Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
PLoS Pathog ; 18(1): e1010280, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35100311

RESUMO

Buruli ulcer (BU) is a neglected tropical disease caused by subcutaneous infection with Mycobacterium ulcerans and its exotoxin mycolactone. BU displays coagulative necrosis and widespread fibrin deposition in affected skin tissues. Despite this, the role of the vasculature in BU pathogenesis remains almost completely unexplored. We hypothesise that fibrin-driven ischemia can be an 'indirect' route to mycolactone-dependent tissue necrosis by a mechanism involving vascular dysfunction. Here, we tracked >900 vessels within contiguous tissue sections from eight BU patient biopsies. Our aim was to evaluate their vascular and coagulation biomarker phenotype and explore potential links to fibrin deposition. We also integrated this with our understanding of mycolactone's mechanism of action at Sec61 and its impact on proteins involved in maintaining normal vascular function. Our findings showed that endothelial cell dysfunction is common in skin tissue adjacent to necrotic regions. There was little evidence of primary haemostasis, perhaps due to mycolactone-dependent depletion of endothelial von Willebrand factor. Instead, fibrin staining appeared to be linked to the extrinsic pathway activator, tissue factor (TF). There was significantly greater than expected fibrin staining around vessels that had TF staining within the stroma, and this correlated with the distance it extended from the vessel basement membrane. TF-induced fibrin deposition in these locations would require plasma proteins outside of vessels, therefore we investigated whether mycolactone could increase vascular permeability in vitro. This was indeed the case, and leakage was further exacerbated by IL-1ß. Mycolactone caused the loss of endothelial adherens and tight junctions by the depletion of VE-cadherin, TIE-1, TIE-2 and JAM-C; all Sec61-dependent proteins. Taken together, our findings suggest that both vascular and lymphatic vessels in BU lesions become "leaky" during infection, due to the unique action of mycolactone, allowing TF-containing structures and plasma proteins into skin tissue, ultimately leading to local coagulopathy and tissue ischemia.


Assuntos
Úlcera de Buruli/metabolismo , Fibrina/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Interleucina-1beta/metabolismo , Macrolídeos/metabolismo , Mycobacterium ulcerans/metabolismo , Pele , Tromboplastina/metabolismo , Adolescente , Adulto , Idoso , Úlcera de Buruli/microbiologia , Úlcera de Buruli/patologia , Criança , Feminino , Células Endoteliais da Veia Umbilical Humana/microbiologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Pele/irrigação sanguínea , Pele/metabolismo , Pele/microbiologia
2.
Int J Mol Sci ; 22(16)2021 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-34445234

RESUMO

Abiotrophia defectiva is a nutritionally variant streptococci that is found in the oral cavity, and it is an etiologic agent of infective endocarditis. We have previously reported the binding activity of A. defectiva to fibronectin and to human umbilical vein endothelial cells (HUVECs). However, the contribution of some adhesion factors on the binding properties has not been well delineated. In this study, we identified DnaK, a chaperon protein, as being one of the binding molecules of A. defectiva to fibronectin. Recombinant DnaK (rDnaK) bound immobilized fibronectin in a concentration-dependent manner, and anti-DnaK antiserum reduced the binding activity of A. defectiva with both fibronectin and HUVECs. Furthermore, DnaK were observed on the cell surfaces via immune-electroscopic analysis with anti-DnaK antiserum. Expression of IL-8, CCL2, ICAM-1, and VCAM-1 was upregulated with the A. defectiva rDnaK treatment in HUVECs. Furthermore, TNF-α secretion of THP-1 macrophages was also upregulated with the rDnaK. We observed these upregulations in rDnaK treated with polymyxin B, but not in the heat-treated rDnaK. The findings show that A. defectiva DnaK functions not only as an adhesin to HUVECs via the binding to fibronectin but also as a proinflammatory agent in the pathogenicity to cause infective endocarditis.


Assuntos
Abiotrophia/metabolismo , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Fibronectinas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Abiotrophia/genética , Proteínas de Bactérias/genética , Proteínas de Choque Térmico HSP70/genética , Células Endoteliais da Veia Umbilical Humana/microbiologia , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/microbiologia
3.
mBio ; 12(3)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33975935

