Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 38(10): e23671, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38752538

RESUMO

NLRP3 inflammasome activation has emerged as a critical initiator of inflammatory response in ischemic retinopathy. Here, we identified the effect of a potent, selective NLRP3 inhibitor, MCC950, on autophagy and apoptosis under hypoxia. Neonatal mice were exposed to hyperoxia for 5 days to establish oxygen-induced retinopathy (OIR) model. Intravitreal injection of MCC950 was given, and then autophagy and apoptosis markers were assessed. Retinal autophagy, apoptosis, and related pathways were evaluated by western blot, immunofluorescent labeling, transmission electron microscopy, and TUNEL assay. Autophagic activity in Müller glia after NLRP3 inflammasome inhibition, together with its influence on photoreceptor death, was studied using western blot, immunofluorescence staining, mRFP-GFP-LC3 adenovirus transfection, cell viability, proliferation, and apoptosis assays. Results showed that activation of NLRP3 inflammasome in Müller glia was detected in OIR model. MCC950 could improve impaired retinal autophagic flux and attenuate retinal apoptosis while it regulated the retinal AMPK/mTOR/ULK-1 pathway. Suppressed autophagy and depressed proliferation capacity resulting from hypoxia was promoted after MCC950 treatment in Müller glia. Inhibition of AMPK and ULK-1 pathway significantly interfered with the MCC950-induced autophagy activity, indicating MCC950 positively modulated autophagy through AMPK/mTOR/ULK-1 pathway in Müller cells. Furthermore, blockage of autophagy in Müller glia significantly induced apoptosis in the cocultured 661W photoreceptor cells, whereas MCC950 markedly preserved the density of photoreceptor cells. These findings substantiated the therapeutic potential of MCC950 against impaired autophagy and subsequent apoptosis under hypoxia. Such protective effect might involve the modulation of AMPK/mTOR/ULK-1 pathway. Targeting NLRP3 inflammasome in Müller glia could be beneficial for photoreceptor survival under hypoxic conditions.


Assuntos
Apoptose , Autofagia , Células Ependimogliais , Furanos , Indenos , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sulfonamidas , Animais , Autofagia/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Camundongos , Apoptose/efeitos dos fármacos , Sulfonamidas/farmacologia , Inflamassomos/metabolismo , Furanos/farmacologia , Células Ependimogliais/metabolismo , Células Ependimogliais/efeitos dos fármacos , Indenos/farmacologia , Camundongos Endogâmicos C57BL , Hipóxia/metabolismo , Óxidos S-Cíclicos/farmacologia , Sulfonas/farmacologia , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/patologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
2.
Cell Biochem Funct ; 42(4): e4024, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38666564

RESUMO

Diabetic retinopathy (DR) is a significant complication of diabetes that often leads to blindness, impacting Müller cells, the primary retinal macroglia involved in DR pathogenesis. Reactive oxygen species (ROS) play a crucial role in the development of DR. The objective of this study was to investigate the involvement of sestrin2 in DR using a high-glucose (HG)-induced Müller cell model and assessing cell proliferation with 5-ethynyl-2-deoxyuridine (EdU) labeling. Following this, sestrin2 was upregulated in Müller cells to investigate its effects on ROS, tube formation, and inflammation both in vitro and in vivo, as well as its interaction with the nuclear factor erythroid2-related factor 2 (Nrf2) signaling pathway. The findings demonstrated a gradual increase in the number of EdU-positive cells over time, with a subsequent decrease after 72 h of exposure to high glucose levels. Additionally, the expression of sestrin2 exhibited a progressive increase over time, followed by a decrease at 72 h. The rh-sestrin2 treatment suppressed the injury of Müller cells, decreased ROS level, and inhibited the tube formation. Rh-sestrin2 treatment enhanced the expression of sestrin2, Nrf2, heme oxygenase-1 (HO-1), and glutamine synthetase (GS); however, the ML385 treatment reversed the protective effect of rh-sestrin2. Finally, we evaluated the effect of sestrin2 in a DR rat model. Sestrin2 overexpression treatment improved the pathological injury of retina and attenuated the oxidative damage and inflammatory reaction. Our results highlighted the inhibitory effect of sestrin2 in the damage of retina, thus presenting a novel therapeutic sight for DR.


Assuntos
Retinopatia Diabética , Espécies Reativas de Oxigênio , Sestrinas , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Animais , Espécies Reativas de Oxigênio/metabolismo , Ratos , Masculino , Ratos Sprague-Dawley , Fator 2 Relacionado a NF-E2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Glucose/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Ependimogliais/metabolismo , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/patologia , Transdução de Sinais/efeitos dos fármacos , Peroxidases/metabolismo , Células Cultivadas
3.
Biomed Pharmacother ; 174: 116538, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579401

