Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 308
Filtrar
1.
J Neurosci ; 43(43): 7149-7157, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37775302

RESUMO

Amniotes evolved a unique postsynaptic terminal in the inner ear vestibular organs called the calyx that receives both quantal and nonquantal (NQ) synaptic inputs from Type I sensory hair cells. The nonquantal synaptic current includes an ultrafast component that has been hypothesized to underlie the exceptionally high synchronization index (vector strength) of vestibular afferent neurons in response to sound and vibration. Here, we present three lines of evidence supporting the hypothesis that nonquantal transmission is responsible for synchronized vestibular action potentials of short latency in the guinea pig utricle of either sex. First, synchronized vestibular nerve responses are unchanged after administration of the AMPA receptor antagonist CNQX, while auditory nerve responses are completely abolished. Second, stimulus evoked vestibular nerve compound action potentials (vCAP) are shown to occur without measurable synaptic delay and three times shorter than the latency of auditory nerve compound action potentials (cCAP), relative to the generation of extracellular receptor potentials. Third, paired-pulse stimuli designed to deplete the readily releasable pool (RRP) of synaptic vesicles in hair cells reveal forward masking in guinea pig auditory cCAPs, but a complete lack of forward masking in vestibular vCAPs. Results support the conclusion that the fast component of nonquantal transmission at calyceal synapses is indefatigable and responsible for ultrafast responses of vestibular organs evoked by transient stimuli.SIGNIFICANCE STATEMENT The mammalian vestibular system drives some of the fastest reflex pathways in the nervous system, ensuring stable gaze and postural control for locomotion on land. To achieve this, terrestrial amniotes evolved a large, unique calyx afferent terminal which completely envelopes one or more presynaptic vestibular hair cells, which transmits mechanosensory signals mediated by quantal and nonquantal (NQ) synaptic transmission. We present several lines of evidence in the guinea pig which reveals the most sensitive vestibular afferents are remarkably fast, much faster than their auditory nerve counterparts. Here, we present neurophysiological and pharmacological evidence that demonstrates this vestibular speed advantage arises from ultrafast NQ electrical synaptic transmission from Type I hair cells to their calyx partners.


Assuntos
Células Ciliadas Vestibulares , Vestíbulo do Labirinto , Animais , Cobaias , Potenciais de Ação/fisiologia , Células Ciliadas Vestibulares/fisiologia , Transmissão Sináptica/fisiologia , Sinapses/fisiologia , Mamíferos
2.
J Neurophysiol ; 129(6): 1468-1481, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37198134

RESUMO

Calyx terminals make afferent synapses with type I hair cells in vestibular epithelia and express diverse ionic conductances that influence action potential generation and discharge regularity in vestibular afferent neurons. Here we investigated the expression of hyperpolarization-activated current (Ih) in calyx terminals in central and peripheral zones of mature gerbil crista slices, using whole cell patch-clamp recordings. Slowly activating Ih was present in >80% calyces tested in both zones. Peak Ih and half-activation voltages were not significantly different; however, Ih activated with a faster time course in peripheral compared with central zone calyces. Calyx Ih in both zones was blocked by 4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino) pyrimidinium chloride (ZD7288; 100 µM), and the resting membrane potential became more hyperpolarized. In the presence of dibutyryl-cAMP (dB-cAMP), peak Ih was increased, activation kinetics became faster, and the voltage of half-activation was more depolarized compared with control calyces. In current clamp, calyces from both zones showed three different categories of firing: spontaneous firing, phasic firing where a single action potential was evoked after a hyperpolarizing pulse, or a single evoked action potential followed by membrane potential oscillations. In the absence of Ih, the latency to peak of the action potential increased; Ih produces a small depolarizing current that facilitates firing by driving the membrane potential closer to threshold. Immunostaining showed the expression of HCN2 subunits in calyx terminals. We conclude that Ih is found in calyx terminals across the crista and could influence conventional and novel forms of synaptic transmission at the type I hair cell-calyx synapse.NEW & NOTEWORTHY Calyx afferent terminals make synapses with vestibular hair cells and express diverse conductances that impact action potential firing in vestibular primary afferents. Conventional and nonconventional synaptic transmission modes are influenced by hyperpolarization-activated current (Ih), but regional differences were previously unexplored. We show that Ih is present in both central and peripheral calyces of the mammalian crista. Ih produces a small depolarizing resting current that facilitates firing by driving the membrane potential closer to threshold.