RESUMO

Spotted fever group rickettsioses (SFRs) are devastating human infections. Vascular endothelial cells (ECs) are the primary targets of rickettsial infection. Edema resulting from EC barrier dysfunction occurs in the brain and lungs in most cases of lethal SFR, but the underlying mechanisms remain unclear. The aim of the study was to explore the potential role of Rickettsia-infected, EC-derived exosomes (Exos) during infection. Using size exclusion chromatography (SEC), we purified Exos from conditioned, filtered, bacterium-free media collected from Rickettsia parkeri-infected human umbilical vein ECs (HUVECs) (R-ECExos) and plasma of Rickettsia australis- or R. parkeri-infected mice (R-plsExos). We observed that rickettsial infection increased the release of heterogeneous plsExos, but endothelial exosomal size, morphology, and production were not significantly altered following infection. Compared to normal plsExos and ECExos, both R-plsExos and R-ECExos induced dysfunction of recipient normal brain microvascular ECs (BMECs). The effect of R-plsExos on mouse recipient BMEC barrier function is dose dependent. The effect of R-ECExos on human recipient BMEC barrier function is dependent on the exosomal RNA cargo. Next-generation sequencing analysis and stem-loop quantitative reverse transcription-PCR (RT-qPCR) validation revealed that rickettsial infection triggered the selective enrichment of endothelial exosomal mir-23a and mir-30b, which potentially target the endothelial barrier. To our knowledge, this is the first report on the functional role of extracellular vesicles following infection by obligately intracellular bacteria.IMPORTANCE Spotted fever group rickettsioses are devastating human infections. Vascular endothelial cells are the primary targets of infection. Edema resulting from endothelial barrier dysfunction occurs in the brain and lungs in most cases of lethal rickettsioses, but the underlying mechanisms remain unclear. The aim of the study was to explore the potential role of Rickettsia-infected, endothelial cell-derived exosomes during infection. We observed that rickettsial infection increased the release of heterogeneous plasma Exos, but endothelial exosomal size, morphology, and production were not significantly altered following infection. Rickettsia-infected, endothelial cell-derived exosomes induced dysfunction of human recipient normal brain microvascular endothelial cells. The effect is dependent on the exosomal RNA cargo. Next-generation sequencing analysis revealed that rickettsial infection triggered the selective enrichment of endothelial exosomal mir-23a and mir-30b, which potentially target the endothelial barrier. To our knowledge, this is the first report on the functional role of extracellular vesicles following infection by obligately intracellular bacteria.


Assuntos
Exossomos/genética , Exossomos/fisiologia , Células Endoteliais da Veia Umbilical Humana/microbiologia , Infecções por Rickettsia/microbiologia , Animais , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Rickettsia/patogenicidade , Infecções por Rickettsia/patologia
4.
Sci Rep ; 11(1): 6037, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727596

RESUMO

Staphylococcus aureus is the cause of serious vascular infections such as sepsis and endocarditis. These infections are notoriously difficult to treat, and it is believed that the ability of S. aureus to invade endothelial cells and persist intracellularly is a key mechanism for persistence despite ongoing antibiotic treatment. Here, we used dual RNA sequencing to study the simultaneous transcriptional response of S. aureus and human endothelial cells during in vitro infections. We revealed discrete and shared differentially expressed genes for both host and pathogen at the different stages of infection. While the endothelial cells upregulated genes involved in interferon signalling and antigen presentation during late infection, S. aureus downregulated toxin expression while upregulating genes related to iron scavenging. In conclusion, the presented data provide an important resource to facilitate functional investigations into host-pathogen interaction during S. aureus invasive infection and a basis for identifying novel drug target sites.


Assuntos
Interações Hospedeiro-Patógeno , Células Endoteliais da Veia Umbilical Humana/metabolismo , Transdução de Sinais , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/fisiologia , Transcrição Gênica , Regulação para Cima , Células Endoteliais da Veia Umbilical Humana/microbiologia , Humanos
5.
Int Immunopharmacol ; 95: 107476, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33676147

RESUMO

BACKGROUND: Vitamin C (ascorbic acid, AscH2) has been shown to enhance immunity. Here, we studied its immunomodulatory effect on human endothelial cells (ECs) during S. aureus infection. MATERIALS AND METHODS: The ex vivo effects of AscH2 were performed on primary human umbilical vein endothelial cells (HUVECs) infected or not with S. aureus. RESULTS: AscH2 treatment induced a marked downregulation of nitric oxide (NO) production and a moderate upregulation of arginase activity in S. aureus-infected HUVECs (respectively, p < 0.05 and p > 0.05). Although the upregulated release levels of soluble intercellular adhesion molecular 1 (sICAM-1/sCD54) and sE-selectin (sCD62E) molecules were not significantly different between treated and untreated S. aureus-infected HUVECs, AscH2 treatment induced reversing effect on sICAM-1 release when comparing to uninfected control HUVECs. Moreover, AscH2 treatment appears to have a significant effect on preventing HUVEC necrosis induced by S. aureus infection (p < 0.05). Furthermore, AscH2 treatment induced a significant upregulation of cell protective redox biomarker in S. aureus-infected, as shown by superoxide dismutase (SOD) activity (p < 0.05), but not by catalase activity (p > 0.05). Additionally, S. aureus infection markedly downregulated total bound calcium ions (bCa2+) levels as compared to control HUVECs, whereas, AscH2 treatment induced a slight upregulation of bCa2+ levels in infected HUVECs as compared to infected and untreated HUVECs (p > 0.05). On the other hand, AscH2 treatment downregulated increased total cellular cholesterol content (tccCHOL) levels in HUVECs induced by S. aureus infection (p < 0.05). In addition, AscH2 treatment markedly reversed S. aureus effect on upregulation of intracellular glucose (iGLU) levels within infected HUVECs (p < 0.05). Moreover, AscH2 treatment significantly downregulated S. aureus growth (p < 0.05), and significantly upregulated bacterial internalization and intracellular killing by HUVECs (p < 0.05), as well as their cell cycle activation (p < 0.01). Finally, AscH2 treatment has a slight effect on the production of interleukin 6 (IL-6), but induced a marked downregulation of that of IL-1ß in S. aureus-infected HUVECs (respectively, p > 0.05, and p < 0.05). CONCLUSIONS: Our outcomes demonstrated that, during S. aureus infection, AscH2 treatment promotes human ECs survival and function, as well as prevents inflammatory response exacerbation, while inducing bactericidal activity.