RESUMO

Glaucoma is considered a neurodegenerative disease characterized by progressive visual field defects that may lead to blindness. Although controlling intraocular pressure (IOP) is the mainstay of glaucoma treatment, some glaucoma patients have unmet needs due to unclear pathogenic mechanisms. Recently, there has been growing evidence that neuroinflammation is a potential target for the development of novel antiglaucoma agents. In this study, we investigated the protective effects and cellular mechanisms of H7E, a novel small molecule inhibits HDAC8, using in vitro and in vivo glaucoma-like models. Importantly, H7E mitigated extracellular MMP-9 activity and MCP-1 levels in glutamate- or S100B-stimulated reactive Müller glia. In addition, H7E inhibited the upregulation of inflammation- and proliferation-related signaling pathways, particularly the ERK and JNK MAPK pathways. Under conditions of oxidative damage, H7E prevents retinal cell death and reduces extracellular glutamate released from stressed Müller glia. In a mouse model of NMDA-induced retinal degeneration, H7E alleviated functional and structural defects within the inner retina as assessed by electroretinography and optical coherence tomography. Our results demonstrated that the newly identified compound H7E protects against glaucoma damage by specifically targeting HDAC8 activity in the retina. This protective effect is attributed to the inhibition of Müller glial activation and the prevention of retinal cell death caused by oxidative stress.


Assuntos
Células Ependimogliais , Glaucoma , Inibidores de Histona Desacetilases , Histona Desacetilases , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Animais , Estresse Oxidativo/efeitos dos fármacos , Glaucoma/tratamento farmacológico , Glaucoma/metabolismo , Glaucoma/patologia , Inibidores de Histona Desacetilases/farmacologia , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/metabolismo , Células Ependimogliais/patologia , Camundongos , Histona Desacetilases/metabolismo , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/patologia , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Masculino , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/patologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/prevenção & controle
4.
Exp Eye Res ; 243: 109890, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615833

RESUMO

Phosphodiesterase (PDE) inhibitors - such as vardenafil - are used primarily for treating erectile dysfunction via increasing cyclic guanosine monophosphate (cGMP) levels. Recent studies have also demonstrated their significant cardioprotective effects in several diseases, including diabetes, upon long-term, continuous application. However, PDE inhibitors are not specific for PDE5 and also inhibit the retinal isoform. A sustained rise in cGMP in photoreceptors is known to be toxic; therefore, we hypothesized that long-term vardenafil treatment might result in retinotoxicity. The hypothesis was tested in a clinically relevant animal model of type 2 diabetes mellitus. Histological experiments were performed on lean and diabetic Zucker Diabetic Fatty rats. Half of the animals were treated with vardenafil for six months, and the retinal effects were evaluated. Vardenafil treatment alleviated rod outer segment degeneration but decreased rod numbers in some positions and induced changes in the interphotoreceptor matrix, even in control animals. Vardenafil treatment decreased total retinal thickness in the control and diabetic groups and reduced the number of nuclei in the outer nuclear layer. Müller cell activation was detectable even in the vardenafil-treated control animals, and vardenafil did not improve gliosis in the diabetic group. Vardenafil-treated animals showed complex retinal alterations with improvements in some parameters while deterioration in others. Our results point towards the retinotoxicity of vardenafil, even without diabetes, which raises doubts about the retinal safety of long-term continuous vardenafil administration. This effect needs to be considered when approving PDE inhibitors for alternative indications.


Assuntos
Diabetes Mellitus Experimental , Inibidores da Fosfodiesterase 5 , Ratos Zucker , Dicloridrato de Vardenafila , Dicloridrato de Vardenafila/farmacologia , Dicloridrato de Vardenafila/toxicidade , Animais , Ratos , Inibidores da Fosfodiesterase 5/farmacologia , Masculino , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/patologia , Retina/efeitos dos fármacos , Retina/patologia , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/patologia , Células Ependimogliais/metabolismo
5.
Int Ophthalmol ; 43(12): 4595-4604, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37688651

RESUMO

PURPOSE: This study investigated the protective effect of probucol on Müller cells exposed to high glucose conditions and examined potential mechanisms of action. METHODS: Primary human retinal Müller cells were incubated with high glucose (HG, 35 mM) in the present or absence of different concentrations of probucol for 24 h. Cell viability was determined using the CCK-8 method. Mitochondrial membrane potential (MMP) was measured using JC-1 staining and cell cycle by flow cytometry. The expression of nuclear factor E2-related factor 2 (Nrf2), glutamate-cysteine ligase catalytic subunit, and p62 was quantified using quantitative polymerase chain reaction and western blot. RESULTS: We found that HG inhibited cell proliferation, arrested cell cycle, and increased MMP in human Müller cells. Probucol activated the Nrf2/p62 pathway and upregulated the anti-apoptotic protein, Bcl2, and attenuated HG-mediated damage in Müller cells. CONCLUSIONS: Our results suggest that probucol may protect Müller cells from HG-induced damage through enhancing the Nrf2/p62 signaling pathway.


