Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 686
Filtrar
1.
Biochem Biophys Res Commun ; 712-713: 149958, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38640731

RESUMO

Hepatic stellate cells (HSCs) perform a significant function in liver regeneration (LR) by becoming active. We propose to investigate if activated HSCs enhance glycolysis via PFKFB3, an essential glycolytic regulator, and whether targeting this pathway could be beneficial for LR. The liver and isolated HSCs of mice subjected to 2/3 partial hepatectomy (PHx) exhibited a significant rise in PFKFB3 expression, as indicated by quantitative RT-PCR analyses and Western blotting. Also, the primary HSCs of mice subjected to PHx have a significant elevation of the glycolysis level. Knocking down PFKFB3 significantly diminished the enhancement of glycolysis by PDGF in human LX2 cells. The hepatocyte proliferation in mice treated with PHx was almost completely prevented when the PFKFB3 inhibitor 3PO was administered, emerging that PFKFB3 is essential in LR. Furthermore, there was a decline in mRNA expression of immediate early genes and proinflammatory cytokines. In terms of mechanism, both the p38 MAP kinase and ERK1/2 phosphorylation in LO2 cells and LO2 proliferation were significantly reduced by the conditioned medium (CM) obtained from LX2 cells with either PFKFB3 knockdown or inhibition. Compared to the control group, isolated hepatocytes from 3PO-treated mice showed decreased p38 MAP kinase and ERK1/2 phosphorylation and proliferation. Thus, LR after PHx involves the activation of PFKFB3 in HSCs, which enhances glycolysis and promotes lactate production, thereby facilitating hepatocyte proliferation via the p38/ERK MAPK signaling pathway.


Assuntos
Proliferação de Células , Glicólise , Células Estreladas do Fígado , Regeneração Hepática , Camundongos Endogâmicos C57BL , Fosfofrutoquinase-2 , Fosfofrutoquinase-2/metabolismo , Fosfofrutoquinase-2/genética , Animais , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/citologia , Humanos , Camundongos , Masculino , Linhagem Celular , Hepatectomia , Células Cultivadas , Fígado/metabolismo
2.
J Biol Chem ; 300(3): 105691, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280429

RESUMO

Liver fibrosis commences with liver injury stimulating transforming growth factor beta (TGFß) activation of hepatic stellate cells (HSCs), causing scarring and irreversible damage. TGFß induces expression of the transcription factor Forkhead box S1 (FOXS1) in hepatocytes and may have a role in the pathogenesis of hepatocellular carcinoma (HCC). To date, no studies have determined how it affects HSCs. We analyzed human livers with cirrhosis, HCC, and a murine fibrosis model and found that FOXS1 expression is significantly higher in fibrotic livers but not in HCC. Next, we treated human LX2 HSC cells with TGFß to activate fibrotic pathways, and FOXS1 mRNA was significantly increased. To study TGFß-FOXS1 signaling, we developed human LX2 FOXS1 CRISPR KO and scrambled control HSCs. To determine differentially expressed gene transcripts controlled by TGFß-FOXS1, we performed RNA-seq in the FOXS1 KO and control cells and over 400 gene responses were attenuated in the FOXS1 KO HSCs with TGFß-activation. To validate the RNA-seq findings, we used our state-of-the-art PamGene PamStation kinase activity technology that measures hundreds of signaling pathways nonselectively in real time. Using our RNA-seq data, kinase activity data, and descriptive measurements, we found that FOXS1 controls pathways mediating TGFß responsiveness, protein translation, and proliferation. Our study is the first to identify that FOXS1 may serve as a biomarker for liver fibrosis and HSC activation, which may help with early detection of hepatic fibrosis or treatment options for end-stage liver disease.


Assuntos
Fatores de Transcrição Forkhead , Expressão Gênica , Células Estreladas do Fígado , Cirrose Hepática , Fator de Crescimento Transformador beta , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/diagnóstico , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Biomarcadores/metabolismo , Técnicas de Inativação de Genes , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transdução de Sinais/genética
3.
Zhonghua Gan Zang Bing Za Zhi ; 31(12): 1313-1317, 2023 Dec 20.
Artigo em Chinês | MEDLINE | ID: mdl-38253076

