Hordeum , Rúmen/química
16.
J Dairy Sci ; 92(9): 4456-66, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19700707

RESUMO

Milk fat depression in cows fed high-grain diets has been related to an increase in the concentration of trans-10 C(18:1) and trans-10,cis-12 conjugated linoleic acid (CLA) in milk. These fatty acids (FA) are produced as a result of the alteration in rumen biohydrogenation of dietary unsaturated FA. Because a reduction in ruminal pH is usually observed when high-concentrate diets are fed, the main cause that determines the alteration in the biohydrogenation pathways is not clear. The effect of pH (6.4 vs. 5.6) and dietary forage to concentrate ratios (F:C; 70:30 F:C vs. 30:70 F:C) on rumen microbial fermentation, effluent FA profile, and DNA concentration of bacteria involved in lipolysis and biohydrogenation processes were investigated in a continuous culture trial. The dual-flow continuous culture consisted of 2 periods of 8 d (5 d for adaptation and 3 d for sampling), with a 2 x 2 factorial arrangement of treatments. Samples from solid and liquid mixed effluents were taken for determination of total N, ammonia-N, and volatile fatty acid concentrations, and the remainder of the sample was lyophilized. Dry samples were analyzed for dry matter, ash, neutral and acid detergent fiber, FA, and purine contents. The pH 5.6 reduced organic matter and fiber digestibility, ammonia-N concentration and flow, and crude protein degradation, and increased nonammonia and dietary N flows. The pH 5.6 decreased the flow of C(18:0), trans-11 C(18:1) and cis-9, trans-11 CLA, and increased the flow of trans-10 C(18:1), C(18:2n-6), C(18:3n-3), trans-11,cis-15 C(18:2) and trans-10,cis-12 CLA in the 1 h after feeding effluent. The pH 5.6 reduced Anaerovibrio lipolytica (32.7 vs. 72.1 pg/10 ng of total DNA) and Butyrivibrio fibrisolvens vaccenic acid subgroup (588 vs. 1,394 pg/10 ng of total DNA) DNA concentrations. The high-concentrate diet increased organic matter and fiber digestibility, nonammonia and bacterial N flows, and reduced ammonia-N concentration and flow. The high-concentrate diet reduced trans-11 C(18:1) and trans-10 C(18:1), and increased C(18:2n-6), C(18:3n-3) and trans-10,cis-12 CLA proportions in the 1 h after feeding effluent. The increase observed in trans-10,cis-12 CLA proportion in the 1 h after feeding effluent due to the high-concentrate diet was smaller that that observed at pH 5.6. Results indicate that the pH is the main cause of the accumulation of trans-10 C(18:1) and trans-10, cis-12 CLA in the effluent, but the trans-10,cis-12 CLA proportion can be also affected by high levels of concentrate in the diet.


Assuntos
Dieta/veterinária , Animais , Butyrivibrio/crescimento & desenvolvimento , Butyrivibrio/isolamento & purificação , Bovinos , DNA Bacteriano/análise , Feminino , Fermentação/fisiologia , Concentração de Íons de Hidrogênio , Hidrogenação , Técnicas In Vitro , Rúmen/metabolismo , Veillonellaceae/crescimento & desenvolvimento , Veillonellaceae/isolamento & purificação
17.
Microbiology (Reading) ; 155(Pt 1): 285-294, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19118369

RESUMO

Faecal bacteria from four human donors and six species of human intestinal bacteria known to metabolize linoleic acid (LA) were incubated with LA in deuterium oxide-enriched medium to investigate the mechanisms of conjugated linoleic acid (CLA) and vaccenic acid (VA) formation. The main CLA products in faecal suspensions, rumenic acid (cis-9,trans-11-CLA; RA) and trans-9,trans-11-CLA, were labelled at C-13, as were other 9,11 geometric isomers. Traces of trans-10,cis-12-CLA formed were labelled to a much lower extent. In pure culture, Bifidobacterium breve NCFB 2258 formed labelled RA and trans-9,trans-11-CLA, while Butyrivibrio fibrisolvens 16.4, Roseburia hominis A2-183T, Roseburia inulinivorans A2-192T and Ruminococcus obeum-like strain A2-162 converted LA to VA, labelled in a manner indicating that VA was formed via C-13-labelled RA. Propionibacterium freudenreichii subsp. shermanii DSM 4902T, a possible probiotic, formed mainly RA with smaller amounts of trans-10,cis-12-CLA and trans-9,trans-11-CLA, labelled the same as in the mixed microbiota. Ricinoleic acid (12-OH-cis-9-18 : 1) did not form CLA in the mixed microbiota, in contrast to CLA formation described for Lactobacillus plantarum. These results were similar to those reported for the mixed microbiota of the rumen. Thus, although the bacterial genera and species responsible for biohydrogenation in the rumen and the human intestine differ, and a second route of RA formation via a 10-OH-18 : 1 is present in the intestine, the overall labelling patterns of different CLA isomers formation are common to both gut ecosystems. A hydrogen-abstraction enzymic mechanism is proposed that may explain the role of a 10-OH-18 : 1 intermediate in 9,11-CLA formation in pure and mixed cultures.