Assuntos
Células Ependimogliais , Probucol , Transdução de Sinais , Humanos , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Fator 2 Relacionado a NF-E2 , Probucol/farmacologia
6.
Sci Rep ; 12(1): 1261, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35075205

RESUMO

Diabetic retinopathy (DR) is a complication of diabetes. Several studies have implicated oxidative stress as a fundamental factor in the progression of the disease. The nuclear factor erythroid-2-related factor 2 (Nrf2) is one of the main regulators of redox homeostasis. Glia Müller cells (MC) maintain the structural and functional stability of the retina. The objective of this study was to evaluate the effect of high glucose concentrations on reactive oxygen species (ROS) production and Nrf2 expression levels in rat MC. MC were incubated with normal (NG; 5 mM) or high glucose (HG; 25 mM) for different times. Incubation with HG increased ROS levels from 12 to 48 h but did not affect cell viability. However, exposure to 3 h of HG caused a transient decrease Nrf2 levels. At that time, we also observed a decrease in the mRNA expression of Nrf2 target genes, glutathione levels, and catalase activity, all of which increased significantly beyond initial levels after 48 h of incubation. HG exposure leads to an increase in the p65 subunit of nuclear factor-κB (NF-kB) levels, and its target genes. These results suggest that high glucose concentrations lead to alteration of the redox regulatory capacity of Nrf2 mediated by NF-kB regulation.


Assuntos
Retinopatia Diabética/etiologia , Células Ependimogliais/metabolismo , Glucose/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Células Ependimogliais/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Ratos Long-Evans , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
7.
Exp Eye Res ; 216: 108947, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35074344

RESUMO

Zebrafish possess the ability to completely regenerate the retina following injury, however little is understood about the damage signals that contribute to inducing Müller glia reprogramming and proliferation to regenerate lost neurons. Multiple studies demonstrated that iron contributes to various retinal injuries, however no link has been shown between iron and zebrafish retinal regeneration. Here we demonstrate that Müller glia exhibit transcriptional changes following injury to regulate iron levels within the retina, allowing for increased iron uptake and decreased export. The response of the zebrafish retina to intravitreal iron injection was then characterized, showing that ferrous, and not ferric, iron induces retinal cell death. Additionally, iron chelation resulted in decreased numbers of TUNEL-positive photoreceptors and fewer proliferating Müller glia. Despite the contribution of iron to retinal cell death, inhibition of ferroptosis did not significantly reduce cell death following light treatment. Finally, we demonstrate that both the anti-ferroptotic protein Glutathione peroxidase 4b and the Transferrin receptor 1b are required for Müller glia proliferation following light damage. Together these findings show that iron contributes to cell death in the light-damaged retina and is essential for inducing the Müller glia regeneration response.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células Ependimogliais/efeitos dos fármacos , Compostos Ferrosos/toxicidade , Células Fotorreceptoras/efeitos dos fármacos , Lesões Experimentais por Radiação/etiologia , Degeneração Retiniana/induzido quimicamente , Animais , Animais Geneticamente Modificados , Apoptose , Deferiprona/farmacologia , Células Ependimogliais/metabolismo , Marcação In Situ das Extremidades Cortadas , Injeções Intravítreas , Luz , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Células Fotorreceptoras/efeitos da radiação , Lesões Experimentais por Radiação/metabolismo , Receptores da Transferrina/metabolismo , Degeneração Retiniana/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
8.
Retina ; 42(1): 129-137, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34334704

RESUMO

PURPOSE: To investigate the effect of the foveal Müller cell cone structure on the anatomical and functional response to intravitreal bevacizumab treatment in patients with diabetic macular edema. METHODS: In 93 treatment-naive eyes with center-involved cystic type diabetic macular edema, spectral-domain optical coherence tomography scans of baseline were retrospectively evaluated to determine the foveal Müller cell cone structure and prognostic features including length of disorganization in the retinal inner layers and ellipsoid zone disruption. The area and circularity of the foveal avascular zone of the superficial and deep capillary plexus 1 month after intravitreal bevacizumab treatment were evaluated using optical coherence tomography angiography. RESULTS: Destruction of the foveal Müller cell cone structure and a large foveal avascular zone in the deep capillary plexus (mm2) correlated strongly with a poor anatomical response (CST > 250 µm) at 1 month after first intravitreal bevacizumab (Exp [B] = 29.444, P = 0.002 and Exp [B] = 12.419, P = 0.013, respectively). A destroyed Müller cell cone structure (P = 0.008) and length of ellipsoid zone disruption (P < 0.001) at baseline were associated with poor visual acuity at 1 month after the first intravitreal bevacizumab. CONCLUSION: The foveal Müller cell cone structure correlates with the response to initial antivascular endothelial growth factor treatment.


Assuntos
Bevacizumab/administração & dosagem , Retinopatia Diabética/tratamento farmacológico , Células Ependimogliais/patologia , Angiofluoresceinografia/métodos , Fóvea Central/diagnóstico por imagem , Edema Macular/tratamento farmacológico , Acuidade Visual , Inibidores da Angiogênese/administração & dosagem , Retinopatia Diabética/complicações , Retinopatia Diabética/diagnóstico , Células Ependimogliais/efeitos dos fármacos , Feminino , Fóvea Central/efeitos dos fármacos , Fundo de Olho , Humanos , Injeções Intravítreas , Edema Macular/diagnóstico , Edema Macular/etiologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Estudos Retrospectivos , Tomografia de Coerência Óptica/métodos
9.
Exp Eye Res ; 214: 108857, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34856207