RESUMO

Objective: To investigate the effect of adenovirus-mediated short hairpin RNA (shRNA) downregulating SH2 domain-containing protein tyrosine phosphatase 2 (SHP2) on the apoptosis of human hepatic stellate cells LX-2 cultured in vitro. Methods: The recombinant adenovirus Ad-shRNA/SHP2 carrying shRNA targeted SHP2 and expressing green fluorescent protein (GFP), and the empty control virus Ad-GFP expressing GFP were transfected into LX-2 cells cultured in vitro. Real-time fluorescence quantitative PCR was used to detect SHP2 mRNA expression in LX-2 cells. Western blot was used to detect the protein expressions of SHP2, Bax, and Bcl-2 in LX-2 cells. TUNEL and annexin-V/propidium iodide dual-labeled flow cytometry were used to detect apoptosis in LX-2 cells. Experimental group: (1) Control group: LX-2 cells were transfected with DMEM instead of adenovirus; (2) Ad-GFP group: transfected with empty virus Ad-GFP; (3) Ad-shRNA/SHP2 group: transfected with recombinant adenovirus Ad-shRNA/SHP2. The means between multiple groups were compared using a one-way ANOVA and the LSD test was used for inter group comparisons. Results: shRNA-targeted SHP2 significantly down-regulated the expression of SHP2 protein and mRNA in LX-2 cells (P < 0.05). The TUNEL and annexin-V/propidium iodide dual-labeled flow cytometry results showed that the apoptosis rate of LX-2 cells in the Ad-shRNA/SHP2 group (12.755%±1.606%, 19.340%±2.505%) (P < 0.05) was significantly higher compared to the control group (3.077%±0.731%, 9.438%±0.804%) and the Ad-GFP group (3.250%±0.851%, 8.893%±1.982%), with no statistically significant difference between the control group and the Ad-GFP group (P > 0.05). Western blot analysis of Bax and Bcl-2 protein expression in LX-2 cells of each group revealed that the Bax protein expression was significantly higher in the Ad shRNA/SHP2 group (2.493 ± 0.203) (P < 0.05) compared to the control group and Ad-GFP group (1.989 ± 0.147, 1.999 ± 0.162), with no statistically significant difference between the control group and the Ad-GFP group (P > 0.05), while the Bcl-2 protein was significantly decreased in the Ad-shRNA/SHP2 group (1.042±0.148) compared with the control group and the Ad-GFP group (1.707±0.146, 1.521±0.142), with no statistically significant difference between the control group and the Ad-GFP group (P > 0.05). Conclusions: SHP2 expression down-regulation induces apoptosis of human hepatic stellate cells LX-2 in vitro by reducing Bcl-2/Bax.


Assuntos
Adenoviridae , Apoptose , Células Estreladas do Fígado , RNA Interferente Pequeno , Humanos , Adenoviridae/genética , Anexinas/análise , Apoptose/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo , Células Estreladas do Fígado/citologia , Proteínas Proto-Oncogênicas c-bcl-2 , RNA Mensageiro , RNA Interferente Pequeno/farmacologia
4.
Cell Death Dis ; 13(4): 319, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395830

RESUMO

Activated hepatic stellate cells (HSCs) are significant in liver fibrosis. Our past investigations have shown that human umbilical cord mesenchymal stem cells (hucMSCs) and their secreted exosomes (MSC-ex) could alleviate liver fibrosis via restraining HSCs activation. However, the mechanisms underlying the efficacy were not clear. Ferroptosis is a regulatory cell death caused by excessive lipid peroxidation, and it plays a vital role in the occurrence and development of liver fibrosis. In the present study, we aimed to study the proferroptosis effect and mechanism of MSC-ex in HSCs. MSC-ex were collected and purified from human umbilical cord MSCs. Proferroptosis effect of MSC-ex was examined in HSCs line LX-2 and CCl4 induced liver fibrosis in mice. Gene knockdown or overexpression approaches were used to investigate the biofactors in MSC-ex-mediated ferroptosis regulation. Results: MSC-ex could trigger HSCs ferroptosis by promoting ferroptosis-like cell death, ROS formation, mitochondrial dysfunction, Fe2+ release, and lipid peroxidation in human HSCs line LX-2. Glutathione peroxidase 4 (GPX4) is a crucial regulator of ferroptosis. We found that intravenous injection of MSC-ex significantly decreased glutathione peroxidase 4 (GPX4) expression in activated HSCs and collagen deposition in experimental mouse fibrotic livers. Mechanistically, MSC-ex derived BECN1 promoted HSCs ferroptosis by suppressing xCT-driven GPX4 expression. In addition, ferritinophagy and necroptosis might also play a role in MSC-ex-promoted LX-2 cell death. Knockdown of BECN1 in MSC diminished proferroptosis and anti-fibrosis effects of MSC-ex in LX-2 and fibrotic livers. MSC-ex may promote xCT/GPX4 mediated HSCs ferroptosis through the delivery of BECN1 and highlights BECN1 as a potential biofactor for alleviating liver fibrosis.


Assuntos
Proteína Beclina-1 , Exossomos , Ferroptose , Células Estreladas do Fígado , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Animais , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Exossomos/metabolismo , Células Estreladas do Fígado/citologia , Humanos , Cirrose Hepática/genética , Células-Tronco Mesenquimais , Camundongos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo
5.
Ann Hepatol ; 27(4): 100700, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35338010

RESUMO

OBJECTIVE: This study aimed to determine the roles of microRNA (miR)-122 in the activation of hepatic stellate cells (HSCs) and liver cirrhosis. METHODS: Rat primary HSCs were incubated with transforming growth factor-beta (TGF-ß), during which miR-122 and EphB2 expression was measured. miR-122 mimic and/or pcDNA3.1 EphB2 was transfected into TGF-ß-induced HSCs. A mouse model of liver cirrhosis was established via an intraperitoneal injection of carbon tetrachloride (CCl4), followed by the injection of miR-122 agomir. Levels of serum alanine transaminase (ALT) and aspartate aminotransferase (AST) were measured. Fibronectin (FN), alpha smooth muscle actin (α-SMA), Collagen I, miR-122, and EphB2 expression was evaluated in liver tissues and HSCs. Cell proliferation was measured using CCK-8 assay. Interactions between miR-122 and EphB2 were assessed using dual luciferase reporter assay. RESULTS: miR-122 (0.15-fold) was downregulated and EphB2 (mRNA: 5.06-fold; protein: 2.35-fold) was upregulated after TGF-ß induction of HSCs. Overexpressed miR-122 decreased proliferation and EphB2 (mRNA: 0.46-fold; protein: 0.62-fold), FN (mRNA: 0.45-fold; protein: 0.64-fold), α-SMA (mRNA: 0.48-fold; protein: 0.51-fold), and Collagen I (mRNA: 0.44-fold; protein: 0.51-fold) expression in HSCs, which was abrogated by EphB2 upregulation. miR-122 expression was reduced by 0.21-fold and serum ALT and AST levels were enhanced in mice following 8-week CCl4 induction along with increased expression of FN, α-SMA, and Collagen I in liver tissues, which was blocked by miR-122 overexpression. Moreover, EphB2 was a target gene of miR-122. CONCLUSION: miR-122 curtails HSC proliferation and activation by targeting EphB2 and suppresses liver cirrhosis in mice.