Assuntos
Células Ciliadas Vestibulares , Vestíbulo do Labirinto , Animais , Células Ciliadas Vestibulares/fisiologia , Neurônios Aferentes , Potenciais de Ação/fisiologia , Potenciais da Membrana , Mamíferos
3.
Neurosci Lett ; 800: 137128, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36792024

RESUMO

Vestibular hair cells (HCs) located in the inner ear are the receptors of vestibular sensory, which facilitates the human sense of balance. The detailed differentiation pattern and maturation process of the vestibular HCs are unclear now. p27, a cyclin/CDK inhibitor, plays a critical role in regulating the exit of cell cycle. We found that p27 was continuously expressed in the terminally differentiated and mature vestibular HCs using p27-P2A-iCreER/+; Rosa26-LSL-tdTomato/+ mice, suggesting p27 might have novel roles independent of its CDK inhibitory action. p27 is also reported to be associated with cell differentiation, cell migration and cell survival. We further explored the difference of p27 expression between two subtypes of vestibular HCs, and found that the proportion of p27-tdTomato positive type I vestibular HCs increased gradually along the subtype determination and maturation of vestibular HCs, suggesting that p27 might play a role in the HC subtype differentiation, maturation and function acquirement.


Assuntos
Células Ciliadas Vestibulares , Vestíbulo do Labirinto , Camundongos , Animais , Adulto , Humanos , Células Ciliadas Vestibulares/fisiologia , Diferenciação Celular , Ciclo Celular
4.
Proc Natl Acad Sci U S A ; 120(2): e2207466120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36595693

RESUMO

Vestibular hair cells transmit information about head position and motion across synapses to primary afferent neurons. At some of these synapses, the afferent neuron envelopes the hair cell, forming an enlarged synaptic terminal called a calyx. The vestibular hair cell-calyx synapse supports a mysterious form of electrical transmission that does not involve gap junctions, termed nonquantal transmission (NQT). The NQT mechanism is thought to involve the flow of ions from the presynaptic hair cell to the postsynaptic calyx through low-voltage-activated channels driven by changes in cleft [K+] as K+ exits the hair cell. However, this hypothesis has not been tested with a quantitative model and the possible role of an electrical potential in the cleft has remained speculative. Here, we present a computational model that captures experimental observations of NQT and identifies features that support the existence of an electrical potential (ϕ) in the synaptic cleft. We show that changes in cleft ϕ reduce transmission latency and illustrate the relative contributions of both cleft [K+] and ϕ to the gain and phase of NQT. We further demonstrate that the magnitude and speed of NQT depend on calyx morphology and that increasing calyx height reduces action potential latency in the calyx afferent. These predictions are consistent with the idea that the calyx evolved to enhance NQT and speed up vestibular signals that drive neural circuits controlling gaze, balance, and orientation.


Assuntos
Células Ciliadas Vestibulares , Vestíbulo do Labirinto , Células Ciliadas Vestibulares/fisiologia , Cloreto de Potássio , Sinapses/fisiologia , Potenciais de Ação/fisiologia , Transmissão Sináptica/fisiologia
5.
Hear Res ; 426: 108642, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36334348

RESUMO

Sox2 is a transcription factor that is necessary in the mammalian inner ear for development of sensory hair cells and supporting cells. Sox2 is expressed in supporting cells of adult mammals, but its function in this context is poorly understood. Given its role in the developing inner ear, we hypothesized that Sox2 is required in vestibular supporting cells for regeneration of type II hair cells after damage. Using adult mice, we deleted Sox2 from Sox9-CreER-expressing supporting cells prior to diphtheria toxin-mediated hair cell destruction and used fate-mapping to assess regeneration. In utricles of control mice with normal Sox2 expression, supporting cells regenerated nearly 200 hair cells by 3 weeks post-damage, which doubled by 12 weeks. In contrast, mice with Sox2 deletion from supporting cells had approximately 20 fate-mapped hair cells at 3 weeks post-damage, and this number did not change significantly by 12 weeks, indicating regeneration was dramatically curtailed. We made similar observations for saccules and ampullae. We found no evidence that supporting cells lacking Sox2 had altered cellular density, morphology, or ultrastructure. However, some Sox2-negative supporting cell nuclei appeared to migrate apically but did not turn on hair cell markers, and type I hair cell survival was higher. Sox2 heterozygotes also had reduced regeneration in utricles, but more hair cells were replaced than mice with Sox2 deletion. Our study determined that Sox2 is required in supporting cells for normal levels of vestibular hair cell regeneration but found no other major requirements for Sox2 in adult supporting cells.


