Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Blood ; 139(8): 1177-1183, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-34797911

RESUMO

Natural killer (NK) cells are a promising alternative to T cells for cancer immunotherapy. Adoptive therapies with allogeneic, cytokine-activated NK cells are being investigated in clinical trials. However, the optimal cytokine support after adoptive transfer to promote NK cell expansion, and persistence remains unclear. Correlative studies from 2 independent clinical trial cohorts treated with major histocompatibility complex-haploidentical NK cell therapy for relapsed/refractory acute myeloid leukemia revealed that cytokine support by systemic interleukin-15 (IL-15; N-803) resulted in reduced clinical activity, compared with IL-2. We hypothesized that the mechanism responsible was IL-15/N-803 promoting recipient CD8 T-cell activation that in turn accelerated donor NK cell rejection. This idea was supported by increased proliferating CD8+ T-cell numbers in patients treated with IL-15/N-803, compared with IL-2. Moreover, mixed lymphocyte reactions showed that IL-15/N-803 enhanced responder CD8 T-cell activation and proliferation, compared with IL-2 alone. Additionally, IL-15/N-803 accelerated the ability of responding T cells to kill stimulator-derived memory-like NK cells, demonstrating that additional IL-15 can hasten donor NK cell elimination. Thus, systemic IL-15 used to support allogeneic cell therapy may paradoxically limit their therapeutic window of opportunity and clinical activity. This study indicates that stimulating patient CD8 T-cell allo-rejection responses may critically limit allogeneic cellular therapy supported with IL-15. This trial was registered at www.clinicaltrials.gov as #NCT03050216 and #NCT01898793.


Assuntos
Antineoplásicos/administração & dosagem , Linfócitos T CD8-Positivos/imunologia , Transplante de Células-Tronco Hematopoéticas , Imunoterapia Adotiva , Interleucina-15/administração & dosagem , Células Matadoras Naturais/transplante , Leucemia Mieloide Aguda , Proteínas Recombinantes de Fusão/administração & dosagem , Células Alógenas/imunologia , Feminino , Humanos , Interleucina-15/imunologia , Células Matadoras Naturais/imunologia , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/terapia , Masculino
2.
Front Immunol ; 12: 727814, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925312

RESUMO

Posttransplant smooth muscle tumors (PTSMTs) are rare Epstein-Barr virus (EBV)-associated neoplasms, mostly occurring after solid organ transplantation. Current therapeutic strategies include surgery and reduction of immunosuppressive medication. We describe for the first time a novel treatment approach for PTSMT by adoptive cell transfer (ACT) of EBV-specific T cells to a 20-year-old patient with a medical history of cardiac transplantation, posttransplant lymphoproliferative disease, and multilocular PTSMT. During ACT, mild cytokine release syndrome occurred, while no unexpected safety signals were recorded. We observed in vivo expansion of EBV-specific T cells and reduction of EBV viremia. Best response was stable disease after 4 months with reduction of EBV viremia and normalization of lactate dehydrogenase levels. ACT with EBV-specific T cells may be a safe and efficacious therapeutic option for PTSMT that warrants further exploration.


Assuntos
Transferência Adotiva/efeitos adversos , Células Alógenas/imunologia , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/terapia , Transplante de Coração/efeitos adversos , Herpesvirus Humano 4/imunologia , Tumor de Músculo Liso/complicações , Tumor de Músculo Liso/terapia , Linfócitos T/imunologia , Transferência Adotiva/métodos , Infecções por Vírus Epstein-Barr/virologia , Feminino , Humanos , Transtornos Linfoproliferativos/etiologia , Tumor de Músculo Liso/etiologia , Transplante Homólogo , Resultado do Tratamento , Viremia/complicações , Viremia/terapia , Adulto Jovem
3.
Front Immunol ; 12: 732135, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925314

RESUMO

Natural killer cells (NK cells) are the first line of the innate immune defense system, primarily located in peripheral circulation and lymphoid tissues. They kill virally infected and malignant cells through a balancing play of inhibitory and stimulatory receptors. In pre-clinical investigational studies, NK cells show promising anti-tumor effects and are used in adoptive transfer of activated and expanded cells, ex-vivo. NK cells express co-stimulatory molecules that are attractive targets for the immunotherapy of cancers. Recent clinical trials are investigating the use of CAR-NK for different cancers to determine the efficiency. Herein, we review NK cell therapy approaches (NK cell preparation from tissue sources, ways of expansion ex-vivo for "off-the-shelf" allogeneic cell-doses for therapies, and how different vector delivery systems are used to engineer NK cells with CARs) for cancer immunotherapy.