Assuntos
Células Estreladas do Fígado , Cirrose Hepática , MicroRNAs , Animais , Tetracloreto de Carbono/toxicidade , Proliferação de Células , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Camundongos , MicroRNAs/genética , RNA Mensageiro/genética , Ratos , Fator de Crescimento Transformador beta/metabolismo
6.
Comput Math Methods Med ; 2022: 8920861, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35047060

RESUMO

BACKGROUND: Hepatic stellate cells (HSCs) are reported to play significant roles in the development of liver fibrosis. Heme oxygenase-1 (HO-1) is a key rate-limiting enzyme, which could decrease collagen synthesis and liver damage. Nevertheless, it was yet elusive towards the function and mechanism of HO-1. METHODS: An HO-1 inducer Hemin or an HO-1 inhibitor ZnPP-IX was used to treat the activated HSC-T6, respectively. MTT assay was adopted to detect cell proliferation. Immunocytochemical staining was employed to test the levels of alpha-smooth muscle actin (α-SMA), peroxisome proliferator-activated receptor-γ (PPARγ), and nuclear factor-kappa B (NF-kappa B) levels in HSC-T6. HO-1, PPARγ, and NF-κB expression levels were measured by qRT-PCR and Western blotting. ELISA was then used to detect the levels of transforming growth factor- (TGF-) beta 1 (TGF-ß1), interleukin-6 (IL-6), serum hyaluronic acid (HA), and serum type III procollagen aminopeptide (PIIIP). RESULTS: HSC-T6 proliferation was inhibited in Hemin-treated HSCs. The levels of α-SMA, HA, and PIIIP and the production of ECM were lower in Hemin-treated HSCs, whereas those could be rescued by ZnPP-IX. NF-κB activation was decreased, but PPARγ expression was increased after HO-1 upregulation. Furthermore, the levels of TGF-ß1 and IL-6, which were downstream of activated NF-κB in HSC-T6, were reduced. The PPAR-specific inhibitor GW9662 could block those mentioned effects. CONCLUSIONS: Our data demonstrated that HO-1 induction could inhibit HSC proliferation and activation by regulating PPARγ expression and NF-κB activation directly or indirectly, which makes it a promising therapeutic target for liver fibrosis.


Assuntos
Heme Oxigenase (Desciclizante)/metabolismo , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/metabolismo , NF-kappa B/metabolismo , PPAR gama/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Biomarcadores/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Biologia Computacional , Indução Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Heme Oxigenase (Desciclizante)/antagonistas & inibidores , Heme Oxigenase (Desciclizante)/biossíntese , Hemina/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Humanos , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Modelos Biológicos , NF-kappa B/antagonistas & inibidores , PPAR gama/agonistas , PPAR gama/genética , Protoporfirinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos
7.
Stem Cell Reports ; 16(12): 3050-3063, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34861166

RESUMO

Hepatic stellate cells (HSCs) play a central role in the progression of liver fibrosis by producing extracellular matrices. The development of drugs to suppress liver fibrosis has been hampered by the lack of human quiescent HSCs (qHSCs) and an appropriate in vitro model that faithfully recapitulates HSC activation. In the present study, we developed a culture system to generate qHSC-like cells from human-induced pluripotent stem cells (hiPSCs) that can be converted into activated HSCs in culture. To monitor the activation process, a red fluorescent protein (RFP) gene was inserted in hiPSCs downstream of the activation marker gene actin alpha 2 smooth muscle (ACTA2). Using qHSC-like cells derived from RFP reporter iPSCs, we screened a repurposing chemical library and identified therapeutic candidates that prevent liver fibrosis. Hence, hiPSC-derived qHSC-like cells will be a useful tool to study the mechanism of HSC activation and to identify therapeutic agents.


Assuntos
Técnicas de Cultura de Células , Ciclo Celular , Descoberta de Drogas , Células Estreladas do Fígado/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Biológicos , Animais , Avaliação Pré-Clínica de Medicamentos , Perfilação da Expressão Gênica , Células Estreladas do Fígado/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/patologia , Masculino , Camundongos Endogâmicos C57BL
8.
PLoS One ; 16(12): e0260721, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34879108