Assuntos
Células Ciliadas Vestibulares , Fatores de Transcrição SOXB1 , Animais , Camundongos , Regulação da Expressão Gênica , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Vestibulares/metabolismo , Células Ciliadas Vestibulares/fisiologia , Mamíferos , Regeneração , Sáculo e Utrículo , Fatores de Transcrição SOXB1/metabolismo
6.
Hear Res ; 426: 108612, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36223702

RESUMO

Mitochondria supply energy in the form of ATP to drive a plethora of cellular processes. In heart and liver cells, mitochondria occupy over 20% of the cellular volume and the major need for ATP is easily identifiable - i.e., to drive cross-bridge recycling in cardiac cells or biosynthetic machinery in liver cells. In vestibular and cochlear hair cells the overall cellular mitochondrial volume is much less, and mitochondria structure varies dramatically in different regions of the cell. The regional demands for ATP and cellular forces that govern mitochondrial structure and localization are not well understood. Below we review our current understanding of the heterogeneity of form and function in hair cell mitochondria. A particular focus of this review will be on regional specialization in vestibular hair cells, where large mitochondria are found beneath the cuticular plate in close association with the striated organelle. Recent findings on the role of mitochondria in hair cell death and aging are covered along with potential therapeutic approaches. Potential avenues for future research are discussed, including the need for integrated computational modeling of mitochondrial function in hair cells and the vestibular afferent calyx.


Assuntos
Células Ciliadas Vestibulares , Vestíbulo do Labirinto , Células Ciliadas Vestibulares/fisiologia , Células Ciliadas Auditivas , Mitocôndrias , Trifosfato de Adenosina
7.
Biosens Bioelectron ; 214: 114521, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35820254

RESUMO

Balance disorders affect approximately 30% of the population throughout their lives and result in debilitating symptoms, such as spontaneous vertigo, nystagmus, and oscillopsia. The main cause of balance disorders is peripheral vestibular dysfunction, which may occur as a result of hair cell loss, neural dysfunction, or mechanical (and morphological) abnormality. The most common cause of vestibular dysfunction is arguably vestibular hair cell damage, which can result from an array of factors, such as ototoxicity, trauma, genetics, and ageing. One promising therapy is the vestibular prosthesis, which leverages the success of the cochlear implant, and endeavours to electrically integrate the primary vestibular afferents with the vestibular scene. Other translational approaches of interest include stem cell regeneration and gene therapies, which aim to restore or modify inner ear receptor function. However, both of these techniques are in their infancy and are currently undergoing further characterization and development in the laboratory, using animal models. Another promising translational avenue to treating vestibular hair cell dysfunction is the potential development of artificial biocompatible hair cell sensors, aiming to replicate functional hair cells and generate synthetic 'receptor potentials' for sensory coding of vestibular stimuli to the brain. Recently, artificial hair cell sensors have demonstrated significant promise, with improvements in their output, such as sensitivity and frequency selectivity. This article reviews the history and current state of bioelectronic devices to interface with the labyrinth, spanning the vestibular implant and artificial hair cell sensors.


Assuntos
Técnicas Biossensoriais , Células Ciliadas Vestibulares , Animais , Terapia Genética/métodos , Células Ciliadas Vestibulares/fisiologia , Modelos Animais , Sistema Vestibular
8.
Proc Natl Acad Sci U S A ; 119(15): e2116973119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35380897

RESUMO

Sensory hair cells (HCs) in the utricle are mechanoreceptors required to detect linear acceleration. After damage, the mammalian utricle partially restores the HC population and organ function, although regenerated HCs are primarily type II and immature. Whether native, surviving HCs can repair and contribute to this recovery is unclear. Here, we generated the Pou4f3DTR/+; Atoh1CreERTM/+; Rosa26RtdTomato/+ mouse to fate map HCs prior to ablation. After HC ablation, vestibular evoked potentials were abolished in all animals, with ∼57% later recovering responses. Relative to nonrecovery mice, recovery animals harbored more Atoh1-tdTomato+ surviving HCs. In both groups, surviving HCs displayed markers of both type I and type II subtypes and afferent synapses, despite distorted lamination and morphology. Surviving type II HCs remained innervated in both groups, whereas surviving type I HCs first lacked and later regained calyces in the recovery, but not the nonrecovery, group. Finally, surviving HCs initially displayed immature and subsequently mature-appearing bundles in the recovery group. These results demonstrate that surviving HCs are capable of self-repair and may contribute to the recovery of vestibular function.


Assuntos
Células Ciliadas Vestibulares , Regeneração , Sáculo e Utrículo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sobrevivência Celular/genética , Células Ciliadas Vestibulares/fisiologia , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Mutantes , RNA não Traduzido/genética , Regeneração/genética , Sáculo e Utrículo/citologia , Sáculo e Utrículo/lesões , Sáculo e Utrículo/fisiologia , Fator de Transcrição Brn-3C/genética
9.
Arch Toxicol ; 95(8): 2613-2623, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33983457

RESUMO

Vestibular hair cells are mechanosensory receptors that are capable of detecting changes in head position and thereby allow animals to maintain their posture and coordinate their movement. Vestibular hair cells are susceptible to ototoxic drugs, aging, and genetic factors that can lead to permanent vestibular dysfunction. Vestibular dysfunction mainly results from the injury of hair cells, which are located in the vestibular sensory epithelium. This review summarizes the mechanisms of different factors causing vestibular hair cell damage and therapeutic strategies to protect vestibular hair cells.