Assuntos
Antibacterianos/farmacologia , Ácido Ascórbico/análogos & derivados , Ácido Ascórbico/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Staphylococcus aureus , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/imunologia , Células Endoteliais da Veia Umbilical Humana/microbiologia , Humanos , Molécula 1 de Adesão Intercelular/imunologia , Interleucina-1beta/imunologia , Interleucina-6/imunologia , Óxido Nítrico/imunologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/imunologia
6.
Inflammation ; 44(3): 1194-1202, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33471224

RESUMO

The aim of this study was to explore the effect of the anti-inflammatory protein TSG-6 induced by Staphylococcus bacteria on the regulation of chemokine function in endothelial cells by inhibiting the chemokine-glycosaminoglycan interaction. To cultivate human umbilical vein endothelial cells and Staphylococcus aureus bacteria, respectively, after the experiment is divided into the control group, S. aureus bacteria-induced group, S. aureus bacteria glycosaminoglycans about 1 mg/L sugar group, S. aureus bacteria glycosaminoglycans about 5 mg/L sugar group, and S. aureus bacteria glycosaminoglycans about 10 mg/L sugar group, E-selectin; intercellular adhesion molecule-1 (ICAM-1); monocyte chemoattractant protein-1 (MCP-1); interleukin-8 (IL-8) expression level; chemokine CXCL9, CXCL10, and CXCL11 mRNA and protein expression level; and TSG mRNA and protein expression level were determined in each cell; the endothelial cell proliferation and vascular endothelial cell function indicators were analyzed. The expression levels of E-selectin, ICAM-1, IL-8, MCP-1, and chemokines CXCL9, CXCL10, and CXCL11 mRNA and protein in each group at 6, 12, and 24 h were significantly different (P < 0.05). TSG mRNA and protein expression levels, endothelial cell proliferation ability, and vascular endothelial cell function were also significantly different (P < 0.05). The expression levels of E-selectin, ICAM-1, IL-8, MCP-1, endothelial cell proliferation ability, and vascular endothelial cell function in the Staphylococcus aureus-induced group were lower than those in the control group and the Staphylococcus aureus glycosaminoglycan group, and the mRNA and protein expression levels of chemokines CXCL9, CXCL10, and CXCL11, and TSG mRNA and protein expression levels were higher. With the increase of glycosaminoglycan concentration, the above indexes were improved. The anti-inflammatory protein TSG-6 induced by S. aureus can regulate the chemokine function of endothelial cells by inhibiting the chemokine-glycosaminoglycan interaction.


Assuntos
Moléculas de Adesão Celular/metabolismo , Quimiocinas/metabolismo , Glicosaminoglicanos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/microbiologia , Staphylococcus aureus/metabolismo , Proliferação de Células , Células Cultivadas , Quimiocinas/genética , Selectina E/genética , Selectina E/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Ligação Proteica , Staphylococcus aureus/patogenicidade
7.
Sci Rep ; 10(1): 19118, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154489

RESUMO

Streptococcus mutans, a significant contributor to dental caries, is occasionally isolated from the blood of patients with infective endocarditis. We previously showed that S. mutans strains expressing collagen-binding protein (Cnm) are present in the oral cavity of approximately 10-20% of humans and that they can effectively invade human umbilical vein endothelial cells (HUVECs). Here, we investigated the potential molecular mechanisms of HUVEC invasion by Cnm-positive S. mutans. The ability of Cnm-positive S. mutans to invade HUVECs was significantly increased by the presence of serum, purified type IV collagen, and fibrinogen (p < 0.001). Microarray analyses of HUVECs infected by Cnm-positive or -negative S. mutans strains identified several transcripts that were differentially upregulated during invasion, including those encoding the small G protein regulatory proteins ARHGEF38 and ARHGAP9. Upregulation of these proteins occurred during invasion only in the presence of serum. Knockdown of ARHGEF38 strongly reduced HUVEC invasion by Cnm-positive S. mutans. In a rat model of infective endocarditis, cardiac endothelial cell damage was more prominent following infection with a Cnm-positive strain compared with a Cnm-negative strain. These results suggest that the type IV collagen-Cnm-ARHGEF38 pathway may play a crucial role in the pathogenesis of infective endocarditis.