RESUMO

Non-alcoholic steatohepatitis (NASH) results, in part, from the interaction of metabolic derangements with predisposing genetic variants, leading to liver-related complications and mortality. The strongest genetic determinant is a highly prevalent missense variant in patatin-like phospholipase domain-containing protein 3 (PNPLA3 p.I148M). In human liver hepatocytes PNPLA3 localizes to the surface of lipid droplets where the mutant form is believed to enhance lipid accumulation and release of pro-inflammatory cytokines. Less is known about the role of PNPLA3 in hepatic stellate cells (HSCs). Here we characterized HSC obtained from patients carrying the wild type (n = 8 C/C) and the heterozygous (n = 6, C/G) or homozygous (n = 6, G/G) PNPLA3 I148M and investigated the effect of genotype and PNPLA3 downregulation on baseline and TGF-ß-stimulated fibrotic gene expression. HSCs from all genotypes showed comparable baseline levels of PNPLA3 and expression of the fibrotic genes α-SMA, COL1A1, TIMP1 and SMAD7. Treatment with TGF-ß increased PNPLA3 expression in all 3 genotypes (~2-fold) and resulted in similar stimulation of the expression of several fibrogenic genes. In primary human HSCs carrying wild-type (WT) PNPLA3, siRNA treatment reduced PNPLA3 mRNA by 79% resulting in increased expression of α-SMA, Col1a1, TIMP1, and SMAD7 in cells stimulated with TGF-ß. Similarly, knock-down of PNPLA3 in HSCs carrying either C/G or G/G genotypes resulted in potentiation of TGF-ß induced expression of fibrotic genes. Knockdown of PNPLA3 did not impact fibrotic gene expression in the absence of TGF-ß treatment. Together, these data indicate that the presence of the I148M PNPLA3 mutation in HSC has no effect on baseline activation and that downregulation of PNPLA3 exacerbates the fibrotic response irrespective of the genotype.


Assuntos
Regulação para Baixo , Células Estreladas do Fígado/citologia , Lipase/genética , Lipase/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Adulto , Idoso , Células Cultivadas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Humanos , Gotículas Lipídicas/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Hepatopatia Gordurosa não Alcoólica/metabolismo , Polimorfismo de Nucleotídeo Único , Cultura Primária de Células , Fator de Crescimento Transformador beta/farmacologia
9.
Int J Mol Sci ; 22(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34681695

RESUMO

Dietary change leads to a precipitous increase in non-alcoholic fatty liver disease (NAFLD) from simple steatosis to the advanced form of non-alcoholic steatohepatitis (NASH), affecting approximately 25% of the global population. Although significant efforts greatly advance progress in clarifying the pathogenesis of NAFLD and identifying therapeutic targets, no therapeutic agent has been approved. Astaxanthin (ASTN), a natural antioxidant product, exerts an anti-inflammation and anti-fibrotic effect in mice induced with carbon tetrachloride (CCl4) and bile duct ligation (BDL); thus, we proposed to further investigate the potential effect of ASTN on a diet-induced mouse NASH and liver fibrosis, as well as the underlying cellular and molecular mechanisms. By treating pre-development of NASH in mice induced with a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD), we have demonstrated that oral administration ASTN preventively ameliorated NASH development and liver fibrosis by modulating the hepatic immune response, liver inflammation, and oxidative stress. Specifically, ASTN treatment led to the reduction in liver infiltration of monocyte-derived macrophages, hepatic stellate cell (HSC) activation, oxidative stress response, and hepatocyte death, accompanied by the decreased hepatic gene expression of proinflammatory cytokines such as TNF-α, TGF-ß1, and IL-1ß. In vitro studies also demonstrated that ASTN significantly inhibited the expression of proinflammatory cytokines and chemokine CCL2 in macrophages in response to lipopolysaccharide (LPS) stimulation. Overall, in vivo and in vitro studies suggest that ASTN functions as a promising therapeutic agent to suppress NASH and liver fibrosis via modulating intrahepatic immunity.


Assuntos
Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Animais , Quimiocina CCL2/metabolismo , Citocinas/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Fator 2 de Crescimento de Fibroblastos/metabolismo , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/metabolismo , Lipopolissacarídeos/farmacologia , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/prevenção & controle , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologia , Estresse Oxidativo/efeitos dos fármacos , Células RAW 264.7 , Xantofilas/farmacologia , Xantofilas/uso terapêutico
10.
Bioengineered ; 12(1): 8370-8377, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34607529

RESUMO

Activation of hepatic stellate cells (HSC) is associated with hepatic fibrogenesis, which is one of complications of diabetes mellitus. Captopril possesses potent anti-inflammation, oxidative stress and fibrosis effects. However, the specific molecular mechanism of captopril in high glucose (HG)-induced hepatic stellate cells has not been elucidated. Following the treatment of HG or captopril treatment for rat hepatic stellate cells (HSC-T6), cell activities were detected by Cell Counting Kit-8 (CCK8) assay. Reactive oxygen species (ROS) levels were determined by ROS staining. The expression of inflammation-related proteins (Interleukin (IL)-1ß, IL-6 and IL-8) and fibrosis-related proteins (fibronectin (FN), collagen I, collagen III, collagen IV, matrix metallopeptidase (MMP-2 and MMP-9) were determined by Western blot. Captopril significantly decreased HSC-T6 cell viability induced by HG in a dose-dependent manner, as well as decreased levels of malondialdehyde (MDA), ROS, pro-inflammatory markers and fibrosis-related proteins, while upregulated superoxide dismutase (SOD) activities. We further found that captopril decreased the ratio of p-IκBα/IκBα and the ratio of p-p65/p65. Intriguing, phorbol myristate acetate (PMA) or LiCl was able to significantly reverse the captopril-induced alteration of oxidative stress-, inflammation- and fibrosis-marker levels. In conclusion, in HG-stimulated HSC-T6 cells, captopril displayed a potent ability to inhibit oxidative stress, inflammation and hepatic fibrogenesis via NF-kappaB or wnt3α/ß-catenin. These results demonstrated the mechanism of captopril as well as the role of the NF-kappaB or wnt3α/ß-catenin on HSC-T6 activation induced by HG.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/administração & dosagem , Captopril/administração & dosagem , Glucose/efeitos adversos , Células Estreladas do Fígado/citologia , NF-kappa B/metabolismo , Proteína Wnt3A/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Captopril/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Cloreto de Lítio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Ratos , Transdução de Sinais/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia
11.
Sci Rep ; 11(1): 19396, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588551