Assuntos
Células Alógenas/imunologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/imunologia , Neoplasias/terapia , Receptores de Antígenos Quiméricos/imunologia , Engenharia Celular/métodos , Sangue Fetal/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neoplasias/imunologia , Receptores de Antígenos Quiméricos/genética , Resultado do Tratamento
4.
Bull Cancer ; 108(10S): S73-S80, 2021 Oct.
Artigo em Francês | MEDLINE | ID: mdl-34920810

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy represents a major breakthrough in the field of hematology. "Off-the-shelf" allogeneic CAR T-cells from donors have many potential advantages over autologous approaches, such as the immediate availability of cryopreserved batches, possible standardization of the cell product, time for multiple cell modifications, redosing and decreased cost. However, allogeneic T-cells possess foreign immunological identities that can lead to graft-versus-host disease (GvHD) and their rejection by the host immune system. In this review, we describe the different approaches to produce allogeneic CAR T-cells with limited potential for GvHD and that can persist in the recipient. The preliminary clinical results obtained with the first generation of allogeneic CAR T-cells are presented as well as the perspectives in hematological malignancies and solid tumors.


Assuntos
Células Alógenas/citologia , Doença Enxerto-Hospedeiro/prevenção & controle , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/transplante , Células Alógenas/imunologia , Bancos de Espécimes Biológicos , Edição de Genes/métodos , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Doença Enxerto-Hospedeiro/imunologia , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/terapia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/transplante , Depleção Linfocítica , Células T de Memória/imunologia , Células T de Memória/transplante , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia
5.
Bull Cancer ; 108(10S): S81-S91, 2021 Oct.
Artigo em Francês | MEDLINE | ID: mdl-34920811

RESUMO

Immunotherapy with chimeric antigen receptor engineered-T cells (CAR-T) has revolutionized the landscape of treatment of relapsed or refractory B-cell. However, the use of autologous T cells has limitations: variable quality of collected effector T cells, duration of the process sometimes incompatible with uncontrolled hemopathy, limited number of available CAR cells, sometimes fatal toxicities, extremely high cost. Natural Killer (NK) cells are an interesting alternative to T cells. NK cells are very powerful cytotoxic effectors that have demonstrated an anti-tumor effect after haploidentical hematopoietic stem cells transplantation or in adoptive cell therapy against a number of solid or hematological tumors. Mainly, they can be used in allogeneic situations without causing major toxic side effects. The sources of NK cells are multiple: cell line, cord blood, peripheral blood, induced pluripotent stem cells. Recent advances in manufacturing engineered CAR-NK cells make it possible to promote antibody-dependent cell-mediated cytotoxicity (ADCC), as well as the activation and persistence of these cells, notably via the cytokine Il-15. The majority of the reports on CAR-NK cells concern pre-clinical or early clinical trials. However, the many advantages of "off-the-shelf" allogeneic CAR-NK cells provide great potential in cancer treatments.


Assuntos
Células Alógenas , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/transplante , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/transplante , Células Alógenas/citologia , Células Alógenas/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Células Sanguíneas , Engenharia Celular , Linhagem Celular , Sangue Fetal/citologia , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/terapia , Transplante de Células-Tronco Hematopoéticas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Neoplasias/imunologia , Neoplasias/terapia , Linfócitos T/citologia , Linfócitos T/imunologia
6.
Cells ; 10(11)2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34831455

RESUMO

DCP-001 is a cell-based cancer vaccine generated by differentiation and maturation of cells from the human DCOne myeloid leukemic cell line. This results in a vaccine comprising a broad array of endogenous tumor antigens combined with a mature dendritic cell (mDC) costimulatory profile, functioning as a local inflammatory adjuvant when injected into an allogeneic recipient. Intradermal DCP-001 vaccination has been shown to be safe and feasible as a post-remission therapy in acute myeloid leukemia. In the current study, the mode of action of DCP-001 was further characterized by static and dynamic analysis of the interaction between labelled DCP-001 and host antigen-presenting cells (APCs). Direct cell-cell interactions and uptake of DCP-001 cellular content by APCs were shown to depend on DCP-001 cell surface expression of calreticulin and phosphatidylserine, while blockade of CD47 enhanced the process. Injection of DCP-001 in an ex vivo human skin model led to its uptake by activated skin-emigrating DCs. These data suggest that, following intradermal DCP-001 vaccination, local and recruited host APCs capture tumor-associated antigens from the vaccine, become activated and migrate to the draining lymph nodes to subsequently (re)activate tumor-reactive T-cells. The improved uptake of DCP-001 by blocking CD47 rationalizes the possible combination of DCP-001 vaccination with CD47 blocking therapies.