Assuntos
Células Ciliadas Vestibulares/fisiologia , Doenças Vestibulares/prevenção & controle , Envelhecimento/fisiologia , Animais , Epitélio/fisiologia , Células Ciliadas Vestibulares/patologia , Humanos , Ototoxicidade/prevenção & controle , Doenças Vestibulares/etiologia
10.
Neurosci Lett ; 747: 135679, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33524475

RESUMO

Vestibular hair cells (HCs) are mechanoreceptors for the detection of head movement. Vestibular HCs of adult mammals never completely regenerate after damage, resulting in vestibular dysfunction. Overexpression of Atoh1 is effective for inducing HC regeneration. However, method of clinical feasibility and improvement of regenerative extent are both in need. Here we used an adeno-associated virus (AAV) serotype 8 vector of two different titers to overexpress Atoh1 in the injured utricles of adult mice. One month after virus inoculation, abundant myosin VIIa-positive cells and immature stereocilia were observed. Quantitative analyses revealed that Atoh1 overexpression replenished vestibular HCs in a dose-dependent manner. Vectors of a higher titer increased the number of myosin VIIa-positive cells compared to those of lower titer. Moreover, only Atoh1 overexpression in the higher titer group enhanced stereocilium regeneration, which is an important step in the maturation of regenerated HCs. Although the current treatment failed to initiate functional recovery of the animals, our results prompt further improvements in the recovery of vestibular dysfunction by AAV.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Ciliadas Auditivas/fisiologia , Células Ciliadas Vestibulares/fisiologia , Regeneração/fisiologia , Animais , Diferenciação Celular/fisiologia , Camundongos
11.
Sci Rep ; 10(1): 20687, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33244175

RESUMO

Current clinical interest lies in the relationship between hearing loss and cognitive impairment. Previous work demonstrated that noise exposure, a common cause of sensorineural hearing loss (SNHL), leads to cognitive impairments in mice. However, in noise-induced models, it is difficult to distinguish the effects of noise trauma from subsequent SNHL on central processes. Here, we use cochlear hair cell ablation to isolate the effects of SNHL. Cochlear hair cells were conditionally and selectively ablated in mature, transgenic mice where the human diphtheria toxin (DT) receptor was expressed behind the hair-cell specific Pou4f3 promoter. Due to higher Pou4f3 expression in cochlear hair cells than vestibular hair cells, administration of a low dose of DT caused profound SNHL without vestibular dysfunction and had no effect on wild-type (WT) littermates. Spatial learning/memory was assayed using an automated radial 8-arm maze (RAM), where mice were trained to find food rewards over a 14-day period. The number of working memory errors (WME) and reference memory errors (RME) per training day were recorded. All animals were injected with DT during P30-60 and underwent the RAM assay during P90-120. SNHL animals committed more WME and RME than WT animals, demonstrating that isolated SNHL affected cognitive function. Duration of SNHL (60 versus 90 days post DT injection) had no effect on RAM performance. However, younger age of acquired SNHL (DT on P30 versus P60) was associated with fewer WME. This describes the previously undocumented effect of isolated SNHL on cognitive processes that do not directly rely on auditory sensory input.


Assuntos
Células Ciliadas Auditivas/fisiologia , Memória/fisiologia , Aprendizagem Espacial/fisiologia , Animais , Cognição/fisiologia , Surdez/metabolismo , Surdez/fisiopatologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Vestibulares/metabolismo , Células Ciliadas Vestibulares/fisiologia , Audição/fisiologia , Perda Auditiva Neurossensorial/metabolismo , Perda Auditiva Neurossensorial/fisiopatologia , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ruído , Fator de Transcrição Brn-3C/metabolismo
12.
J Neurophysiol ; 124(3): 962-972, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32816581

RESUMO

Previous studies have found GABA in vestibular end organs. However, existence of GABA receptors or possible GABAergic effects on vestibular nerve afferents has not been investigated. The current study was conducted to determine whether activation of GABAB receptors affects calyx afferent terminals in the central region of the cristae of semicircular canals. We used patch-clamp recording in postnatal day 13-18 (P13-P18) Sprague-Dawley rats of either sex. Application of GABAB receptor agonist baclofen inhibited voltage-sensitive potassium currents. This effect was blocked by selective GABAB receptor antagonist CGP 35348. Application of antagonists of small (SK)- and large-conductance potassium (BK) channels almost completely blocked the effects of baclofen. The remaining baclofen effect was blocked by cadmium chloride, suggesting that it could be due to inhibition of voltage-gated calcium channels. Furthermore, baclofen had no effect in the absence of calcium in the extracellular fluid. Inhibition of potassium currents by GABAB activation resulted in an excitatory effect on calyx terminal action potential firing. While in the control condition calyces could only fire a single action potential during step depolarizations, in the presence of baclofen they fired continuously during steps and a few even showed repetitive discharge. We also found a decrease in threshold for action potential generation and a decrease in first-spike latency during step depolarization. These results provide the first evidence for the presence of GABAB receptors on calyx terminals, showing that their activation results in an excitatory effect and that GABA inputs could be used to modulate calyx response properties.NEW & NOTEWORTHY Using in vitro whole cell patch-clamp recordings from calyx terminals in the vestibular end organs, we show that activation of GABAB receptors result in an excitatory effect, with decreased spike-frequency adaptation and shortened first-spike latencies. Our results suggest that these effects are mediated through inhibition of calcium-sensitive potassium channels.