RESUMO

Our goal was to explore the detrimental impacts of ciprofloxacin (CPFX) and tetracycline (TETRA) on human retinal Müller (MIO-M1) cells in vitro. Cells were exposed to 30, 60 and 120 µg/ml of CPFX and TETRA. The cellular metabolism was measured with the MTT assay. The JC-1 and CM-H2DCFDA assays were used to evaluate the levels of mitochondrial membrane potential (MMP) and ROS (reactive oxygen species), respectively. Mitochondrial DNA (mtDNA) copy number, along with gene expression levels associated with apoptotic (BAX, BCL2-L13, BCL2, CASP-3 and CASP-9), inflammatory (IL-6, IL-1ß, TGF-α, TGF-ß1 and TGF-ß2) and antioxidant pathways (SOD2, SOD3, GPX3 and NOX4) were analyzed via Quantitative Real-Time PCR (qRT-PCR). Bioenergetic profiles were measured using the Seahorse® XF Flux Analyzer. Cells exposed 24 h to 120 µg/ml TETRA demonstrated higher cellular metabolism compared to vehicle-treated cells. At each time points, (i) all TETRA concentrations reduced MMP levels and (ii) ROS levels were reduced by TETRA 120 µg/ml treatment. TETRA caused (i) higher expression of CASP-3, CASP-9, TGF-α, IL-1B, GPX3 and SOD3 but (ii) decreased levels of TGF-B2 and SOD2. ATP production and spare respiratory capacity declined with TETRA treatment. Cellular metabolism was reduced with CPFX 120 µg/ml in all cultures and 60 µg/ml after 72 h. The CPFX 120 µg/ml reduced MMP in all cultures and ROS levels (72 h). CPFX treatment (i) increased expression of CASP-3, CASP-9, and BCL2-L13, (ii) elevated the basal oxygen consumption rate, and (iii) lowered the mtDNA copy numbers and expression levels of TGF-B2, IL-6 and IL-1B compared to vehicle-control cells. We conclude that clinically relevant dosages of bactericidal and bacteriostatic antibiotics can have negative effects on the cellular metabolism and mitochondrial membrane potential of the retinal MIO-M1 cells in vitro. It is noteworthy to mention that apoptotic and inflammatory pathways in exposed cells were affected significantly This is the first study showing the negative impact of fluoroquinolones and tetracyclines on mitochondrial behavior of human retinal MIO-M1 cells.


Assuntos
Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Células Ependimogliais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Tetraciclina/farmacologia , Proteínas Reguladoras de Apoptose/genética , Sobrevivência Celular , Células Cultivadas , Variações do Número de Cópias de DNA , DNA Mitocondrial/genética , Células Ependimogliais/metabolismo , Humanos , Interleucinas/genética , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/metabolismo , Oxirredutases/genética , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
10.
J Ethnopharmacol ; 285: 114800, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34748867

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Diabetic retinopathy (DR) is a kind of complex complication of late diabetes mellitus with high incidence and risk of blindness. Bushen Huoxue Prescription (BHP), which consists of Rehmanniae radix (RR), Salviae miltiorrhizae radix et rhizoma (SMRR), Ginseng radix et rhizome (GRR) and Puerariae lobatae radix (PLR), has an active effect on the treatment of DR. However, the quality markers (Q-markers) of BHP are not entirely clear. PURPOSE: This study aimed to screen the Q-markers of BHP for DR treatment based on the establishment of spectrum-effect relationship and verified experiment. MATERIALS AND METHODS: In this study, 12 BHP samples (S1-S12) for fingerprint analysis and pharmacological evaluation were prepared according to a four-factor and twelve-level uniform design. High performance liquid chromatography-ultraviolet detector-evaporative light scattering detector (HPLC-UV-ELSD) was employed to analyze the fingerprint on the basis of the characteristics of BHP components. The evaluation of sample similarity was carried out by similarity analysis (SA) and hierarchical cluster analysis (HCA). The pharmacological indicators, including expression of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1α (HIF-1α) in the retina of Sprague Dawley (SD) rats induced by streptozotocin (STZ), were detected by enzyme-linked immunosorbent assay (ELISA). Besides, the spectrum-effect relationship between common peaks of fingerprints and the pharmacological results was investigated by partial least squares regression (PLSR) and canonical correlation analysis (CCA). The results of spectrum-effect relationship were verified by the expression of VEGF and HIF-1α on primary culture retinal Müller cells induced by hyperglycemia and hypoxia. RESULTS: In the HPLC-UV-ELSD fingerprint, 23 common peaks in UV and 14 common peaks in ELSD were identified. The pharmacological results indicated that the expression of VEGF and HIF-1α in the retina of SD rats was inhibited by 12 BHP samples to varying degrees compared with the model group. Based on SA and heatmap of HCA, S4 and S8 were clearly distinguished from other samples. The results of PLSR and CCA revealed that the contents of puerarin, daidzin, salvianolic acid B and ginsenoside Rb1 were inversely correlated with the expression of VEGF and HIF-1α. Hence, the four compounds may be the main active components to prevent and treat DR. The results of intervention on primary culture retinal Müller cells showed that puerarin, daidzin, salvianolic acid B, and ginsenoside Rb1 can significantly inhibit the expression of VEGF and HIF-1α. CONCLUSIONS: The spectrum-effect relationship of BHP was successfully established, and the Q-markers of BHP for the prevention and treatment of DR were preliminarily confirmed. It provides a feasible method for the research of quality control.