Assuntos
Adesinas Bacterianas/metabolismo , Proteínas de Transporte/metabolismo , Endocardite/microbiologia , Células Endoteliais da Veia Umbilical Humana/microbiologia , Infecções Estreptocócicas/microbiologia , Streptococcus mutans/metabolismo , Animais , Colágeno Tipo IV/metabolismo , Modelos Animais de Doenças , Endocardite/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Ratos , Infecções Estreptocócicas/metabolismo , Análise Serial de Tecidos
8.
Nat Commun ; 11(1): 3571, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678094

RESUMO

Pathogenic bacteria of the genus Bartonella can induce vasoproliferative lesions during infection. The underlying mechanisms are unclear, but involve secretion of an unidentified mitogenic factor. Here, we use functional transposon-mutant screening in Bartonella henselae to identify such factor as a pro-angiogenic autotransporter, called BafA. The passenger domain of BafA induces cell proliferation, tube formation and sprouting of microvessels, and drives angiogenesis in mice. BafA interacts with vascular endothelial growth factor (VEGF) receptor-2 and activates the downstream signaling pathway, suggesting that BafA functions as a VEGF analog. A BafA homolog from a related pathogen, Bartonella quintana, is also functional. Our work unveils the mechanistic basis of vasoproliferative lesions observed in bartonellosis, and we propose BafA as a key pathogenic factor contributing to bacterial spread and host adaptation.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Bartonella/patogenicidade , Neovascularização Patológica/metabolismo , Transdução de Sinais , Sistemas de Secreção Tipo V/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo , Fatores de Virulência/metabolismo , Animais , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Bartonella/classificação , Bartonella/genética , Proliferação de Células , Perfilação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/microbiologia , Humanos , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/microbiologia , Domínios Proteicos , Sistemas de Secreção Tipo V/química , Sistemas de Secreção Tipo V/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fatores de Virulência/química , Fatores de Virulência/genética
9.
Mol Biol Cell ; 31(19): 2097-2106, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32583738

RESUMO

Interactions between host cells and individual pathogenic bacteria determine the clinical severity of disease during systemic infection in humans. Vascular endothelial cells, which line the lumen of blood vessels, represent a critical barrier for a bacterium in the bloodstream. These cells adopt a myriad of phenotypes that may modulate their susceptibility to infection; however, the precise determinants of their heterogeneity in susceptibility are not known. Here, we show that heterogeneity in susceptibility to Listeria monocytogenes infection among primary human vascular endothelial cells can be attributed entirely to robust, preexisting host cell heterogeneity in bacterial adhesion, and we find no evidence for significant heterogeneity in later steps of infection. High susceptibility to adhesion decays rapidly, within 30-60 min. Thus, rapidly fluctuating, nongenetic variability in bacterial adhesion diversifies susceptibility to infection, both among host cells and within individual cells over time.


Assuntos
Aderência Bacteriana , Interações Hospedeiro-Patógeno , Células Endoteliais da Veia Umbilical Humana/microbiologia , Listeria monocytogenes/patogenicidade , Listeriose/metabolismo , Humanos , Listeria monocytogenes/fisiologia , Listeriose/microbiologia , Listeriose/fisiopatologia
10.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 36(3): 193-197, 2020 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-32389165

RESUMO

Objective To investigate the role of Ras homolog gene (Rho) A/Rho-associated coiled-coil containing protein kinase (ROCK) signaling pathway in tumor necrosis factor α (TNF-α) promoting hyper-permeability of vascular endothelial cells infected by Listeria monocytogenes (Lm) . Methods The cultured human umbilical vein endothelial cells (HUVECs) were divided into a control group (uninfected cells), TNF-α treatment group (100 ng/mL TNF-α, for 2 hours), Lm infection group (infected with MOI=10 Lm for 2 hours, then added gentamicin for 0.5 hour), Lm infection and TNF-α treatment group (infected with Lm and then treated with 100 ng/mL TNF-α for 2 hours), and Y-27632 inhibitor group combined with Lm infection and TNF-α treatment (treated with 50 µmol/L ROCK inhibitor Y-27632 for 30 minutes, and then Lm infection and TNF-α treatment as above). The protein levels of RhoA, zonula occluden-1 (ZO-1), occludin and ROCK in HUVECs were detected by Western blot analysis; the permeability of HUVECs was analyzed by the horseradish peroxidase (HRP) leakage; and the distribution of F-actin in HUVECs was detected by fluorescein isothiocyanate (FITC)-labeled phalloidine staining. Results TNF-α reduced the expression of tight junction protein ZO-1 and occludin in Lm-infected HUVECs, promoted its hyper-permeability and cytoskeletal rearrangement, and up-regulated the expression of RhoA and ROCK. ROCK inhibitor Y-27632 obviously inhibited the cytoskeleton rearrangement and hyper-permeability of HUVECs induced by TNF-α. Conclusion TNF-α can enhance hyper-permeability of HUVECs infected by Lm, which may be regulated by RhoA/Rock signaling pathway.


Assuntos
Células Endoteliais da Veia Umbilical Humana/microbiologia , Listeria monocytogenes , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Células Cultivadas , Citoesqueleto/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Permeabilidade
11.
J Recept Signal Transduct Res ; 40(2): 126-132, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32003295

RESUMO

Chlamydia pneumonia (C.pn) is a common respiratory pathogen that is involved in human cardiovascular diseases and promotes the development of atherosclerosis in hyperlipidemic animal models. C.pn reportedly up-regulated lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in endothelial cells. Recently, the anti-atherosclerotic activity of peroxisome proliferator-activated receptor γ (PPARγ) has been documented. In the present study, we investigated the effect of C.pn on LOX-1 expression in human umbilical vein endothelial cells (HUVECs) and identified the involvement of the PPARγ signaling pathway therein. The results showed that C.pn increased the expression of LOX-1 in HUVECs in a dose- and time-dependent manner. C.pn-induced up-regulation of LOX-1 was mediated by ERK1/2, whereas p38 MAPK and JNK had no effect on this process. C.pn induced apoptosis, inhibited cell proliferation, and decreased the expression PPARγ in HUVECs. Additionally, LOX-1 activity and cell injury caused by C.pn through activation of ERK1/2 was completely inhibited by rosiglitazone, a PPARγ agonist. In conclusion, we inferred that activation of PPARγ in HUVECs suppressed C.pn-induced LOX-1 expression and cell damage by inhibiting ERK1/2 signaling.