Assuntos
Células Alógenas/imunologia , Antígeno CD47/antagonistas & inibidores , Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Fosfatidilserinas/metabolismo , Células Apresentadoras de Antígenos/imunologia , Antígeno CD47/metabolismo , Diferenciação Celular , Membrana Celular/metabolismo , Quimiocinas/metabolismo , Humanos , Inflamação/patologia , Modelos Biológicos , Fagocitose , Fenótipo , Pinocitose , Transdução de Sinais
7.
Cell Rep Med ; 2(11): 100449, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34841295

RESUMO

Cell-based immunotherapy has become the new-generation cancer medicine, and "off-the-shelf" cell products that can be manufactured at large scale and distributed readily to treat patients are necessary. Invariant natural killer T (iNKT) cells are ideal cell carriers for developing allogeneic cell therapy because they are powerful immune cells targeting cancers without graft-versus-host disease (GvHD) risk. However, healthy donor blood contains extremely low numbers of endogenous iNKT cells. Here, by combining hematopoietic stem cell (HSC) gene engineering and in vitro differentiation, we generate human allogeneic HSC-engineered iNKT (AlloHSC-iNKT) cells at high yield and purity; these cells closely resemble endogenous iNKT cells, effectively target tumor cells using multiple mechanisms, and exhibit high safety and low immunogenicity. These cells can be further engineered with chimeric antigen receptor (CAR) to enhance tumor targeting or/and gene edited to ablate surface human leukocyte antigen (HLA) molecules and further reduce immunogenicity. Collectively, these preclinical studies demonstrate the feasibility and cancer therapy potential of AlloHSC-iNKT cell products and lay a foundation for their translational and clinical development.


Assuntos
Células Alógenas/imunologia , Engenharia Celular , Células-Tronco Hematopoéticas/imunologia , Imunoterapia , Células T Matadoras Naturais/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Células Alógenas/metabolismo , Animais , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Antígenos HLA/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Células T Matadoras Naturais/metabolismo , Fenótipo , Receptores de Antígenos Quiméricos/metabolismo , Transcriptoma/genética
8.
Front Immunol ; 12: 640082, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746981

RESUMO

Chimeric antigen receptor (CAR) T cell therapy has emerged as one of the major breakthroughs in cancer immunotherapy in the last decade. Outstanding results in hematological malignancies and encouraging pre-clinical anti-tumor activity against a wide range of solid tumors have made CAR T cells one of the most promising fields for cancer therapies. CAR T cell therapy is currently being investigated in solid tumors including glioblastoma (GBM), a tumor for which survival has only modestly improved over the past decades. CAR T cells targeting EGFRvIII, Her2, or IL-13Rα2 have been tested in GBM, but the first clinical trials have shown modest results, potentially due to GBM heterogeneity and to the presence of an immunosuppressive microenvironment. Until now, the use of autologous T cells to manufacture CAR products has been the norm, but this approach has several disadvantages regarding production time, cost, manufacturing delay and dependence on functional fitness of patient T cells, often reduced by the disease or previous therapies. Universal "off-the-shelf," or allogeneic, CAR T cells is an alternative that can potentially overcome these issues, and allow for multiple modifications and CAR combinations to target multiple tumor antigens and avoid tumor escape. Advances in genome editing tools, especially via CRISPR/Cas9, might allow overcoming the two main limitations of allogeneic CAR T cells product, i.e., graft-vs.-host disease and host allorejection. Here, we will discuss how allogeneic CAR T cells could allow for multivalent approaches and alteration of the tumor microenvironment, potentially allowing the development of next generation therapies for the treatment of patients with GBM.


Assuntos
Células Alógenas/imunologia , Glioblastoma/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Animais , Antígenos de Neoplasias/imunologia , Humanos , Microambiente Tumoral/imunologia
9.
Transplant Proc ; 53(1): 408-416, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32616346

RESUMO

PURPOSE: MicroRNA could be biomarker and therapeutic target for rejection. The aim of this study was to investigate the role of miR-142-5p in allogeneic immune responses using in vitro and in vivo models. MATERIALS AND METHODS: Primary and immortalized human umbilical vein endothelial cells (HUVECs) were cultured with unrelated blood mononuclear cells to induce allogeneic immune responses. Syngeneic and allogeneic skin graft was performed in mice. Flow cytometry, quantitative reverse transcription-polymerase chain reaction, and Western blotting was performed to understand the underlying mechanisms. RESULTS: miR-142-5p was up-regulated in primary HUVEC and a HUVEC line when allogeneic immune responses were elicited. miR-142-5p was also up-regulated in the murine allogeneic skin graft. Overexpression of miR-142-5p in HUVEC increased the expression of HLA-ABC and HLA-DR additively to allogeneic immune responses, suggesting a possible increase in alloantigen presentation. Inhibition of miR-142-5p reduced the expression of HLA-DR. ZEB1, a putative target gene of miR-142-5p, was down-regulated in HUVEC on allogeneic immune response as well as in murine allogeneic skin graft. CONCLUSION: These results suggest that the up-regulation of miR-142-5p on allogeneic immune response might facilitate endothelial activation to exacerbate rejection.