Assuntos
Biomarcadores , Retinopatia Diabética , Medicamentos de Ervas Chinesas/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Análise de Correlação Canônica , Quimiometria/métodos , Diabetes Mellitus Experimental/complicações , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Retinopatia Diabética/prevenção & controle , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/metabolismo , Células Ependimogliais/patologia , Controle de Qualidade , Ratos , Ratos Sprague-Dawley , Análise Espectral/métodos
11.
Oxid Med Cell Longev ; 2021: 9247947, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938383

RESUMO

Geniposide (GEN) is a natural antioxidant and anti-inflammatory product and plays an important role in the treatment of diabetes and diabetic complications. To explore the biological functions and mechanism of GEN in diabetic retinopathy (DR), we constructed the in vitro and in vivo model of DR by using primary cultured mouse retinal Müller cells and C57BL/6 mice, respectively. We found that GEN inhibited ROS accumulation, NF-κB activation, Müller cell activation, and inflammatory cytokine secretion both in vitro and in vivo, which is probably mediated through the Nrf2 pathway. Exendin (9-39) (EX-9), an antagonist of glucagon-like peptide-1 receptor (GLP-1R), abolished the protective effect of GEN on high glucose- (HG-) induced Müller cells. Additionally, GEN decreased hyperglycemia-induced damage to Müller cells and blood-retinal barrier in the retinas of mice with DR. We demonstrated that GEN was capable of protecting Müller cells and mice from HG-induced oxidative stress and inflammation, which is mostly dependent on the Nrf2 signaling pathway through GLP-1R. GEN may be an effective approach for the treatment of DR.


Assuntos
Diabetes Mellitus Experimental/complicações , Retinopatia Diabética/prevenção & controle , Hiperglicemia/complicações , Inflamação/prevenção & controle , Iridoides/farmacologia , Fator 2 Relacionado a NF-E2/agonistas , Estresse Oxidativo , Animais , Retinopatia Diabética/etiologia , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/metabolismo , Células Ependimogliais/patologia , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo
12.
PLoS One ; 16(12): e0260968, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34860856

RESUMO

Diabetic retinopathy (DR), the most common complication of diabetes mellitus, is associated with oxidative stress, nuclear factor-κB (NFκB) activation, and excess production of vascular endothelial growth factor (VEGF) and intracellular adhesion molecule-1 (ICAM-1). Muller glial cells, spanning the entirety of the retina, are involved in DR inflammation. Mitigation of DR pathology currently occurs via invasive, frequently ineffective therapies which can cause adverse effects. The application of far-red to near-infrared (NIR) light (630-1000nm) reduces oxidative stress and inflammation in vitro and in vivo. Thus, we hypothesize that 670nm light treatment will diminish oxidative stress preventing downstream inflammatory mechanisms associated with DR initiated by Muller cells. In this study, we used an in vitro model system of rat Müller glial cells grown under normal (5 mM) or high (25 mM) glucose conditions and treated with a 670 nm light emitting diode array (LED) (4.5 J/cm2) or no light (sham) daily. We report that a single 670 nm light treatment diminished reactive oxygen species (ROS) production and preserved mitochondrial integrity in this in vitro model of early DR. Furthermore, treatment for 3 days in culture reduced NFκB activity to levels observed in normal glucose and prevented the subsequent increase in ICAM-1. The ability of 670nm light treatment to prevent early molecular changes in this in vitro high glucose model system suggests light treatment could mitigate early deleterious effects modulating inflammatory signaling and diminishing oxidative stress.


Assuntos
Metabolismo Energético , Células Ependimogliais/efeitos da radiação , Glucose/toxicidade , Raios Infravermelhos , Mitocôndrias/efeitos da radiação , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Animais , Células Cultivadas , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Ratos , Edulcorantes/toxicidade
13.
Invest Ophthalmol Vis Sci ; 62(13): 23, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34698771

RESUMO

Purpose: Optic nerve damage leads to impairment of visual functions. We previously demonstrated that apolipoprotein E-containing lipoproteins (E-LPs) protect retinal ganglion cells (RGCs) from degeneration in a glaucoma model of glutamate/aspartate transporter-deficient mice. This study aimed to determine whether E-LPs protect RGCs from N-methyl-D-aspartate (NMDA)-induced excitotoxicity, and to investigate the details of an indirect neuroprotective mechanism of E-LPs by reducing α2-macroglobulin, which interferes with the neuroprotective effect of E-LPs, in Müller glia. Methods: Excitotoxicity was caused by intravitreal injection of NMDA, and then retinae were subjected to immunoblotting or quantitative reverse transcription-PCR. Primary cultures of mouse mixed retinal cells and mouse Müller glia were used for evaluating the effects of E-LPs on the expression of α2-macroglobulin. Results: Intravitreal injection of E-LPs protected the optic nerve from degeneration and attenuated the increase in α2-macroglobulin in aqueous humor and retina of rats. E-LPs directly decreased the expression and secretion of α2-macroglobulin in primary cultures of Müller glia; this decrease in production of α2-macroglobulin was blocked by knockdown of the low-density lipoprotein receptor-related protein 1 (LRP1) with small interfering RNA. E-LPs promoted the phosphorylation of STAT3, whereas Stattic, an inhibitor of STAT3, restored the expression of α2-macroglobulin decreased by E-LPs. Conclusions: In addition to our previous findings of the protection of RGCs by E-LPs, the new observations in Müller glia indicate that a reduction of the intraocular α2-macroglobulin, regulated by the E-LP-LRP1-STAT3 pathway, might be an additional protective mechanism against excitotoxicity in the retina.