Assuntos
Potenciais de Ação/fisiologia , Agonistas dos Receptores de GABA-B/farmacologia , Antagonistas de Receptores de GABA-B/farmacologia , Células Ciliadas Vestibulares/fisiologia , Canais de Potássio Cálcio-Ativados/metabolismo , Terminações Pré-Sinápticas/fisiologia , Receptores de GABA-B/metabolismo , Canais Semicirculares/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Baclofeno/farmacologia , Cloreto de Cádmio/farmacologia , Feminino , Células Ciliadas Vestibulares/efeitos dos fármacos , Masculino , Compostos Organofosforados/farmacologia , Técnicas de Patch-Clamp , Canais de Potássio Cálcio-Ativados/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de GABA-B/efeitos dos fármacos , Canais Semicirculares/efeitos dos fármacos
13.
J Neurophysiol ; 124(2): 510-524, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32667253

RESUMO

Vestibular afferent neurons convey information from hair cells in the peripheral vestibular end organs to central nuclei. Primary vestibular afferent neurons can fire action potentials at high rates and afferent firing patterns vary with the position of nerve terminal endings in vestibular neuroepithelia. Terminals contact hair cells as small bouton or large calyx endings. To investigate the role of Na+ currents (INa) in firing mechanisms, we investigated biophysical properties of INa in calyx-bearing afferents. Whole cell patch-clamp recordings were made from calyx terminals in thin slices of gerbil crista at different postnatal ages: immature [postnatal day (P)5-P8, young (P13-P15), and mature (P30-P45)]. A large transient Na+ current (INaT) was completely blocked by 300 nM tetrodotoxin (TTX) in mature calyces. In addition, INaT was accompanied by much smaller persistent Na+ currents (INaP) and distinctive resurgent Na+ currents (INaR), which were also blocked by TTX. ATX-II, a toxin that slows Na+ channel inactivation, enhanced INaP in immature and mature calyces. 4,9-Anhydro-TTX (4,9-ah-TTX), which selectively blocks Nav1.6 channels, abolished the enhanced INa in mature, but not immature, calyces. Therefore, Nav1.6 channels mediate a component of INaT and INaP in mature calyces, but are minimally expressed at early postnatal days. INaR was expressed in less than one-third of calyces at P6-P8, but expression increased with development, and in mature cristae INaR was frequently found in peripheral calyces. INaR served to increase the availability of Na+ channels following brief membrane depolarizations. In current clamp, the rate and regularity of action potential firing decreased in mature peripheral calyces following 4,9-ah-TTX application. Therefore, Nav1.6 channels are upregulated during development, contribute to INaT, INaP, and INaR, and may regulate excitability by enabling higher mean discharge rates in a subpopulation of mature calyx afferents.NEW & NOTEWORTHY Action potential firing patterns differ between groups of afferent neurons innervating vestibular epithelia. We investigated the biophysical properties of Na+ currents in specialized vestibular calyx afferent terminals during postnatal development. Mature calyces express Na+ currents with transient, persistent, and resurgent components. Nav1.6 channels contribute to resurgent Na+ currents and may enhance firing in peripheral calyx afferents. Understanding Na+ channels that contribute to vestibular nerve responses has implications for developing new treatments for vestibular dysfunction.


Assuntos
Potenciais de Ação/fisiologia , Células Ciliadas Vestibulares/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.6/fisiologia , Bloqueadores dos Canais de Sódio/farmacologia , Sódio , Tetrodotoxina/farmacologia , Nervo Vestibular/fisiologia , Potenciais de Ação/efeitos dos fármacos , Fatores Etários , Animais , Gerbillinae , Células Ciliadas Vestibulares/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.6/efeitos dos fármacos , Nervo Vestibular/efeitos dos fármacos
14.
J Neurophysiol ; 124(2): 360-374, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32609559