RESUMO

Fibrosis is characterized by the excessive production of collagen and other extracellular matrix (ECM) components and represents a leading cause of morbidity and mortality worldwide. Previous studies of nonalcoholic steatohepatitis (NASH) with fibrosis were largely restricted to bulk transcriptome profiles. Thus, our understanding of this disease is limited by an incomplete characterization of liver cell types in general and hepatic stellate cells (HSCs) in particular, given that activated HSCs are the major hepatic fibrogenic cell population. To help fill this gap, we profiled 17,810 non-parenchymal cells derived from six healthy human livers. In conjunction with public single-cell data of fibrotic/cirrhotic human livers, these profiles enable the identification of potential intercellular signaling axes (e.g., ITGAV-LAMC1, TNFRSF11B-VWF and NOTCH2-DLL4) and master regulators (e.g., RUNX1 and CREB3L1) responsible for the activation of HSCs during fibrogenesis. Bulk RNA-seq data of NASH patient livers and rodent models for liver fibrosis of diverse etiologies allowed us to evaluate the translatability of candidate therapeutic targets for NASH-related fibrosis. We identified 61 liver fibrosis-associated genes (e.g., AEBP1, PRRX1 and LARP6) that may serve as a repertoire of translatable drug target candidates. Consistent with the above regulon results, gene regulatory network analysis allowed the identification of CREB3L1 as a master regulator of many of the 61 genes. Together, this study highlights potential cell-cell interactions and master regulators that underlie HSC activation and reveals genes that may represent prospective hallmark signatures for liver fibrosis.


Assuntos
Células Estreladas do Fígado , Hepatopatia Gordurosa não Alcoólica , Transcriptoma , Animais , Voluntários Saudáveis , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Ratos , Análise de Célula Única
12.
Exp Cell Res ; 405(2): 112721, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34217716

RESUMO

The activation of hepatic stellate cells (HSCs) plays a key role in the occurrence of liver fibrosis,and promoting the apoptosis of activated HSCs or reducing the number of activated HSCs can reverse the development of liver fibrosis. In our previous studies, we have demonstrated that the CCAAT/enhancer binding protein α (C/EBP-α) played an important role in promoting the apoptosis of activated HSCs, thereby exerting an anti-liver fibrosis effect. Unlike apoptosis, autophagy, as a caspase-independent programmed cell death, can promptly remove the abnormal accumulation of substances or damaged organelles in cells and play a key role in regulating the homeostasis of intracellular environment. However, it is still unclear whether C/EBP-α participates in the occurrence of autophagy in HSCs. Therefore, in this study, we firstly used the methods of Western blot and immunofluorescence to characterize the consequence of C/EBP-α overexpression on the expression of proteins LC3B, P62, ATG5 and Beclin1 which were related to autophagy in HSCs. Subsequently, we performed Western blot and site-directed mutagenesis methods to clarify the type and related mechanism of autophagy which was induced by C/EBP-α. Here we show that C/EBP-α promotes the occurrence of autophagy in HSCs and the autophagy induced by C/EBP-α belongs to mitophagy. The stability of C/EBP-α protein regulates the level of autophagy in HSCs. In addition, acetylation of C/EBP-α also regulates the occurrence of autophagy in HSCs. Acetylation of lysine at positions K298, K302 and K326 of C/EBP-α promotes its binding to Beclin1. In conclusion, our study uncovers the role of C/EBP-α in regulating autophagy in HSCs, thereby providing a new strategy for clinical treatment of liver fibrosis.


Assuntos
Autofagia/fisiologia , Proteína Beclina-1/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Células Estreladas do Fígado/citologia , Acetilação , Animais , Homeostase/fisiologia , Cirrose Hepática/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Ratos
13.
Clin Transl Med ; 11(7): e410, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34323416