Assuntos
Aterosclerose/genética , Doenças Cardiovasculares/genética , PPAR gama/genética , Receptores Depuradores Classe E/genética , Apoptose/genética , Aterosclerose/microbiologia , Aterosclerose/patologia , Doenças Cardiovasculares/microbiologia , Doenças Cardiovasculares/patologia , Proliferação de Células/genética , Chlamydophila pneumoniae/genética , Chlamydophila pneumoniae/patogenicidade , Regulação da Expressão Gênica/genética , Células Endoteliais da Veia Umbilical Humana/microbiologia , Humanos , Sistema de Sinalização das MAP Quinases/genética , PPAR gama/agonistas , Rosiglitazona/farmacologia , Transdução de Sinais/efeitos dos fármacos , Veias Umbilicais/metabolismo , Veias Umbilicais/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética
12.
Sci Rep ; 10(1): 1778, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019950

RESUMO

A link between periodontitis and atherothrombosis has been highlighted. The aim of this study was to determine the influence of Porphyromonas gingivalis on endothelial microvesicles (EMVPg) shedding and their contribution to endothelial inflammation. Endothelial cells (EC) were infected with P. gingivalis (MOI = 100) for 24 h. EMVPg were isolated and their concentration was evaluated by prothrombinase assay. EMVPg were significantly increased in comparison with EMVCtrl shedded by unstimulated cells. While EMVCtrl from untreated EC had no effect, whereas, the proportion of apoptotic EC was increased by 30 nM EMVPg and viability was decreased down to 25%, a value elicited by P. gingivalis alone. Moreover, high concentration of EMVPg (30 nM) induced a pro-inflammatory and pro-oxidative cell response including up-regulation of TNF-α, IL-6 and IL-8 as well as an altered expression of iNOS and eNOS at both mRNA and protein level. An increase of VCAM-1 and ICAM-1 mRNA expression (4.5 folds and 3 folds respectively (p < 0.05 vs untreated) was also observed after EMVPg (30 nM) stimulation whereas P. gingivalis infection was less effective, suggesting a specific triggering by EMVPg. Kinasome analysis demonstrated the specific effect induced by EMVPg on main pro-inflammatory pathways including JNK/AKT and STAT. EMVPg are effective pro-inflammatory effectors that may have detrimental effect on vascular homeostasis and should be considered as potential autocrine and paracrine effectors involved in the link between periodontitis and atherothrombosis.


Assuntos
Infecções por Bacteroidaceae/metabolismo , Micropartículas Derivadas de Células/microbiologia , Células Endoteliais/microbiologia , Estresse Oxidativo/fisiologia , Porphyromonas gingivalis , Micropartículas Derivadas de Células/metabolismo , Citocinas/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/microbiologia , Humanos , Inflamação/metabolismo , Inflamação/microbiologia , Molécula 1 de Adesão Intercelular/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
13.
Am J Pathol ; 190(2): 306-322, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31955791

RESUMO

Mediterranean spotted fever is a reemerging acute tick-borne infection produced by the α-proteobacterium, Rickettsia conorii. Rickettsia conorii infects vascular endothelial cells producing disseminated plasma leakage, manifesting as nonspecific fever, headache, and maculopapular rash. Because there are no available tests of early infection, Mediterranean spotted fever is often undiagnosed and untreated, resulting in significant mortality. To address this critical need, we have applied a quantitative proteomics pipeline for analyzing the secretome of primary human umbilical vein endothelial cells. Of the 104 proteins whose abundance changed significantly in the R. conorii-infected human umbilical vein endothelial cells' secretome, 46 proteins were up-regulated: 45 were host secreted proteins (including cytokines), and 1 was a rickettsial protein, the putative N-acetylmuramoyl-l-alanine amidase RC0497. Proteins with sequence highly homologous to RC0497 were found to be shared by many species of the spotted fever group rickettsiae, but not typhus group rickettsiae. Quantitative targeted proteomics studies of plasma from a mouse model of sublethal and lethal R. conorii identified RC0497 in the blood, and its circulating levels were proportionally associated with infection outcome. Finally, the presence of RC0497 in the serum samples from a cohort of humans presenting with acute rickettsioses was confirmed. The detection of RC0497 has the potential to be a sensitive and specific marker for acute rickettsial spotted rickettsioses.