Assuntos
Apolipoproteínas E/metabolismo , Células Ependimogliais/metabolismo , Regulação da Expressão Gênica , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , alfa 2-Macroglobulinas Associadas à Gravidez/genética , Degeneração Retiniana/genética , Células Ganglionares da Retina/patologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/patologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , N-Metilaspartato/toxicidade , Fármacos Neuroprotetores/farmacologia , alfa 2-Macroglobulinas Associadas à Gravidez/biossíntese , RNA/genética , Ratos , Ratos Sprague-Dawley , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo
14.
Pharm Biol ; 59(1): 1233-1244, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34506218

RESUMO

CONTEXT: Oxidative injury in a high-glucose (HG) environment may be a mechanism of diabetic retinopathy (DR) and edaravone can protect retinal ganglion cells by scavenging ROS. OBJECTIVE: To explore the effect of edaravone on HG-induced injury. MATERIALS AND METHODS: First, Müller cells were cultured by different concentrations of glucose for different durations to obtain a suitable culture concentrations and duration. Müller cells were then divided into Control, HG + Vehicle, HG + Eda-5 µM, HG + Eda-10 µM, HG + Eda-20 µM, and HG + Eda-40 µM groups. Cells were cultured by 20 mM glucose and different concentrations of edaravone for 72 h. RESULTS: The IC50 of glucose at 12-72 h is 489.3, 103.5, 27.92 and 20.71 mM, respectively. When Müller cells were cultured in 20 mM glucose for 72 h, the cell viability was 52.3%. Edaravone significantly increased cell viability compared to Vehicle (68.4% vs 53.3%; 78.6% vs 53.3%). The EC50 of edaravone is 34.38 µM. HG induced high apoptosis rate (25.5%), while edaravone (20 and 40 µM) reduced it to 12.5% and 6.89%. HG increased the DCF fluorescence signal (189% of Control) and decreased the mitochondrial membrane potential by 57%. Edaravone significantly decreased the DCF fluorescence signal (144% and 132% of Control) and recovered the mitochondrial membrane potential to 68% and 89% of Control. Furthermore, HG decreased the expression of TRX1, PGC-1α, NRF1 and TFAM, which were restored by edaravone. DISCUSSION AND CONCLUSION: These findings provide a new potential approach for the treatment of DR and indicated new molecular targets in the prevention of DR.


Assuntos
Edaravone/farmacologia , Células Ependimogliais/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Retinopatia Diabética/prevenção & controle , Células Ependimogliais/patologia , Glucose/toxicidade , Concentração Inibidora 50 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fator 1 Nuclear Respiratório/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos , Ratos Sprague-Dawley , Tiorredoxinas/metabolismo , Fatores de Transcrição/metabolismo
15.
Nutrients ; 13(9)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34579093

RESUMO

To prevent ocular pathologies, new generation of dietary supplements have been commercially available. They consist of nutritional supplement mixing components known to provide antioxidative properties, such as unsaturated fatty acid, resveratrol or flavonoids. However, to date, only one preclinical study has evaluated the impact of a mixture mainly composed of those components (Nutrof Total®) on the retina and demonstrated that in vivo supplementation prevents the retina from structural and functional injuries induced by light. Considering the crucial role played by the glial Müller cells in the retina, particularly to regulate the glutamate cycle to prevent damage in oxidative stress conditions, we questioned the impact of this ocular supplement on the glutamate metabolic cycle. To this end, various molecular aspects associated with the glutamate/glutamine metabolism cycle in Müller cells were investigated on primary Müller cells cultures incubated, or not, with the commercially mix supplement before being subjected, or not, to oxidative conditions. Our results demonstrated that in vitro supplementation provides guidance of the glutamate/glutamine cycle in favor of glutamine synthesis. These results suggest that glutamine synthesis is a crucial cellular process of retinal protection against oxidative damages and could be a key step in the previous in vivo beneficial results provided by the dietary supplementation.