Assuntos
Aloenxertos/imunologia , Rejeição de Enxerto/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Células Endoteliais da Veia Umbilical Humana/imunologia , MicroRNAs/imunologia , Células Alógenas/imunologia , Animais , Feminino , Humanos , Imunidade/imunologia , Camundongos , Regulação para Cima
10.
Front Immunol ; 11: 375, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32300340

RESUMO

Regulatory T cells play an important role in the control of autoimmune diseases and maintenance of tolerance. In the context of transplantation, regulatory T cells (Tregs) have been proposed as new therapeutic tools that may induce allospecific tolerance toward the graft, avoiding the side effects induced by generalized immunosuppressors. Although most clinical trials are based on the use of thymic Tregs in adoptive therapy, some reports suggest the potential use of in vitro induced Tregs (iTregs), based on their functional stability under inflammatory conditions, indicating an advantage in a setting of allograft rejection. The aim of this work was to generate and expand large numbers of allospecific Tregs that maintain stable suppressive function in the presence of pro-inflammatory cytokines. Dendritic cells were derived from monocytes isolated from healthy donors and were co-cultured with CTV-labeled naïve T cells from unrelated individuals, in the presence of TGF-ß1, IL-2, and retinoic acid. After 7 days of co-culture, proliferating CD4+CD25++CTV- cells (allospecific iTregs) were sorted and polyclonally expanded for 6 weeks in the presence of TGF-ß1, IL-2, and rapamycin. After 6 weeks of polyclonal activation, iTregs were expanded 230,000 times, giving rise to 4,600 million allospecific iTregs. Allospecific iTregs were able to specifically suppress the proliferation of autologous CD4+ and CD8+ T cells in response to the allo-MoDCs used for iTreg generation, but not to third-party allo-MoDCs. Importantly, 88.5% of the expanded cells were CD4+CD25+FOXP3+, expressed high levels of CCR4 and CXCR3, and maintained their phenotype and suppressive function in the presence of TNF-α and IL-6. Finally, analysis of the methylation status of the FOXP3 TSDR locus demonstrated a 40% demethylation in the purified allospecific iTreg, prior to the polyclonal expansion. Interestingly, the phenotype and suppressive activity of expanded allospecific iTregs were maintained after 6 weeks of expansion, despite an increase in the methylation status of the FOXP3 TSDR. In conclusion, this is the first report that demonstrates a large-scale generation of allospecific iTregs that preserve a stable phenotype and suppressor function in the presence of pro-inflammatory cytokines and pave the way for adoptive cell therapy with iTregs in transplanted patients.


Assuntos
Células Alógenas/imunologia , Técnicas de Cultura de Células/métodos , Imunoterapia Adotiva/métodos , Linfócitos T Reguladores/imunologia , Células Alógenas/citologia , Humanos , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/transplante
11.
Med. clín (Ed. impr.) ; 154(4): 134-141, feb. 2020. graf, tab
Artigo em Espanhol | IBECS | ID: ibc-189071

RESUMO

A pesar de la mejoría en el pronóstico del cáncer infantil, la recaída o la refractariedad a los tratamientos convencionales todavía condicionan un mal pronóstico. En el momento actual, la investigación en el área de la inmunoterapia, con medicamentos como los inhibidores de puntos críticos de control inmunitario y los linfocitos T modificados genéticamente, tisagenlecleucel o axicabtagene ciloleucel, están revolucionando el tratamiento del cáncer. En paralelo, se están desarrollando otras inmunoterapias, como la terapia celular con linfocitos natural killer (NK). La rápida y potente actividad citotóxica de las células NK respetando las células sanas y la posibilidad de expandirlas, manipularlas y combinarlas con otros tratamientos, hacen de estas células una poderosa herramienta terapéutica a desarrollar, con un perfil de seguridad muy alto. Además, se están desarrollando nuevas estrategias para incrementar el beneficio terapéutico de estas células, como la manipulación genética para la expresión de receptores de antígeno quiméricos


Children and adolescents suffering from refractory leukaemia, relapse after stem cell transplantation, solid metastatic tumour or refractory to conventional treatments still condition a dismal prognosis. The critical role of the immune system in the immunosurveillance of cancer is becoming relevant with the development of new treatments such as the checkpoint inhibitor drugs and genetic modified T lymphocytes, tisagenlecleucel or axicabtagene ciloleucel. In addition, other immunotherapies are being developed such as cell therapy with natural killer (NK) lymphocytes. The rapid and potent cytotoxic activity of NK cells respecting healthy cells and the possibility of expansion, manipulating them and combining them with other treatments, make these cells a powerful therapeutic tool to be developed, with a very high safety profile. Furthermore, new strategies are being developed to increase the therapeutic benefit of NK cells such as genetic manipulation for the expression of chimeric antigen receptors