Assuntos
Butyrivibrio/crescimento & desenvolvimento , Fezes/microbiologia , Bactérias Gram-Positivas/crescimento & desenvolvimento , Intestinos/microbiologia , Ácidos Linoleicos Conjugados/metabolismo , Ácidos Oleicos/metabolismo , Adulto , Butyrivibrio/isolamento & purificação , Butyrivibrio/metabolismo , Meios de Cultura/metabolismo , Fezes/química , Bactérias Gram-Positivas/isolamento & purificação , Bactérias Gram-Positivas/metabolismo , Humanos , Isomerismo , Ácidos Linoleicos Conjugados/química , Pessoa de Meia-Idade , Ácidos Oleicos/química
18.
J Appl Microbiol ; 103(4): 1251-61, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17897229

RESUMO

AIMS: All members of the ruminal Butyrivibrio group convert linoleic acid (cis-9,cis-12-18:2) via conjugated 18:2 metabolites (mainly cis-9,trans-11-18:2, conjugated linoleic acid) to vaccenic acid (trans-11-18:1), but only members of a small branch, which includes Clostridium proteoclasticum, of this heterogeneous group further reduce vaccenic acid to stearic acid (18:0, SA). The aims of this study were to develop a real-time polymerase chain reaction (PCR) assay that would detect and quantify these key SA producers and to use this method to detect diet-associated changes in their populations in ruminal digesta of lactating cows. METHODS AND RESULTS: The use of primers targeting the 16S rRNA gene of Cl. proteoclasticum was not sufficiently specific when only binding dyes were used for detection in real-time PCR. Their sequences were too similar to some nonproducing strains. A molecular beacon probe was designed specifically to detect and quantify the 16S rRNA genes of the Cl. proteoclasticum subgroup. The probe was characterized by its melting curve and validated using five SA-producing and ten nonproducing Butyrivibrio-like strains and 13 other common ruminal bacteria. Analysis of ruminal digesta collected from dairy cows fed different proportions of starch and fibre indicated a Cl. proteoclasticum population of 2-9% of the eubacterial community. The influence of diet on numbers of these bacteria was less than variations between individual cows. CONCLUSIONS: A molecular beacon approach in qPCR enables the detection of Cl. proteoclasticum in ruminal digesta. Their numbers are highly variable between individual animals. SIGNIFICANCE AND IMPACT OF THE STUDY: SA producers are fundamental to the flow of polyunsaturated fatty acid and vaccenic acid from the rumen. The method described here enabled preliminary information to be obtained about the size of this population. Further application of the method to digesta samples from cows fed diets of more variable composition should enable us to understand how to control these bacteria in order to enhance the nutritional characteristics of ruminant-derived foods, including milk and beef.


Assuntos
Clostridium/isolamento & purificação , Rúmen/microbiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Técnicas de Tipagem Bacteriana/métodos , Butyrivibrio/isolamento & purificação , Butyrivibrio/metabolismo , Bovinos , Clostridium/genética , Clostridium/metabolismo , DNA Bacteriano/análise , Dieta , Feminino , Conteúdo Gastrointestinal/microbiologia , Reação em Cadeia da Polimerase/métodos , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Rúmen/metabolismo , Ácidos Esteáricos/metabolismo
19.
Folia Microbiol (Praha) ; 51(4): 294-8, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17007429

RESUMO

The influence of a host's diet on Butyrivibrio and Pseudobutyrivibrio populations was investigated by competitive PCR. Specific primers were designed and competitive PCRs developed for both groups. Results (from 4 cows with different diets) suggested that high-fiber intake essentially increases the Butyrivibrio amounts in the rumen, whereas high-energy food additives lead to its suppression. The Pseudobutyrivibrio concentration also changed during the experiment but without any significant relation to the host's diet.


Assuntos
Butiratos/metabolismo , Butyrivibrio/genética , Clostridium/genética , Bacilos e Cocos Aeróbios Gram-Negativos/genética , Rúmen/microbiologia , Ração Animal , Animais , Butyrivibrio/crescimento & desenvolvimento , Butyrivibrio/isolamento & purificação , Bovinos , Clostridium/crescimento & desenvolvimento , Clostridium/isolamento & purificação , Contagem de Colônia Microbiana , DNA Bacteriano/análise , Fibras na Dieta , Bacilos e Cocos Aeróbios Gram-Negativos/crescimento & desenvolvimento , Bacilos e Cocos Aeróbios Gram-Negativos/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 16S/classificação , RNA Ribossômico 16S/genética
20.
J Appl Microbiol ; 100(4): 787-94, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16553734

RESUMO

AIM: Isolation of a new strain of Butyrivibrio fibrisolvens possessing great capacity to produce conjugated linoleic acid (CLA) in order to utilize as a probiotic for animals. METHODS AND RESULTS: A novel strain (MDT-5) was isolated from the goat rumen, which exclusively converted linoleic acid (LA) to CLA, because of its high LA isomerase activity with virtually no CLA reductase activity. MDT-5 also converted linolenic acid to conjugated linolenic acid that may be more bioactive than CLA. The oral administration of MDT-5 every other day to mice for 2 weeks resulted in increased amounts of CLA in the contents of the large intestine (2.5-fold), as well as in adipose tissue (threefold). Feeding a high-LA diet, as well as prolonging the period of MDT-5 administration, further increased the CLA content in body fat. CONCLUSIONS: MDT-5 has by far greater ability to produce CLA than any other known bacteria. Administration of MDT-5 to mice increases CLA production in the large intestine, which results in increased CLA absorption. SIGNIFICANCE AND IMPACT OF THE STUDY: MDT-5 may be useful in pet animals as a probiotic to provide CLA continuously.


Assuntos
Butyrivibrio/isolamento & purificação , Ácidos Linoleicos/metabolismo , Probióticos/administração & dosagem , Tecido Adiposo/metabolismo , Administração Oral , Animais , Dieta , Cabras , Intestino Grosso/metabolismo , Isomerismo , Ácido Linoleico/administração & dosagem , Ácido Linoleico/metabolismo , Ácidos Linoleicos Conjugados/análise , Ácidos Linoleicos Conjugados/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Rúmen/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...