Assuntos
Antioxidantes/farmacologia , Células Ependimogliais/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Glutamina/biossíntese , Estresse Oxidativo/efeitos dos fármacos , Retina/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Meios de Cultura/farmacologia , Células Ependimogliais/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Camundongos
16.
J Neuroinflammation ; 18(1): 192, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34465367

RESUMO

BACKGROUND: Interleukin-6 (IL6) produced in the context of exercise acts in the hypothalamus reducing obesity-associated inflammation and restoring the control of food intake and energy expenditure. In the hippocampus, some of the beneficial actions of IL6 are attributed to its neurogenesis-inducing properties. However, in the hypothalamus, the putative neurogenic actions of IL6 have never been explored, and its potential to balance energy intake can be an approach to prevent or attenuate obesity. METHODS: Wild-type (WT) and IL6 knockout (KO) mice were employed to study the capacity of IL6 to induce neurogenesis. We used cell labeling with Bromodeoxyuridine (BrdU), immunofluorescence, and real-time PCR to determine the expression of markers of neurogenesis and neurotransmitters. We prepared hypothalamic neuroprogenitor cells from KO that were treated with IL6 in order to provide an ex vivo model to further characterizing the neurogenic actions of IL6 through differentiation assays. In addition, we analyzed single-cell RNA sequencing data and determined the expression of IL6 and IL6 receptor in specific cell types of the murine hypothalamus. RESULTS: IL6 expression in the hypothalamus is low and restricted to microglia and tanycytes, whereas IL6 receptor is expressed in microglia, ependymocytes, endothelial cells, and astrocytes. Exogenous IL6 reduces diet-induced obesity. In outbred mice, obesity-resistance is accompanied by increased expression of IL6 in the hypothalamus. IL6 induces neurogenesis-related gene expression in the hypothalamus and in neuroprogenitor cells, both from WT as well as from KO mice. CONCLUSION: IL6 induces neurogenesis-related gene expression in the hypothalamus of WT mice. In KO mice, the neurogenic actions of IL6 are preserved; however, the appearance of new fully differentiated proopiomelanocortin (POMC) and neuropeptide Y (NPY) neurons is either delayed or disturbed.


Assuntos
Hipotálamo/metabolismo , Interleucina-6/genética , Neurogênese/genética , Neurônios/metabolismo , Obesidade/genética , Animais , Metabolismo Energético/fisiologia , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/metabolismo , Hipotálamo/efeitos dos fármacos , Interleucina-6/metabolismo , Interleucina-6/farmacologia , Masculino , Camundongos , Camundongos Knockout , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Obesidade/metabolismo , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/metabolismo
17.
Exp Eye Res ; 210: 108717, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34348130

RESUMO

The adult mammal lacks the ability to regenerate neurons lost to retinal damage or disease in a meaningful capacity. However, previous studies from this laboratory have demonstrated that PNU-282987, an α7 nicotinic acetylcholine receptor agonist, elicits a robust neurogenic response in the adult murine retina. With eye drop application of PNU-282987, Müller glia cells re-enter the cell cycle and produce progenitor-like cells that can differentiate into various types of retinal neurons. In this study, we analyzed the regenerative capability of PNU-282987 in two retinal disease models and identified the source of newly regenerated neurons. Wild-type mice and mice with a transgenic Müller-glia lineage tracer were manipulated to mimic loss of retinal cells associated with glaucoma or photoreceptor degeneration. Following treatment with PNU-282987, the regenerative response of retinal neurons was quantified and characterized. After onset of photoreceptor degeneration, PNU-282987 was able to successfully regenerate both rod and cone photoreceptors. Quantification of this response demonstrated significant regeneration, restoring photoreceptors to near wild-type density. In mice that had glaucoma-like conditions induced, PNU-282987 treatment led to a significant increase in retinal ganglion cells. Retrograde labeling of optic nerve axon fibers demonstrated that newly regenerated axons projected into the optic nerve. Lineage tracing analysis demonstrated that these new neurons were derived from Müller glia. These results demonstrate that PNU-282987 can induce retinal regeneration in adult mice following onset of retinal damage. The ability of PNU-282987 to regenerate retinal neurons in a robust manner offers a new direction for developing novel and potentially transformative treatments to combat neurodegenerative disease.


Assuntos
Benzamidas/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Modelos Animais de Doenças , Regeneração Nervosa/fisiologia , Degeneração Retiniana/tratamento farmacológico , Células Ganglionares da Retina/fisiologia , Neurônios Retinianos/fisiologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Ciclo Celular , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/metabolismo , Glaucoma/fisiopatologia , Pressão Intraocular/fisiologia , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Neurogênese , Agonistas Nicotínicos/farmacologia , Degeneração Retiniana/metabolismo
18.
Biochim Biophys Acta Mol Basis Dis ; 1867(12): 166238, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34343639

RESUMO

Chronic low-grade retinal inflammation is an essential contributor to the pathogenesis of diabetic retinopathy (DR). It is characterized by increased retinal cell expression and secretion of a variety of inflammatory cytokines; among these, IL-1ß has the reputation of being a major driver of cytokine-induced inflammation. IL-1ß and other cytokines drive inflammatory changes that cause damage to retinal cells, leading to the hallmark vascular lesions of DR; these include increased leukocyte adherence, vascular permeability, and capillary cell death. Nuclear factor of activated T-cells (NFAT) is a transcriptional regulator of inflammatory cytokines and adhesion molecules and is expressed in retinal cells. Consequently, it may influence multiple pathogenic steps early in DR. We investigated the NFAT-dependency of IL-1ß-induced inflammation in human Müller cells (hMC) and human retinal microvascular endothelial cells (hRMEC). Our results show that an NFAT inhibitor, Inhibitor of NFAT-Calcineurin Association-6 (INCA-6), decreased IL-1ß-induced expression of IL-1ß and TNFα in hMC, while having no effect on VEGF, CCL2, or CCL5 expression. We also demonstrate that INCA-6 attenuated IL-1ß-induced increases of IL-1ß, TNFα, IL-6, CCL2, and CCL5 (inflammatory cytokines and chemokines), and ICAM-1 and E-selectin (leukocyte adhesion molecules) expression in hRMEC. INCA-6 similarly inhibited IL-1ß-induced increases in leukocyte adhesion in both hRMEC monolayers in vitro and an acute model of retinal inflammation in vivo. Finally, INCA-6 rescued IL-1ß-induced permeability in both hRMEC monolayers in vitro and an acute model of retinal inflammation in vivo. Taken together, these data demonstrate the potential of NFAT inhibition to mitigate retinal inflammation secondary to diabetes.