Assuntos
Humanos , Células Matadoras Naturais/imunologia , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Imunoterapia Adotiva , Biologia Celular , Células Alógenas/imunologia
12.
Front Immunol ; 11: 598402, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488592

RESUMO

COVID-19 disease caused by the SARS-CoV-2 virus is characterized by dysregulation of effector T cells and accumulation of exhausted T cells. T cell responses to viruses can be corrected by adoptive cellular therapy using donor-derived virus-specific T cells. One approach is the establishment of banks of HLA-typed virus-specific T cells for rapid deployment to patients. Here we show that SARS-CoV-2-exposed blood donations contain CD4 and CD8 memory T cells which recognize SARS-CoV-2 spike, nucleocapsid and membrane antigens. Peptides of these antigens can be used to isolate virus-specific T cells in a GMP-compliant process. The isolated T cells can be rapidly expanded using GMP-compliant reagents for use as an allogeneic therapy. Memory and effector phenotypes are present in the selected virus-specific T cells, but our method rapidly expands the desirable central memory phenotype. A manufacturing yield ranging from 1010 to 1011 T cells can be obtained within 21 days culture. Thus, multiple therapeutic doses of virus-specific T cells can be rapidly generated from convalescent donors for potential treatment of COVID-19 patients.


Assuntos
Células Alógenas/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Doadores de Sangue , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Humanos , Memória Imunológica/imunologia , Imunoterapia Adotiva , Ativação Linfocitária/imunologia , Proteínas de Membrana/imunologia , Fosfoproteínas/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia
13.
Front Immunol ; 11: 618427, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488631

RESUMO

Adoptive cellular immunotherapy using immune cells expressing chimeric antigen receptors (CARs) has shown promise, particularly for the treatment of hematological malignancies. To date, the majority of clinically evaluated CAR cell products have been derived from autologous immune cells. While this strategy can be effective it also imposes several constraints regarding logistics. This includes i) availability of center to perform leukapheresis, ii) necessity for shipment to and from processing centers, and iii) time requirements for product manufacture and clinical release testing. In addition, previous cytotoxic therapies can negatively impact the effector function of autologous immune cells, which may then affect efficacy and/or durability of resultant CAR products. The use of allogeneic CAR cell products generated using cells from healthy donors has the potential to overcome many of these limitations, including through generation of "off the shelf" products. However, allogeneic CAR cell products come with their own challenges, including potential to induce graft-versus-host-disease, as well as risk of immune-mediated rejection by the host. Here we will review promises and challenges of allogeneic CAR immunotherapies, including those being investigated in preclinical models and/or early phase clinical studies.


Assuntos
Células Alógenas/imunologia , Aloenxertos/imunologia , Imunoterapia Adotiva/métodos , Transplante Homólogo/métodos , Animais , Humanos , Receptores de Antígenos Quiméricos
14.
Front Immunol ; 11: 586168, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584651

RESUMO

Cellular immunotherapy using chimeric antigen receptors (CARs) so far has almost exclusively used autologous peripheral blood-derived T cells as immune effector cells. However, harvesting sufficient numbers of T cells is often challenging in heavily pre-treated patients with malignancies and perturbed hematopoiesis and perturbed hematopoiesis. Also, such a CAR product will always be specific for the individual patient. In contrast, NK cell infusions can be performed in non-HLA-matched settings due to the absence of alloreactivity of these innate immune cells. Still, the infused NK cells are subject to recognition and rejection by the patient's immune system, thereby limiting their life-span in vivo and undermining the possibility for multiple infusions. Here, we designed genome editing and advanced lentiviral transduction protocols to render primary human NK cells unsusceptible/resistant to an allogeneic response by the recipient's CD8+ T cells. After knocking-out surface expression of HLA class I molecules by targeting the B2M gene via CRISPR/Cas9, we also co-expressed a single-chain HLA-E molecule, thereby preventing NK cell fratricide of B2M-knockout (KO) cells via "missing self"-induced lysis. Importantly, these genetically engineered NK cells were functionally indistinguishable from their unmodified counterparts with regard to their phenotype and their natural cytotoxicity towards different AML cell lines. In co-culture assays, B2M-KO NK cells neither induced immune responses of allogeneic T cells nor re-activated allogeneic T cells which had been expanded/primed using irradiated PBMNCs of the respective NK cell donor. Our study demonstrates the feasibility of genome editing in primary allogeneic NK cells to diminish their recognition and killing by mismatched T cells and is an important prerequisite for using non-HLA-matched primary human NK cells as readily available, "off-the-shelf" immune effectors for a variety of immunotherapy indications in human cancer.