RESUMO

BACKGROUND: Liver fibrosis and fibrosis-related hepatocarcinogenesis are a rising cause for morbidity and death worldwide. Although transforming growth factor-ß (TGF-ß) is a critical mediator of chronic liver fibrosis, targeting TGF-ß isoforms and receptors lead to unacceptable side effect. This study was designed to explore the antifibrotic effect of Compound kushen injection (CKI), an approved traditional Chinese medicine formula, via a therapeutic strategy of rebalancing TGF-ß/Smad7 signaling. METHODS: A meta-analysis was performed to evaluate CKI intervention on viral hepatitis-induced fibrosis or cirrhosis in clinical randomized controlled trials (RCTs). Mice were given carbon tetrachloride (CCl4 ) injection or methionine-choline deficient (MCD) diet to induce liver fibrosis, followed by CKI treatment. We examined the expression of TGF-ß/Smad signaling and typical fibrosis-related genes in hepatic stellate cells (HSCs) and fibrotic liver tissues by qRT-PCR, Western blotting, RNA-seq, immunofluorescence, and immunohistochemistry. RESULTS: Based on meta-analysis results, CKI improved the liver function and relieved liver fibrosis among patients. In our preclinical studies by using two mouse models, CKI treatment demonstrated promising antifibrotic effects and postponed hepatocarcinogenesis with improved liver function and histopathologic features. Mechanistically, we found that CKI inhibited HSCs activation by stabilizing the interaction of Smad7/TGF-ßR1 to rebalance Smad2/Smad3 signaling, and subsequently decreased the extracellular matrix formation. Importantly, Smad7 depletion abolished the antifibrotic effect of CKI in vivo and in vitro. Moreover, matrine, oxymatrine, sophocarpine, and oxysophocarpine were identified as material basis responsible for the antifibrosis effect of CKI. CONCLUSIONS: Our results unveil the approach of CKI in rebalancing TGF-ß/Smad7 signaling in HSCs to protect against hepatic fibrosis and hepatocarcinogenesis in both preclinical and clinical studies. Our study suggests that CKI can be a candidate for treatment of hepatic fibrosis and related oncogenesis.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína Smad7/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Tetracloreto de Carbono/toxicidade , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Linhagem Celular , Medicamentos de Ervas Chinesas/uso terapêutico , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/metabolismo , Humanos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Masculino , Medicina Tradicional Chinesa , Metanálise como Assunto , Camundongos , Camundongos Endogâmicos C57BL , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína Smad7/antagonistas & inibidores , Proteína Smad7/genética
14.
FASEB J ; 35(7): e21700, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34105828

RESUMO

Histone deacetylases (HDACs), especially HDAC2, play a role in alleviating liver fibrosis; however, the specific upstream regulation mechanism is unknown. Herein, TargetScan was used to predict the potential upstream targets of HDAC2, and the role of miR-455-3p was explored. The dual luciferase reporter assay showed that miR-455-3p binds to the 3' UTR of HDAC2 mRNA. Additionally, miR-455-3p was downregulated in the liver tissues of patients with cirrhosis and mice with liver fibrosis, as well as in primary HSCs isolated from fibrotic mouse livers and TGF-ß-treated LX-2 cells. In contrast, it is highly expressed in the reversal stage of hepatic fibrosis and MDI-cultured LX-2 cells. Our functional analyses showed that miR-455-3p overexpression facilitated apoptosis and reduced the expression of pro-fibrotic markers and the proliferation of activated LX-2 cells. On the contrary, miR-455-3p inhibition converted inactivated LX-2 cells into activated, proliferative, fibrogenic cells. Interestingly, restoration of HDAC2 expression partially blocked the function of miR-455-3p. Downregulated miR-455-3p expression can be restored by DNA methyltransferases in activated LX-2 cells. Methylation-specific PCR, bisulfite sequencing PCR, and chromatin immunoprecipitation assays indicated that the methylation level of miR-455-3p promoter CpG islands was elevated in TGF-ß-treated LX-2 cells and that miR-455-3p was downregulated in activated LX-2 cells by DNA hypermethylation, which is mediated by DNMT3b and DNMT1. In conclusion, miR-455-3p acts as a liver fibrosis suppressor by targeting HDAC2, and its deficiency further aggravates the reversal phase of fibrosis. Thus, the epigenetics mediated miR-455-3p/HDAC2 axis may serve as a novel potential therapeutic target for clinical treatment of hepatic fibrosis.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica , Histona Desacetilase 2/metabolismo , Cirrose Hepática/prevenção & controle , MicroRNAs/genética , Animais , Apoptose , Tetracloreto de Carbono/toxicidade , Proliferação de Células , Células Estreladas do Fígado/citologia , Histona Desacetilase 2/genética , Humanos , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
15.
Nature ; 594(7864): 566-571, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34079127

RESUMO

The persistence of undetectable disseminated tumour cells (DTCs) after primary tumour resection poses a major challenge to effective cancer treatment1-3. These enduring dormant DTCs are seeds of future metastases, and the mechanisms that switch them from dormancy to outgrowth require definition. Because cancer dormancy provides a unique therapeutic window for preventing metastatic disease, a comprehensive understanding of the distribution, composition and dynamics of reservoirs of dormant DTCs is imperative. Here we show that different tissue-specific microenvironments restrain or allow the progression of breast cancer in the liver-a frequent site of metastasis4 that is often associated with a poor prognosis5. Using mouse models, we show that there is a selective increase in natural killer (NK) cells in the dormant milieu. Adjuvant interleukin-15-based immunotherapy ensures an abundant pool of NK cells that sustains dormancy through interferon-γ signalling, thereby preventing hepatic metastases and prolonging survival. Exit from dormancy follows a marked contraction of the NK cell compartment and the concurrent accumulation of activated hepatic stellate cells (aHSCs). Our proteomics studies on liver co-cultures implicate the aHSC-secreted chemokine CXCL12 in the induction of NK cell quiescence through its cognate receptor CXCR4. CXCL12 expression and aHSC abundance are closely correlated in patients with liver metastases. Our data identify the interplay between NK cells and aHSCs as a master switch of cancer dormancy, and suggest that therapies aimed at normalizing the NK cell pool might succeed in preventing metastatic outgrowth.