RESUMO

In the vestibular peripheral organs, type I and type II hair cells (HCs) transmit incoming signals via glutamatergic quantal transmission onto afferent nerve fibers. Additionally, type I HCs transmit via "non-quantal" transmission to calyx afferent fibers, by accumulation of glutamate and potassium in the synaptic cleft. Vestibular efferent inputs originating in the brainstem contact type II HCs and vestibular afferents. Here, synaptic inputs to type II HCs were characterized by using electrical and optogenetic stimulation of efferent fibers combined with in vitro whole cell patch-clamp recording from type II HCs in the rodent vestibular crista. Properties of efferent synaptic currents in type II HCs were similar to those found in cochlear HCs and mediated by activation of α9-containing nicotinic acetylcholine receptors (nAChRs) and small-conductance calcium-activated potassium (SK) channels. While efferents showed a low probability of release at low frequencies of stimulation, repetitive stimulation resulted in facilitation and increased probability of release. Notably, the membrane potential of type II HCs during optogenetic stimulation of efferents showed a strong hyperpolarization in response to single pulses and was further enhanced by repetitive stimulation. Such efferent-mediated inhibition of type II HCs can provide a mechanism to adjust the contribution of signals from type I and type II HCs to vestibular nerve fibers, with a shift of the response to be more like that of calyx-only afferents with faster non-quantal responses.NEW & NOTEWORTHY Type II vestibular hair cells (HCs) receive inputs from efferent neurons in the brain stem. We used in vitro optogenetic and electrical stimulation of vestibular efferent fibers to study their synaptic inputs to type II HCs. Stimulation of efferents inhibited type II HCs, similar to efferent effects on cochlear HCs. We propose that efferent inputs adjust the contribution of signals from type I and II HCs to vestibular nerve fibers.


Assuntos
Tronco Encefálico/fisiologia , Células Ciliadas Vestibulares/fisiologia , Neurônios Eferentes/fisiologia , Receptores Nicotínicos/fisiologia , Potenciais Sinápticos/fisiologia , Nervo Vestibular/fisiologia , Animais , Estimulação Elétrica , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Optogenética , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
15.
Pflugers Arch ; 472(5): 625-635, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32318797

RESUMO

In mammals, audition is triggered by travelling waves that are evoked by acoustic stimuli in the cochlear partition, a structure containing sensory hair cells and a basilar membrane. When the cochlea is stimulated by a pure tone of low frequency, a static offset occurs in the vibration in the apical turn. In the high-frequency region at the cochlear base, multi-tone stimuli induce a quadratic distortion product in the vibrations that suggests the presence of an offset. However, vibrations below 100 Hz, including a static offset, have not been directly measured there. We therefore constructed an interferometer for detecting motion at low frequencies including 0 Hz. We applied the interferometer to record vibrations from the cochlear base of guinea pigs in response to pure tones. When the animals were exposed to sound at an intensity of 70 dB or higher, we recorded a static offset of the sinusoidally vibrating cochlear partition by more than 1 nm towards the scala vestibuli. The offset's magnitude grew monotonically as the stimuli intensified. When stimulus frequency was varied, the response peaked around the best frequency, the frequency that maximised the vibration amplitude at threshold sound pressure. These characteristics are consistent with those found in the low-frequency region and are therefore likely common across the cochlea. The offset diminished markedly when the somatic motility of mechanosensitive outer hair cells, the force-generating machinery that amplifies the sinusoidal vibrations, was pharmacologically blocked. Therefore, the partition offset appears to be linked to the electromotile contraction of outer hair cells.


Assuntos
Células Ciliadas Auditivas Externas/fisiologia , Audição , Animais , Limiar Auditivo , Cobaias , Células Ciliadas Vestibulares/fisiologia , Interferometria/instrumentação , Interferometria/métodos , Masculino , Som , Vibração
16.
J Neurosci ; 40(12): 2390-2402, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32086256

RESUMO

Hair cells in both the auditory and vestibular systems receive efferent innervation. A number of prior studies have indicated that efferent regulation serves to diminish the overall sensitivity of the auditory system. The efferent pathway is believed to affect the sensitivity and frequency selectivity of the hair cell by modulating its membrane potential. However, its effect on the mechanical response of the hair cell has not been established. We explored how stimulation of the efferent neurons affects the mechanical responsiveness of an individual hair bundle. We tested this effect on in vitro preparations of hair cells in the sacculi of American bullfrogs of both genders. Efferent stimulation routinely resulted in an immediate increase of the frequency of hair bundle spontaneous oscillations for the duration of the stimulus. Enlarging the stimulus amplitude and pulse length, or conversely, decreasing the interpulse interval led to oscillation suppression. Additionally, we tested the effects of efference on the hair bundle response to mechanical stimulation. The receptive field maps of hair cells undergoing efferent actuation demonstrated an overall desensitization with respect to those of unstimulated cells.SIGNIFICANCE STATEMENT The efferent system is an important aide for the performance of the auditory system. It has been seen to contribute to sound detection and localization, ototoxicity prevention, and speech comprehension. Although measurements have demonstrated that efference suppresses basilar membrane movement, there is still much unknown about how efferent activity affects hearing mechanics. Here, we explore the mechanical basis for the efferent system's capabilities at the level of the hair bundle. We present optical recordings, receptive field maps, and sensitivity curves that show a hair bundle is desensitized by efferent stimulation. This supports the hypothesis that efferent regulation may be a biological control parameter for tuning the hair bundle's mechanical sensitivity.