Assuntos
Biomarcadores/sangue , Febre Botonosa/diagnóstico , Células Endoteliais da Veia Umbilical Humana/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/sangue , Proteoma/análise , Infecções por Rickettsia/complicações , Rickettsia/patogenicidade , Animais , Febre Botonosa/epidemiologia , Febre Botonosa/microbiologia , Estudos de Coortes , Feminino , Interações Hospedeiro-Patógeno , Células Endoteliais da Veia Umbilical Humana/microbiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Proteômica , Rickettsia/isolamento & purificação , Infecções por Rickettsia/microbiologia , Infecções por Rickettsia/transmissão , Texas/epidemiologia
14.
Virulence ; 10(1): 68-81, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31874074

RESUMO

Acinetobacter baumannii is a Gram-negative pathogen that causes a multitude of nosocomial infections. The Acinetobacter trimeric autotransporter adhesin (Ata) belongs to the superfamily of trimeric autotransporter adhesins which are important virulence factors in many Gram-negative species. Phylogenetic profiling revealed that ata is present in 78% of all sequenced A. baumannii isolates but only in 2% of the closely related species A. calcoaceticus and A. pittii. Employing a markerless ata deletion mutant of A. baumannii ATCC 19606 we show that adhesion to and invasion into human endothelial and epithelial cells depend on Ata. Infection of primary human umbilical cord vein endothelial cells (HUVECs) with A. baumannii led to the secretion of interleukin (IL)-6 and IL-8 in a time- and Ata-dependent manner. Furthermore, infection of HUVECs by WT A. baumannii was associated with higher rates of apoptosis via activation of caspases-3 and caspase-7, but not necrosis, in comparison to ∆ata. Ata deletion mutants were furthermore attenuated in their ability to kill larvae of Galleria mellonella and to survive in larvae when injected at sublethal doses. This indicates that Ata is an important multifunctional virulence factor in A. baumannii that mediates adhesion and invasion, induces apoptosis and contributes to pathogenicity in vivo.


Assuntos
Acinetobacter baumannii/genética , Acinetobacter baumannii/patogenicidade , Adesinas Bacterianas/genética , Sistemas de Secreção Tipo V/genética , Fatores de Virulência/genética , Infecções por Acinetobacter/microbiologia , Animais , Apoptose , Aderência Bacteriana/genética , Células Cultivadas , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Células Endoteliais da Veia Umbilical Humana/imunologia , Células Endoteliais da Veia Umbilical Humana/microbiologia , Humanos , Interleucina-6/imunologia , Interleucina-8/imunologia , Larva/microbiologia , Mariposas/microbiologia , Mutação , Filogenia , Cordão Umbilical/citologia , Virulência
15.
Virulence ; 10(1): 948-956, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31718473

RESUMO

The microbiological characteristics of Staphylococcus aureus causing infective endocarditis (IE) have not been investigated thoroughly. We compared the characteristics of S. aureus isolates from patients with and without IE. Cases of S. aureus bacteremia (SAB) were collected from 10 hospitals over 7 years. Cases of native valve IE were matched with non-IE controls according to the following criteria: central-line-associated infection, community-acquired infection, methicillin susceptibility, and if possible, the primary site of infection. Genes coding virulence factors were analyzed using multiplex polymerase chain reactions. Fibrinogen and fibronectin-binding properties were assessed using in vitro binding assays. The fibronectin-binding protein A gene (fnbpA) was sequenced. Of 2,365 cases of SAB, 92 had IE. After matching, 37 pairs of S. aureus isolates from the IE cases and non-IE controls were compared; fnbpA was detected in 91.9% of the IE isolates and 100% of the non-IE isolates (p = 0.24). While the fibrinogen binding ratio was similar (1.07 ± 0.33 vs. 1.08 ± 0.26, p = 0.89), the fibronectin-binding ratio was significantly higher in the IE-group (1.31 ± 0.42 vs. 1.06 ± 0.31, p = 0.01). The proportions of major single-nucleotide polymorphisms in fnbpA were as follows: E652D (2.9% vs. 2.7%), H782Q (65.6% vs. 60.6%), and K786N (65.6% vs. 72.7%). The fibronectin-binding ratio was positively correlated with the number of SNPs present in IE cases (p < 0.001) but not in the non-IE controls (p = 0.124). Fibronectin-binding might play a key role in SAB IE. However, the degree of binding may be mediated by genetic variability between isolates.


Assuntos
Endocardite Bacteriana/microbiologia , Polimorfismo de Nucleotídeo Único , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Fatores de Virulência/genética , Adesinas Bacterianas/genética , Bacteriemia/microbiologia , Aderência Bacteriana , Células Cultivadas , Feminino , Fibronectinas/genética , Variação Genética , Células Endoteliais da Veia Umbilical Humana/microbiologia , Humanos , Masculino , Estudos Prospectivos , Staphylococcus aureus/patogenicidade , Veias Umbilicais/citologia
16.
J Vis Exp ; (152)2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31736484