Assuntos
Neoplasias da Mama/patologia , Células Estreladas do Fígado/citologia , Células Matadoras Naturais/citologia , Animais , Linhagem Celular Tumoral , Quimiocina CXCL12/metabolismo , Técnicas de Cocultura , Feminino , Humanos , Imunoterapia , Interferon gama , Neoplasias Hepáticas/secundário , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica , Neoplasias Experimentais/patologia , Proteômica , Transcriptoma , Microambiente Tumoral
16.
Sci Rep ; 11(1): 10931, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035369

RESUMO

A chronic, local inflammatory milieu can cause tissue fibrosis that results in epithelial-to-mesenchymal transition (EMT), endothelial-to-mesenchymal transition (EndMT), increased abundance of fibroblasts, and further acceleration of fibrosis. In this study, we aimed to identify potential mechanisms and inhibitors of fibrosis using 3D model-based phenotypic screening. We established liver fibrosis models using multicellular tumor spheroids (MCTSs) composed of hepatocellular carcinoma (HCC) and stromal cells such as fibroblasts (WI38), hepatic stellate cells (LX2), and endothelial cells (HUVEC) seeded at constant ratios. Through high-throughput screening of FDA-approved drugs, we identified retinoic acid and forskolin as candidates to attenuate the compactness of MCTSs as well as inhibit the expression of ECM-related proteins. Additionally, retinoic acid and forskolin induced reprogramming of fibroblast and cancer stem cells in the HCC microenvironment. Of interest, retinoic acid and forskolin had anti-fibrosis effects by decreasing expression of α-SMA and F-actin in LX2 cells and HUVEC cells. Moreover, when sorafenib was added along with retinoic acid and forskolin, apoptosis was increased, suggesting that anti-fibrosis drugs may improve tissue penetration to support the efficacy of anti-cancer drugs. Collectively, these findings support the potential utility of morphometric analyses of hepatic multicellular spheroid models in the development of new drugs with novel mechanisms for the treatment of hepatic fibrosis and HCCs.


Assuntos
Carcinoma Hepatocelular/patologia , Colforsina/farmacologia , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , Sorafenibe/farmacologia , Tretinoína/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Sinergismo Farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibroblastos/citologia , Células Hep G2 , Células Estreladas do Fígado/citologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Esferoides Celulares , Microambiente Tumoral
17.
Exp Cell Res ; 405(1): 112663, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34051242

RESUMO

BACKGROUND: Hepatic stellate cell (HSC) differentiation/activation is central to liver fibrosis and is innately linked to the immune response to liver injury. Exosomes (EXOs) are important means of communication between cell populations. This study sought to characterize EXO release from HSCs and the effect of HSC-EXOs on macrophage cytokine release/function. METHODS: Liver from a rat fibrosis model was analyzed for EXO expression and localization. Quiescent and culture-activated rat and mouse HSCs and activated human HSCs were analyzed for microRNA expression. Mouse, rat, and human HSCs were culture-activated and EXOs purified from culture medium prior to addition to macrophages, and interleukin-6 (IL-6) and tumor necrosis factor-α (TNFα) mRNA and protein measured. The effect of activated HSC-EXOs on macrophage migration was assayed. RESULTS: Activation of rat HSCs led to increased EXO production in vivo, an effect mirrored by in vitro rat HSC culture-activation. Culture activation of mouse and rat HSCs led to altered EXO microRNA profiles, with a similar microRNA profile detected in activated human HSCs. Addition of activated HSC-EXOs to macrophages stimulated IL-6 and TNFα mRNA expression and protein secretion in mouse and human macrophages, but not for rat HSC-EXO-macrophages. Addition of human EXOs to macrophages stimulated migration, effects mirrored by the direct addition of rhIL-6 and rhTNFα. CONCLUSIONS: HSC-EXOs associate with macrophages and stimulate cytokine synthesis-release and macrophage migration. Constructing a comprehensive understanding of EXO interactions between liver cell populations in the setting of inflammation/fibrosis increases the potential for developing new diagnostic/therapeutic approaches.


Assuntos
Exossomos/fisiologia , Células Estreladas do Fígado/fisiologia , Inflamação/imunologia , Macrófagos/imunologia , Animais , Células Cultivadas , Citocinas/metabolismo , Células Estreladas do Fígado/citologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
18.
Cell Prolif ; 54(7): e13072, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34031939

RESUMO

OBJECTIVES: Induction of deactivation and apoptosis of hepatic stellate cells (HSCs) are principal therapeutic strategies for liver fibrosis. Krüppel-like factor 14 (KLF14) regulates various biological processes, however, roles, mechanisms and implications of KLF14 in liver fibrosis are unknown. MATERIALS AND METHODS: KLF14 expression was detected in human, rat and mouse fibrotic models, and its effects on HSCs were assessed. Chromatin immunoprecipitation assays were utilized to investigate the binding of KLF14 to peroxisome proliferator-activated receptor γ (PPARγ) promoter, and the binding of enhancer of zeste homolog 2 (EZH2) to KLF14 promoter. In vivo, KLF14-overexpressing adenovirus was injected via tail vein to thioacetamide (TAA)-treated rats to investigate the role of KLF14 in liver fibrosis progression. EZH2 inhibitor EPZ-6438 was utilized to treat TAA-induced rat liver fibrosis. RESULTS: KLF14 expression was remarkably decreased in human, rat and mouse fibrotic liver tissues. Overexpression of KLF14 increased LD accumulation, inhibited HSCs activation, proliferation, migration and induced G2/M arrest and apoptosis. Mechanistically, KLF14 transactivated PPARγ promoter activity. Inhibition of PPARγ blocked the suppressive role of KLF14 overexpression in HSCs. Downregulation of KLF14 in activated HSCs was mediated by EZH2-regulated histone H3 lysine 27 trimethylation. Adenovirus-mediated KLF14 overexpression ameliorated TAA-induced rat liver fibrosis in PPARγ-dependent manner. Furthermore, EPZ-6438 dramatically alleviated TAA-induced rat liver fibrosis. Importantly, KLF14 expression was decreased in human with liver fibrosis, which was significantly correlated with EZH2 upregulation and PPARγ downregulation. CONCLUSIONS: KLF14 exerts a critical anti-fibrotic role in liver fibrosis, and targeting the EZH2/KLF14/PPARγ axis might be a novel therapeutic strategy for liver fibrosis.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Cirrose Hepática/patologia , PPAR gama/metabolismo , Animais , Apoptose/efeitos dos fármacos , Benzamidas/farmacologia , Compostos de Bifenilo/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Regulação para Baixo , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/antagonistas & inibidores , Fatores de Transcrição Kruppel-Like/genética , Cirrose Hepática/metabolismo , Camundongos , Morfolinas/farmacologia , PPAR gama/antagonistas & inibidores , PPAR gama/genética , Regiões Promotoras Genéticas , Piridonas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Tioacetamida/farmacologia
19.
J Korean Med Sci ; 36(14): e90, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33847081