Assuntos
Fenômenos Biomecânicos/fisiologia , Vias Eferentes/fisiologia , Células Ciliadas Auditivas/fisiologia , Células Ciliadas Vestibulares/fisiologia , Algoritmos , Animais , Estimulação Elétrica , Feminino , Masculino , Mecanotransdução Celular , Estimulação Física , Rana catesbeiana
17.
Neuroscience ; 426: 69-86, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31846752

RESUMO

Vestibular organs of Amniotes contain two types of sensory cells, named Type I and Type II hair cells. While Type II hair cells are contacted by several small bouton nerve terminals, Type I hair cells receive a giant terminal, called a calyx, which encloses their basolateral membrane almost completely. Both hair cell types release glutamate, which depolarizes the afferent terminal by binding to AMPA post-synaptic receptors. However, there is evidence that non-vesicular signal transmission also occurs at the Type I hair cell-calyx synapse, possibly involving direct depolarization of the calyx by K+ exiting the hair cell. To better investigate this aspect, we performed whole-cell patch-clamp recordings from mouse Type I hair cells or their associated calyx. We found that [K+] in the calyceal synaptic cleft is elevated at rest relative to the interstitial (extracellular) solution and can increase or decrease during hair cell depolarization or repolarization, respectively. The change in [K+] was primarily driven by GK,L, the low-voltage-activated, non-inactivating K+ conductance specifically expressed by Type I hair cells. Simple diffusion of K+ between the cleft and the extracellular compartment appeared substantially restricted by the calyx inner membrane, with the ion channels and active transporters playing a crucial role in regulating intercellular [K+]. Calyx recordings were consistent with K+ leaving the synaptic cleft through postsynaptic voltage-gated K+ channels involving KV1 and KV7 subunits. The above scenario is consistent with direct depolarization and hyperpolarization of the calyx membrane potential by intercellular K+.


Assuntos
Células Ciliadas Vestibulares/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Potássio/metabolismo , Sinapses/fisiologia , Potenciais de Ação/fisiologia , Animais , Fenômenos Biofísicos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ácido Glutâmico/metabolismo , Canais Iônicos/metabolismo , Potenciais da Membrana/fisiologia , Camundongos
18.
J Neurophysiol ; 123(2): 608-629, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31800345

RESUMO

It has been over 60 years since peripheral efferent vestibular terminals were first identified in mammals, and yet the function of the efferent vestibular system remains obscure. One reason for the lack of progress may be due to our deficient understanding of the peripheral efferent synapse. Although vestibular efferent terminals were identified as cholinergic less than a decade after their anatomical characterization, the cellular mechanisms that underlie the properties of these synapses have had to be inferred. In this review we examine how recent mammalian studies have begun to reveal both nicotinic and muscarinic effects at these terminals and therefore provide a context for fast and slow responses observed in classic electrophysiological studies of the mammalian efferent vestibular system, nearly 40 years ago. Although incomplete, these new results together with those of recent behavioral studies are helping to unravel the mysterious and perplexing action of the efferent vestibular system. Armed with this information, we may finally appreciate the behavioral framework in which the efferent vestibular system operates.


Assuntos
Acetilcolina/metabolismo , Células Ciliadas Vestibulares/fisiologia , Neurônios Eferentes/fisiologia , Receptores Colinérgicos/metabolismo , Transmissão Sináptica/fisiologia , Nervo Vestibular/fisiologia , Animais , Células Ciliadas Vestibulares/metabolismo , Neurônios Eferentes/metabolismo , Nervo Vestibular/metabolismo
19.
J Neurophysiol ; 123(2): 658-669, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31875485