Assuntos
Células Alógenas/imunologia , Edição de Genes/métodos , Antígenos de Histocompatibilidade Classe I/imunologia , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/imunologia , Técnicas de Inativação de Genes/métodos , Humanos , Células Matadoras Naturais/transplante
15.
Sci Rep ; 9(1): 11318, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31383930

RESUMO

Low haemocompatibility of left ventricular assist devices (LVAD) surfaces necessitates anticoagulative therapy. Endothelial cell (EC) seeding can support haemocompatibility, however, the availability of autologous ECs is limited. In contrast, allogeneic ECs are readily available in sufficient quantity, but HLA disparities induce harmful immune responses causing EC loss. In this study, we investigated the feasibility of using allogeneic low immunogenic ECs to endothelialize LVAD sintered inflow cannulas (SIC). To reduce the immunogenicity of ECs, we applied an inducible lentiviral vector to deliver short-hairpins RNA to silence HLA class I expression. HLA class I expression on ECs was conditionally silenced by up to 70%. Sufficient and comparable endothelialization rates were achieved with HLA-expressing or HLA-silenced ECs. Cell proliferation was not impaired by cell-to-Sintered Inflow Cannulas (SIC) contact or by silencing HLA expression. The levels of endothelial phenotypic and thrombogenic markers or cytokine secretion profiles remained unaffected. HLA-silenced ECs-coated SIC exhibited reduced thrombogenicity. In contrast to native ECs, HLA-silenced ECs showed lower cell lysis rates when exposed to allogeneic T cells or specific anti-HLA antibodies. Allogeneic HLA-silenced ECs could potentially become a valuable source for LVAD endothelialization to reduce immunogenicity and correspondingly the need for anticoagulative therapy which can entail severe side effects.


Assuntos
Células Alógenas/imunologia , Bioprótese , Células Endoteliais/imunologia , Coração Auxiliar , Células Alógenas/citologia , Células Alógenas/metabolismo , Bioprótese/efeitos adversos , Proliferação de Células , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Genes MHC Classe I , Coração Auxiliar/efeitos adversos , Humanos , Teste de Materiais , Interferência de RNA , RNA Interferente Pequeno/genética , Trombose/etiologia
16.
Front Immunol ; 10: 1716, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396228

RESUMO

Rising numbers of patients with cardiovascular diseases and limited availability of donor hearts require new and improved therapy strategies. Human atrial appendage-derived cells (hAACs) are promising candidates for an allogeneic cell-based treatment. In this study, we evaluated their inductive and modulatory capacity regarding immune responses and underlying key mechanisms in vitro. For this, cryopreserved hAACs were either cultured in the presence of interferon-gamma (IFNγ) or left unstimulated. The expression of characteristic mesenchymal stromal cell markers (CD29, CD44, CD73, CD105, CD166) was revealed by flow cytometry that also highlighted a predominant negativity for CD90. A low immunogeneic phenotype in an inflammatory milieu was shown by lacking expression of co-stimulatory molecules and upregulation of the inhibitory ligands PD-L1 and PD-L2, despite de novo expression of HLA-DR. Co-cultures of hAACs with allogeneic peripheral blood mononuclear cells, proved their low immunogeneic state by absence of induced T cell proliferation and activation. Additionally, elevated levels of IL-1ß, IL-33, and IL-10 were detectable in those cell culture supernatants. Furthermore, the immunomodulatory potential of hAACs was assessed in co-cultures with αCD3/αCD28-activated peripheral blood mononuclear cells. Here, a strong inhibition of T cell proliferation and reduction of pro-inflammatory cytokines (IFNγ, TNFα, TNFß, IL-17A, IL-2) were observable after pre-stimulation of hAACs with IFNγ. Transwell experiments confirmed that mostly soluble factors are responsible for these suppressive effects. We were able to identify indolamin-2,3-dioxygenase (IDO) as a potential key player through a genome-wide gene expression analysis and could demonstrate its involvement in the observed immunological responses. While the application of blocking antibodies against both PD-1 ligands did not affect the immunomodulation by hAACs, 1-methyl-L-tryptophan as specific inhibitor of IDO was able to restore proliferation and to lower apoptosis of T cells. In conclusion, hAACs represent a cardiac-derived mesenchymal stromal-like cell type with a high potential for the application in an allogeneic setting, since they do not trigger T cell responses and even increase their immunomodulatory potential in inflammatory environments.