RESUMO

BACKGROUND: Liver fibrosis is defined as the accumulation of the extracellular matrix and scar formation. The receptor for advanced glycation end products (RAGE) has been demonstrated to participate in fibrogenesis. S100B is a ligand of RAGE and exerts extracellular functions by inducing a series of signal transduction cascades. However, the involvement of S100B and RAGE in cholestasis-induced liver fibrosis remains unclear. In this study, we investigated S100B and RAGE expression during liver fibrosis in mice that underwent common bile duct ligation (BDL). METHODS: BDL was performed in 10-week-old male C57BL/6J mice with sham control (n = 26) and BDL (n = 26) groups. Expression levels of S100B, RAGE and fibrotic markers in the livers from both groups at week 1 and 3 after BDL were examined by western blot and quantitative real-time reverse transcription polymerase chain reaction analysis. Liver fibrotic changes were examined by histological and ultrastructural analysis. RESULTS: Histological staining with Sirius Red and the evaluation of the messenger RNA expression of fibrotic markers showed noticeable periportal fibrosis and bile duct proliferation. S100B was mainly present in bile duct epithelial cells, and its expression was upregulated in proportion to the ductular reaction during fibrogenesis by BDL. RAGE expression was also increased, and interestingly, triple immunofluorescence staining and transmission electron microscopy showed that both S100B and RAGE were expressed in proliferating bile duct epithelial cells and activated hepatic stellate cells (HSCs) of the BDL livers. In addition, in rat HSCs (HSC-T6), treatment with recombinant S100B protein significantly increased fibrotic markers in a dose-dependent manner, and RAGE small interfering RNA (siRNA) suppressed S100B-stimulated upregulation of fibrotic markers compared with cells treated with scramble siRNA and S100B. CONCLUSION: These findings suggest that the increased expression of S100B and RAGE and the interaction between S100B and RAGE may play an important role in ductular reaction and liver fibrosis induced by BDL.


Assuntos
Cirrose Hepática/patologia , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Animais , Ductos Biliares/citologia , Ductos Biliares/cirurgia , Linhagem Celular , Modelos Animais de Doenças , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/metabolismo , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , Receptor para Produtos Finais de Glicação Avançada/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Subunidade beta da Proteína Ligante de Cálcio S100/farmacologia , Regulação para Cima/efeitos dos fármacos
20.
Int J Mol Sci ; 22(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922101

RESUMO

3D cell culture systems are widely used to study disease mechanisms and therapeutic interventions. Multicellular liver microtissues (MTs) comprising HepaRG, hTERT-HSC and THP-1 maintain multicellular interactions and physiological properties required to mimic liver fibrosis. However, the inherent complexity of multicellular 3D-systems often hinders the discrimination of cell type specific responses. Here, we aimed at applying single cell sequencing (scRNA-seq) to discern the molecular responses of cells involved in the development of fibrosis elicited by TGF-ß1. To obtain single cell suspensions from the MTs, an enzymatic dissociation method was optimized. Isolated cells showed good viability, could be re-plated and cultured in 2D, and expressed specific markers determined by scRNA-seq, qRT-PCR, ELISA and immunostaining. The three cell populations were successfully clustered using supervised and unsupervised methods based on scRNA-seq data. TGF-ß1 led to a fibrotic phenotype in the MTs, detected as decreased albumin and increased αSMA expression. Cell-type specific responses to the treatment were identified for each of the three cell types. They included HepaRG damage characterized by a decrease in cellular metabolism, prototypical inflammatory responses in THP-1s and extracellular matrix remodeling in hTERT-HSCs. Furthermore, we identified novel cell-specific putative fibrosis markers in hTERT-HSC (COL15A1), and THP-1 (ALOX5AP and LAPTM5).


Assuntos
Biomarcadores/metabolismo , Células Estreladas do Fígado/metabolismo , Hepatócitos/metabolismo , Células de Kupffer/metabolismo , Cirrose Hepática/metabolismo , Análise de Célula Única/métodos , Fator de Crescimento Transformador beta1/farmacologia , Técnicas de Cultura de Células , Proliferação de Células , Regulação da Expressão Gênica , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/efeitos dos fármacos , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Humanos , Células de Kupffer/citologia , Células de Kupffer/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...