RESUMO

The otolith organs play a critical role in detecting linear acceleration and gravity to control posture and balance. Some afferents that innervate these structures can be activated by sound and are at risk for noise overstimulation. A previous report demonstrated that noise exposure can abolish vestibular short-latency evoked potential (VsEP) responses and damage calyceal terminals. However, the stimuli that were used to elicit responses were weaker than those established in previous studies and may have been insufficient to elicit VsEP responses in noise-exposed animals. The goal of this study was to determine the effect of an established noise exposure paradigm on VsEP responses using large head-jerk stimuli to determine if noise induces a stimulus threshold shift and/or if large head-jerks are capable of evoking VsEP responses in noise-exposed rats. An additional goal is to relate these measurements to the number of calyceal terminals and hair cells present in noise-exposed vs. non-noise-exposed tissue. Exposure to intense continuous noise significantly reduced VsEP responses to large stimuli and abolished VsEP responses to small stimuli. This finding confirms that while measurable VsEP responses can be elicited from noise-lesioned rat sacculi, larger head-jerk stimuli are required, suggesting a shift in the minimum stimulus necessary to evoke the VsEP. Additionally, a reduction in labeled calyx-only afferent terminals was observed without a concomitant reduction in the overall number of calyces or hair cells. This finding supports a critical role of calretinin-expressing calyceal-only afferents in the generation of a VsEP response.NEW & NOTEWORTHY This study identifies a change in the minimum stimulus necessary to evoke vestibular short-latency evoked potential (VsEP) responses after noise-induced damage to the vestibular periphery and reduced numbers of calretinin-labeled calyx-only afferent terminals in the striolar region of the sacculus. These data suggest that a single intense noise exposure may impact synaptic function in calyx-only terminals in the striolar region of the sacculus. Reduced calretinin immunolabeling may provide insight into the mechanism underlying noise-induced changes in VsEP responses.


Assuntos
Calbindina 2 , Neurônios Aferentes/fisiologia , Ruído/efeitos adversos , Terminações Pré-Sinápticas/fisiologia , Sáculo e Utrículo/fisiopatologia , Potenciais Evocados Miogênicos Vestibulares/fisiologia , Animais , Células Ciliadas Vestibulares/fisiologia , Movimentos da Cabeça/fisiologia , Estimulação Física , Ratos , Ratos Long-Evans , Sáculo e Utrículo/lesões
20.
J Physiol ; 598(4): 853-889, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31623011

RESUMO

KEY POINTS: In central regions of vestibular semicircular canal epithelia, the [K+ ] in the synaptic cleft ([K+ ]c ) contributes to setting the hair cell and afferent membrane potentials; the potassium efflux from type I hair cells results from the interdependent gating of three conductances. Elevation of [K+ ]c occurs through a calcium-activated potassium conductance, GBK , and a low-voltage-activating delayed rectifier, GK(LV) , that activates upon elevation of [K+ ]c . Calcium influx that enables quantal transmission also activates IBK , an effect that can be blocked internally by BAPTA, and externally by a CaV 1.3 antagonist or iberiotoxin. Elevation of [K+ ]c or chelation of [Ca2+ ]c linearizes the GK(LV) steady-state I-V curve, suggesting that the outward rectification observed for GK(LV) may result largely from a potassium-sensitive relief of Ca2+ inactivation of the channel pore selectivity filter. Potassium sensitivity of hair cell and afferent conductances allows three modes of transmission: quantal, ion accumulation and resistive coupling to be multiplexed across the synapse. ABSTRACT: In the vertebrate nervous system, ions accumulate in diffusion-limited synaptic clefts during ongoing activity. Such accumulation can be demonstrated at large appositions such as the hair cell-calyx afferent synapses present in central regions of the turtle vestibular semicircular canal epithelia. Type I hair cells influence discharge rates in their calyx afferents by modulating the potassium concentration in the synaptic cleft, [K+ ]c , which regulates potassium-sensitive conductances in both hair cell and afferent. Dual recordings from synaptic pairs have demonstrated that, despite a decreased driving force due to potassium accumulation, hair cell depolarization elicits sustained outward currents in the hair cell, and a maintained inward current in the afferent. We used kinetic and pharmacological dissection of the hair cell conductances to understand the interdependence of channel gating and permeation in the context of such restricted extracellular spaces. Hair cell depolarization leads to calcium influx and activation of a large calcium-activated potassium conductance, GBK , that can be blocked by agents that disrupt calcium influx or buffer the elevation of [Ca2+ ]i , as well as by the specific KCa 1.1 blocker iberiotoxin. Efflux of K+ through GBK can rapidly elevate [K+ ]c , which speeds the activation and slows the inactivation and deactivation of a second potassium conductance, GK(LV) . Elevation of [K+ ]c or chelation of [Ca2+ ]c linearizes the GK(LV) steady-state I-V curve, consistent with a K+ -dependent relief of Ca2+ inactivation of GK(LV) . As a result, this potassium-sensitive hair cell conductance pairs with the potassium-sensitive hyperpolarization-activated cyclic nucleotide-gated channel (HCN) conductance in the afferent and creates resistive coupling at the synaptic cleft.


Assuntos
Células Ciliadas Vestibulares/fisiologia , Potássio/fisiologia , Sinapses/fisiologia , Transmissão Sináptica , Tartarugas/fisiologia , Animais , Sinalização do Cálcio , Íons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...