Assuntos
Apêndice Atrial/citologia , Leucócitos Mononucleares/imunologia , Células-Tronco Mesenquimais/imunologia , Células Alógenas/imunologia , Técnicas de Cocultura , Humanos , Imunomodulação
17.
Vaccine ; 37(35): 4947-4955, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31307876

RESUMO

A major obstacle to obtaining relevant results in cancer vaccination has been the lack of identification of immunogenic antigens. Dendritic cell (DC)-based cancer vaccines used preventively may afford protection against tumor inoculation, but the effect of antigen choice on anti-tumor protection is not clear. When using irradiated syngeneic tumor cells to load DCs, tumor self-antigens are provided, including tumor-associated antigens (TAAs) and neoantigens generated by tumor mutations. On the other hand, allogeneic tumor cells could only supply shared TAAs. To assess the advantages of each source in protective vaccination, we analyzed in C57BL/6 mice the effect of loading DCs with irradiated syngeneic B16-F1 or allogeneic Cloudman melanoma cells; both cell lines were characterized by whole exome sequencing and RNAseq. Tumor cell components from the two irradiated cell lines were efficiently internalized by DCs, and transported to MHC-class II positive tubulovesicular compartments (MIICs). DCs loaded with allogeneic irradiated Cloudman cells (DC-ApoNecALLO) induced a partially effective anti-melanoma protection, although Cloudman and B16-F1 cells share the expression of melanocyte differentiation antigens (MDAs), cancer-testis antigens (CTAs) and other TAAs. DCs loaded with syngeneic B16-F1 cells (DC-ApoNecSYN) established a more potent and long-lasting protection and induced a humoral anti-B16F1 response, thus suggesting that neoepitopes are needed for inducing long-lasting protection.


Assuntos
Células Alógenas/imunologia , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Melanoma Experimental/imunologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Imunidade Humoral , Masculino , Melanoma Experimental/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Organismos Livres de Patógenos Específicos , Vacinação
18.
J Transl Med ; 17(1): 100, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30917829

RESUMO

BACKGROUND: Previous studies have identified IFNγ as an important early barrier to oncolytic viruses including vaccinia. The existing innate and adaptive immune barriers restricting oncolytic virotherapy, however, can be overcome using autologous or allogeneic mesenchymal stem cells as carrier cells with unique immunosuppressive properties. METHODS: To test the ability of mesenchymal stem cells to overcome innate and adaptive immune barriers and to successfully deliver oncolytic vaccinia virus to tumor cells, we performed flow cytometry and virus plaque assay analysis of ex vivo co-cultures of stem cells infected with vaccinia virus in the presence of peripheral blood mononuclear cells from healthy donors. Comparative analysis was performed to establish statistically significant correlations and to evaluate the effect of stem cells on the activity of key immune cell populations. RESULTS: Here, we demonstrate that adipose-derived stem cells (ADSCs) have the potential to eradicate resistant tumor cells through a combination of potent virus amplification and sensitization of the tumor cells to virus infection. Moreover, the ADSCs demonstrate ability to function as a virus-amplifying Trojan horse in the presence of both autologous and allogeneic human PBMCs, which can be linked to the intrinsic immunosuppressive properties of stem cells and their unique potential to overcome innate and adaptive immune barriers. The clinical application of ready-to-use ex vivo expanded allogeneic stem cell lines, however, appears significantly restricted by patient-specific allogeneic differences associated with the induction of potent anti-stem cell cytotoxic and IFNγ responses. These allogeneic responses originate from both innate (NK)- and adaptive (T)- immune cells and might compromise therapeutic efficacy through direct elimination of the stem cells or the induction of an anti-viral state, which can block the potential of the Trojan horse to amplify and deliver vaccinia virus to the tumor. CONCLUSIONS: Overall, our findings and data indicate the feasibility to establish simple and informative assays that capture critically important patient-specific differences in the immune responses to the virus and stem cells, which allows for proper patient-stem cell matching and enables the effective use of off-the-shelf allogeneic cell-based delivery platforms, thus providing a more practical and commercially viable alternative to the autologous stem cell approach.


Assuntos
Tecido Adiposo/citologia , Células-Tronco Adultas/transplante , Células Alógenas/imunologia , Tolerância Imunológica , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos , Vaccinia virus/fisiologia , Células A549 , Imunidade Adaptativa/fisiologia , Tecido Adiposo/imunologia , Células-Tronco Adultas/imunologia , Células-Tronco Adultas/virologia , Células Alógenas/citologia , Animais , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Células Cultivadas , Chlorocebus aethiops , Humanos , Imunidade Inata/fisiologia , Imunomodulação/fisiologia , Imunoterapia Adotiva/métodos , Células K562 , Camundongos , Vírus Oncolíticos/imunologia , Transplante Homólogo/métodos , Vaccinia virus/imunologia
19.
Transplantation ; 103(6): 1111-1120, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30801515