Assuntos
Retinopatia Diabética/tratamento farmacológico , Inflamação/tratamento farmacológico , Interleucina-1beta/genética , Fatores de Transcrição NFATC/genética , Vasculite Retiniana/tratamento farmacológico , Inibidores de Calcineurina/farmacologia , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL5/genética , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Selectina E/genética , Células Endoteliais/efeitos dos fármacos , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/genética , Inflamação/patologia , Molécula 1 de Adesão Intercelular/genética , Interleucina-1beta/farmacologia , Fatores de Transcrição NFATC/antagonistas & inibidores , Retina/efeitos dos fármacos , Retina/patologia , Vasculite Retiniana/genética , Vasculite Retiniana/parasitologia , Vasos Retinianos/efeitos dos fármacos , Vasos Retinianos/patologia , Fator de Necrose Tumoral alfa/genética , Fator A de Crescimento do Endotélio Vascular/genética
19.
IUBMB Life ; 73(11): 1307-1324, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34405947

RESUMO

Deep mining of the molecular mechanisms underlying diabetic retinopathy (DR) is critical for the development of novel therapeutic targets. This study aimed to identify key molecular signatures involved in experimental DR on the basis of integrated bioinformatics analysis. Four datasets consisting of 37 retinal samples were downloaded from the National Center of Biotechnology Information Gene Expression Omnibus. After batch-effect adjustment, bioinformatics tools such as Networkanalyst, Enrichr, STRING, and Metascape were used to evaluate the differentially expressed genes (DEGs), perform enrichment analysis, and construct protein-protein interaction networks. The hub genes were identified using Cytoscape software. The DEGs of interest from the meta-analysis were confirmed by quantitative reverse transcription-polymerase chain reaction in diabetic rats and a high-glucose-treated retinal cell model, respectively. A total of 743 DEGs related to lens differentiation, insulin resistance, and high-density lipoprotein (HDL) cholesterol metabolism were obtained using the meta-analysis. Alterations of dynamic gene expression in the chloride ion channel, retinol metabolism, and fatty acid metabolism were involved in the course of DR in rats. Importantly, H3K27m3 modifications regulated the expression of most DEGs at the early stage of DR. Using an integrated bioinformatics approach, novel molecular signatures were obtained for different stages of DR progression, and the findings may represent distinct therapeutic strategies for DR patients.


Assuntos
Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Regulação da Expressão Gênica , Mapas de Interação de Proteínas/genética , Animais , Linhagem Celular , Bases de Dados Factuais , Diabetes Mellitus Experimental/genética , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/patologia , Perfilação da Expressão Gênica/métodos , Glucose/farmacologia , Histonas/genética , Histonas/metabolismo , Masculino , Ratos Sprague-Dawley
20.
Int J Mol Sci ; 22(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208040

RESUMO

(1) Background: The pro-resolving lipid mediator Resolvin D1 (RvD1) has already shown protective effects in animal models of diabetic retinopathy. This study aimed to investigate the retinal levels of RvD1 in aged (24 months) and younger (3 months) Balb/c mice, along with the activation of macro- and microglia, apoptosis, and neuroinflammation. (2) Methods: Retinas from male and female mice were used for immunohistochemistry, immunofluorescence, transmission electron microscopy, Western blotting, and enzyme-linked immunosorbent assays. (3) Results: Endogenous retinal levels of RvD1 were reduced in aged mice. While RvD1 levels were similar in younger males and females, they were markedly decreased in aged males but less reduced in aged females. Both aged males and females showed a significant increase in retinal microglia activation compared to younger mice, with a more marked reactivity in aged males than in aged females. The same trend was shown by astrocyte activation, neuroinflammation, apoptosis, and nitrosative stress, in line with the microglia and Müller cell hypertrophy evidenced in aged retinas by electron microscopy. (4) Conclusions: Aged mice had sex-related differences in neuroinflammation and apoptosis and low retinal levels of endogenous RvD1.


Assuntos
Envelhecimento/patologia , Ácidos Docosa-Hexaenoicos/farmacologia , Inflamação/patologia , Retina/patologia , Caracteres Sexuais , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Caspase 3/metabolismo , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/metabolismo , Células Ependimogliais/patologia , Células Ependimogliais/ultraestrutura , Feminino , Masculino , Camundongos Endogâmicos BALB C , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Microglia/ultraestrutura , NF-kappa B/metabolismo , Retina/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...