RESUMO

Interaction of Streptococcus pneumoniae with the surface of endothelial cells is mediated in blood flow via mechanosensitive proteins such as the Von Willebrand Factor (VWF). This glycoprotein changes its molecular conformation in response to shear stress, thereby exposing binding sites for a broad spectrum of host-ligand interactions. In general, culturing of primary endothelial cells under a defined shear flow is known to promote the specific cellular differentiation and the formation of a stable and tightly linked endothelial layer resembling the physiology of the inner lining of a blood vessel. Thus, the functional analysis of interactions between bacterial pathogens and the host vasculature involving mechanosensitive proteins requires the establishment of pump systems that can simulate the physiological flow forces known to affect the surface of vascular cells. The microfluidic device used in this study enables a continuous and pulseless recirculation of fluids with a defined flow rate. The computer-controlled air-pressure pump system applies a defined shear stress on endothelial cell surfaces by generating a continuous, unidirectional, and controlled medium flow. Morphological changes of the cells and bacterial attachment can be microscopically monitored and quantified in the flow by using special channel slides that are designed for microscopic visualization. In contrast to static cell culture infection, which in general requires a sample fixation prior to immune labeling and microscopic analyses, the microfluidic slides enable both the fluorescence-based detection of proteins, bacteria, and cellular components after sample fixation; serial immunofluorescence staining; and direct fluorescence-based detection in real time. In combination with fluorescent bacteria and specific fluorescence-labeled antibodies, this infection procedure provides an efficient multiple component visualization system for a huge spectrum of scientific applications related to vascular processes.


Assuntos
Células Endoteliais da Veia Umbilical Humana/microbiologia , Infecções Pneumocócicas/microbiologia , Reologia , Histamina/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Microfluídica , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/metabolismo , Fator de von Willebrand/metabolismo
17.
Curr Pharm Biotechnol ; 20(9): 733-744, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31258074

RESUMO

BACKGROUND: Recurrent pharyngotonsillitis due to Streptococcus pyogenes develops regardless of whether infecting strains are resistant or susceptible to first-line antimicrobials. Causation for recurrent infection is associated with the use of first-line antimicrobials that fail to penetrate deep tissue and host cell membranes, enabling intracellular S. pyogenes to survive throughout repeated rounds of antimicrobial therapy. OBJECTIVE: To determine whether simvastatin, a therapeutic approved for use in the treatment of hypercholesterolemia, and ML141, a first-in-class small molecule inhibitor with specificity for human CDC42, limit host cell invasion by S. pyogenes. METHODS: Assays to assess host cell invasion, bactericidal activity, host cell viability, actin depolymerization, and fibronectin binding were performed using the RAW 267.4 macrophage cell line and Human Umbilical Vein Endothelial Cells (HUVEC) infected with S. pyogenes (90-226) and treated with simvastatin, ML141, structural analogs of ML141, or vehicle control. RESULTS: Simvastatin and ML141 decreased intracellular infection by S. pyogenes in a dose-dependent manner. Inhibition by simvastatin persisted following 1 h washout whereas inhibition by ML141 was reversed. During S. pyogenes infection, actin stress fibers depolymerized in vehicle control treated cells, yet remained intact in simvastatin and in ML141 treated cells. Consistent with the previous characterization of ML141, simvastatin decreased host cell binding to fibronectin. Structural analogs of ML141, designated as the RSM series, decreased intracellular infection through non-cytotoxic, nonbactericidal mechanisms. CONCLUSION: Our findings demonstrate the potential of repurposing simvastatin and of developing CDC42-targeted therapeutics for eradicating intracellular S. pyogenes infection to break the cycle of recurrent infection through a host-directed approach.


Assuntos
Antibacterianos/farmacologia , Pirazóis/farmacologia , Sinvastatina/farmacologia , Infecções Estreptocócicas/tratamento farmacológico , Streptococcus pyogenes/efeitos dos fármacos , Sulfonamidas/farmacologia , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores , Animais , Antibacterianos/química , Células Cultivadas , Fibronectinas/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/microbiologia , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Estrutura Molecular , Pirazóis/química , Células RAW 264.7 , Sinvastatina/química , Sulfonamidas/química
18.
Mediators Inflamm ; 2018: 1967506, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30150893

RESUMO

It has been reported that periodontitis is associated with an increased risk of atherosclerosis. Accumulating evidence suggests that endothelial dysfunction is an early marker for atherosclerosis. To determine how periodontal infections contribute to endothelial dysfunction, we examined the effect of Porphyromonas gingivalis on human umbilical vein endothelial cells (HUVEC). P. gingivalis significantly suppressed the viability of HUVEC, induced DNA fragmentation and annexin V staining, and increased caspase-3, caspase-8, and caspase-9 activities. P. gingivalis also increased the expression of GADD153 and GRP78 and caspase-12 activity. Further, P. gingivalis induced autophagy, as evidenced by increased LC3-II and Beclin-1 levels. The suppression of P. gingivalis-induced autophagy by silencing of LC3 with siRNA significantly increased P. gingivalis-induced apoptosis. ER stress inhibitor, salubrinal, suppressed apoptosis and autophagy by inhibiting P. gingivalis-induced DNA fragmentation and LC3-II expression. These data suggest that P. gingivalis infection induces ER stress-mediated apoptosis followed by autophagic response that protects HUVEC from P. gingivalis-mediated apoptosis, potentially amplifying proatherogenic mechanisms in the perturbed vasculature.