RESUMO

BACKGROUND: Allotransplantation of submandibular salivary glands (SMGs) could be an alternative treatment option for severe keratoconjunctivitis sicca in noncandidates for autologous SMG transplantation. This study was conducted to evaluate the effect of allogeneic mesenchymal stem cell (MSC) therapy on the survival of allotransplanted SMGs. METHODS: Thirty-six SMG allotransplantations (n = 6 per group) were performed in New Zealand white rabbits and randomly divided into the following groups: allograft control (Allo-Ctrl), low-dose FK506 (FK506-L), high-dose FK506 (FK506-H), allogeneic MSCs, MSCs+FK506-L, and MSCs+FK506-H. Rabbits were closely observed for 2 weeks. Gland viability and rejection were assessed by monitoring interleukin-2 levels by ELISA, sialoscintigraphy, M3-muscarinic acetylcholine receptor expression, histological evaluation, and apoptosis assay. RESULTS: Intraoperatively, all glands showed patency and saliva flow except 1 gland. Sialoscintigraphy revealed significantly higher saliva production within the MSC-treated glands. Histologically, MSC-treated glands showed higher glandular tissue preservation and less acini atrophy. The MSCs+FK506-H group revealed significantly lower apoptosis percentage. The highest survival was observed in the MSCs+FK506-H group, followed by the FK506-H and MSCs+FK506-L groups, and lastly less in the FK506-L and MSCs groups. CONCLUSIONS: Concurrent administration of MSCs with FK506-H (0.16 mg/kg) resulted in higher survival rate with greater glandular tissue preservation and salivary secretion. MSCs with FK506-L (0.08 mg/kg) could be an alternative to FK506-H (0.16 mg/kg) in salivary gland allotransplantation.


Assuntos
Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto/efeitos dos fármacos , Imunossupressores/administração & dosagem , Transplante de Células-Tronco Mesenquimais , Glândula Submandibular/efeitos dos fármacos , Glândula Submandibular/transplante , Tacrolimo/administração & dosagem , Células Alógenas/imunologia , Células Alógenas/metabolismo , Células Alógenas/patologia , Animais , Apoptose/efeitos dos fármacos , Atrofia , Feminino , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/metabolismo , Rejeição de Enxerto/patologia , Interleucina-2/metabolismo , Masculino , Coelhos , Receptor Muscarínico M3/metabolismo , Salivação/efeitos dos fármacos , Glândula Submandibular/imunologia , Glândula Submandibular/patologia , Fatores de Tempo , Sobrevivência de Tecidos/efeitos dos fármacos , Transplante Homólogo
20.
Exp Clin Transplant ; 17(1): 93-96, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-27855592

RESUMO

OBJECTIVES: The only known curative therapy for primary myelofibrosis is allogeneic hematopoietic stem cell transplant. MATERIALS AND METHODS: We retrospectively evaluated 11 transplant procedures involving 10 patients (5 men and 5 women) diagnosed with primary myelofibrosis between 2005 and 2014. RESULTS: The median age at the time of transplant was 60.5 years (range, 22-62 years). Stem cell sources were unrelated (n=1) and related (n=11) peripheral blood stem cells. Conditioning regimen was myeloablative for 8 and reduced intensity for 3 transplants. The median number of infused CD34+ cells was 6.8 × 106 cells/kg (range, 3.2-10.4 × 106 cells/kg). Neutrophil and platelet engraftment occurred at median of 22 days (range, 12-31 days) and 19.5 days (range, 13-56 days). Acute and chronic graft-versus-host disease was seen in 4 of 11 allografts. Relapse and nonrelapse mortality rates were 20%. Six patients (60%) were still alive without disease after median follow-up of 68.5 months (range, 17-120 months). Median progression-free survival and overall survival were 61 months (range, 2-120 months) and 65 months (range, 2-120 months). CONCLUSIONS: Our results suggest that allogeneic hematopoietic stem cell transplant may provide a curative treatment for primary myelofibrosis patients. A myeloablative regimen seems to be effective and safe, especially for younger primary myelofibrosis patients.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Mielofibrose Primária/cirurgia , Doença Aguda , Adulto , Células Alógenas/imunologia , Antígenos CD34/imunologia , Doença Crônica , Feminino , Doença Enxerto-Hospedeiro/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/mortalidade , Humanos , Masculino , Pessoa de Meia-Idade , Agonistas Mieloablativos/administração & dosagem , Mielofibrose Primária/diagnóstico , Mielofibrose Primária/mortalidade , Intervalo Livre de Progressão , Recidiva , Estudos Retrospectivos , Fatores de Risco , Fatores de Tempo , Condicionamento Pré-Transplante/métodos , Transplante Homólogo , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...