Assuntos
Apoptose/fisiologia , Autofagia/fisiologia , Sobrevivência Celular/fisiologia , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/microbiologia , Porphyromonas gingivalis/patogenicidade , Caspase 12/genética , Caspase 12/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , Morte Celular/fisiologia , Proliferação de Células/fisiologia , Fragmentação do DNA , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
19.
Thromb Haemost ; 118(7): 1230-1241, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29909601

RESUMO

Adhesion of Staphylococcus aureus to endothelial cells (ECs) is paramount in infective endocarditis. Bacterial proteins such as clumping factor A (ClfA) and fibronectin binding protein A (FnbpA) mediate adhesion to EC surface molecules and (sub)endothelial matrix proteins including fibrinogen (Fg), fibrin, fibronectin (Fn) and von Willebrand factor (vWF). We studied the influence of shear flow and plasma on the binding of ClfA and FnbpA (including its sub-domains A, A16+, ABC, CD) to coverslip-coated vWF, Fg/fibrin, Fn or confluent ECs, making use of Lactococcus lactis, expressing these adhesins heterologously. Global adherence profiles were similar in static and flow conditions. In the absence of plasma, L. lactis-clfA binding to Fg increased with shear forces, whereas binding to fibrin did not. The degree of adhesion of L. lactis-fnbpA to EC-bound Fn and of L. lactis-clfA to EC-bound Fg, furthermore, was similar to that of L. lactis-clfA to coated vWF domain A1, in the presence of vWF-binding protein (vWbp). Yet, in plasma, L. lactis-clfA adherence to activated EC-vWF/vWbp dropped over 10 minutes by 80% due to vWF-hydrolysis by a disintegrin and metalloproteinase with thrombospondin type 1 motif, member 13 and that of L. lactis-fnbpA likewise by > 70% compared to the adhesion in absence of plasma. In contrast, plasma Fg supported high L. lactis-clfA binding to resting and activated ECs. Or, in plasma S. aureus adhesion to active endothelium occurs mainly via two complementary pathways: a rapid but short-lived vWF/vWbp pathway and a stable integrin-coupled Fg-pathway. Hence, the pharmacological inhibition of ClfA-Fg interactions may constitute a valuable additive treatment in infective endocarditis.


Assuntos
Proteína ADAMTS13/sangue , Aderência Bacteriana , Coagulase/metabolismo , Endocardite Bacteriana/microbiologia , Células Endoteliais da Veia Umbilical Humana/microbiologia , Plasma/enzimologia , Staphylococcus aureus/metabolismo , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Células Cultivadas , Coagulase/genética , Endocardite Bacteriana/sangue , Fibrina/metabolismo , Fibrinogênio , Fibronectinas/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Staphylococcus aureus/genética , Estresse Mecânico , Fator de von Willebrand/metabolismo
20.
Mem Inst Oswaldo Cruz ; 113(6): e140421, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29641644

RESUMO

BACKGROUND Streptococcus agalactiae can causes sepsis, pneumonia, and meningitis in neonates, the elderly, and immunocompromised patients. Although the virulence properties of S. agalactiae have been partially elucidated, the molecular mechanisms related to reactive oxygen species (ROS) generation in infected human endothelial cells need further investigation. OBJECTIVES This study aimed to evaluate the influence of oxidative stress in human umbilical vein endothelial cells (HUVECs) during S. agalactiae infection. METHODS ROS production during S. agalactiae-HUVEC infection was detected using the probe CM-H2DCFDA. Microfilaments labelled with phalloidin-FITC and p47phox-Alexa 546 conjugated were analysed by immunofluorescence. mRNA levels of p47phox (NADPH oxidase subunit) were assessed using Real Time qRT-PCR. The adherence and intracellular viability of S. agalactiae in HUVECs with or without pre-treatment of DPI, apocynin (NADPH oxidase inhibitors), and LY294002 (PI3K inhibitor) were evaluated by penicillin/gentamicin exclusion. Phosphorylation of p47phox and Akt activation by S. agalactiae were evaluated by immunoblotting analysis. FINDINGS Data showed increased ROS production 15 min after HUVEC infection. Real-Time qRT-PCR and western blotting performed in HUVEC infected with S. agalactiae detected alterations in mRNA levels and activation of p47phox. Pre-treatment of endothelial cells with NADPH oxidase (DPI and apocynin) and PI3K/Akt pathway (LY294002) inhibitors reduced ROS production, bacterial intracellular viability, and generation of actin stress fibres in HUVECs infected with S. agalactiae. CONCLUSIONS ROS generation via the NADPH oxidase pathway contributes to invasion of S. agalactiae in human endothelial cells accompanied by cytoskeletal reorganisation through the PI3K/Akt pathway, which provides novel evidence for the involvement of oxidative stress in S. agalactiae pathogenesis.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , NADPH Oxidases/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Infecções Estreptocócicas/metabolismo , Streptococcus agalactiae/metabolismo , Análise de Variância , Aderência Bacteriana , Western Blotting , Células Endoteliais da Veia Umbilical Humana/microbiologia , Humanos , NADPH Oxidases/análise , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/análise , Reação em Cadeia da Polimerase em Tempo Real , Valores de Referência , Transdução de Sinais/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...