Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946824

RESUMO

Red blood cells (RBCs) serve a variety of functions beyond mere oxygen transport both in health and pathology. Notably, RRx-001, a minimally toxic pleiotropic anticancer agent with macrophage activating and vascular normalization properties currently in Phase III trials, induces modification to RBCs which could promote vascular adhesion similar to sickle cells. This study assessed whether RBCs exposed to RRx-001 adhere to the tumor microvasculature and whether this adhesion alters tumor viability. We next investigated the biomechanics of RBC adhesion in the context of local inflammatory cytokines after treatment with RRx-001 as a potential mechanism for preferential tumor aggregation. Human HEP-G2 and HT-29 tumor cells were subcutaneously implanted into nu/nu mice and were infused with RRx-001-treated and Technetium-99m (99mTc)-labeled blood. RBC adhesion was quantified in an in vitro human umbilical vein endothelial cell (HUVEC) assay under both normoxic and hypoxic conditions with administration of either lipopolysaccharide (LPS) or Tumor necrosis alpha (TNFα) to mimic the known inflammation in the tumor microenvironment. One hour following administration of 99mTc labeled RBCs treated with 10 mg/kg RRx-001, we observed an approximate 2.0-fold and 1.5-fold increase in 99mTc-labeled RBCs compared to vehicle control in HEPG2 and HT-29 tumor models, respectively. Furthermore, we observed an approximate 40% and 36% decrease in HEP-G2 and HT-29 tumor weight, respectively, following treatment with RRx-001. To quantify RBC adhesive potential, we determined τ50, or the shear stress required for 50% disassociation of RBCs from HUVECs. After administration of TNF-α under normoxia, τ50 was determined to be 4.5 dynes/cm2 (95% CI: 4.3-4.7 dynes/cm2) for RBCs treated with 10 µM RRx-001, which was significantly different (p < 0.05) from τ50 in the absence of treatment. Under hypoxic conditions, the difference of τ50 with (4.8 dynes/cm2; 95% CI: 4.6-5.1 dynes/cm2) and without (2.6 dynes/cm2; 95% CI: 2.4-2.8 dynes/cm2) 10 µM RRx-001 treatment was exacerbated (p = 0.05). In conclusion, we demonstrated that RBCs treated with RRx-001 preferentially aggregate in HEP-G2 and HT-29 tumors, likely due to interactions between RRx-001 and cysteine residues within RBCs. Furthermore, RRx-001 treated RBCs demonstrated increased adhesive potential to endothelial cells upon introduction of TNF-α and hypoxia suggesting that RRx-001 may induce preferential adhesion in the tumor but not in other tissues with endothelial dysfunction due to conditions prevalent in older cancer patients such as heart disease or diabetic vasculopathy.


Assuntos
Antineoplásicos/farmacologia , Azetidinas/farmacologia , Células Endoteliais/citologia , Membrana Eritrocítica/efeitos dos fármacos , Nitrocompostos/farmacologia , Animais , Antineoplásicos/uso terapêutico , Azetidinas/uso terapêutico , Adesão Celular/efeitos dos fármacos , Hipóxia Celular , Cisteína/química , Citocinas/metabolismo , Células Endoteliais/química , Agregação Eritrocítica/efeitos dos fármacos , Membrana Eritrocítica/química , Células HT29/transplante , Células Hep G2/transplante , Células Endoteliais da Veia Umbilical Humana , Humanos , Lipopolissacarídeos/farmacologia , Lipídeos de Membrana/biossíntese , Camundongos , Camundongos Nus , Neoplasias/irrigação sanguínea , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/tratamento farmacológico , Nitrocompostos/uso terapêutico , Fosfatidilserinas/biossíntese , Receptores de Superfície Celular/biossíntese , Resistência ao Cisalhamento , Microambiente Tumoral , Fator de Necrose Tumoral alfa/farmacologia
2.
J Cell Mol Med ; 24(18): 10525-10541, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32798252

RESUMO

Hepatocellular carcinoma (HCC) is the third leading cause of the cancer-related death in the world. Human amniotic mesenchymal stem cells (hAMSCs) have been characterized with a pluripotency, low immunogenicity and no tumorigenicity. Especially, the immunosuppressive and anti-inflammatory effects of hAMSCs make them suitable for treating HCC. Here, we reported that hAMSCs administrated by intravenous injection significantly inhibited HCC through suppressing cell proliferation and inducing cell apoptosis in tumour-bearing mice with Hepg2 cells. Cell tracking experiments with GFP-labelled hAMSCs showed that the stem cells possessed the ability of migrating to the tumorigenic sites for suppressing tumour growth. Importantly, both hAMSCs and the conditional media (hAMSC-CM) have the similar antitumour effects in vitro, suggesting that hAMSCs-derived cytokines might be involved in their antitumour effects. Antibody array assay showed that hAMSCs highly expressed dickkopf-3 (DKK-3), dickkopf-1 (DKK-1) and insulin-like growth factor-binding protein 3 (IGFBP-3). Furthermore, the antitumour effects of hAMSCs were further confirmed by applications of the antibodies or the specific siRNAs of DKK-3, DKK-1 and IGFBP-3 in vitro. Mechanically, hAMSCs-derived DKK-3, DKK-1 and IGFBP-3 markedly inhibited cell proliferation and promoted apoptosis of Hepg2 cells through suppressing the Wnt/ß-catenin signalling pathway and IGF-1R-mediated PI3K/AKT signalling pathway, respectively. Taken together, our study demonstrated that hAMSCs possess significant antitumour effects in vivo and in vitro and might provide a novel strategy for HCC treatment clinically.


Assuntos
Âmnio/citologia , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Transplante de Células-Tronco Mesenquimais , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Adipogenia , Animais , Apoptose , Carcinoma Hepatocelular/patologia , Feminino , Genes Reporter , Células Hep G2/transplante , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/antagonistas & inibidores , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Neoplasias Hepáticas/patologia , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiologia , Osteogênese , Comunicação Parácrina , Gravidez , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Proteome Res ; 17(7): 2428-2439, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29750532

RESUMO

Targeted therapy of hepatocellular carcinoma (HCC) is essential for improved therapies. Therefore, identification of key targets specifically to HCC is an urgent requirement. Herein, an iTRAQ quantitative proteomic approach was employed to identify differentially expressed proteins in HCC tumor tissues. Of the upregulated tumor-related proteins, minichromosome maintenance 2 (MCM2), a DNA replication licensing factor, was one of the most significantly altered proteins, and its overexpression was confirmed using tissue microarray. Clinicopathological analysis of multiple cohorts of HCC patients indicated that overexpression of MCM2 was validated in 89.8% tumor tissues and strongly correlated with clinical stage. Furthermore, siRNA-mediated repression of MCM2 expression resulted in significant suppression of the HepG2 cell cycle and proliferation through the cyclin D-dependent kinases (CDKs) 2/7 pathway. Finally, the first small molecule-based MCM2-targeted NIR-II probe CH1055-MCM2 was concisely generated and subsequently evaluated in mice bearing HepG2 xenografts. The excellent imaging properties such as good tumor uptake and high tumor contrast and specificity were achieved in the small animal models. This analytical strategy can determine novel accessible targets of HCC useful for imaging and therapy.


Assuntos
Carcinoma Hepatocelular/diagnóstico por imagem , Corantes Fluorescentes/análise , Componente 2 do Complexo de Manutenção de Minicromossomo/análise , Proteômica/métodos , Animais , Carcinoma Hepatocelular/química , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Quinases Ciclina-Dependentes , Células Hep G2/transplante , Xenoenxertos , Humanos , Neoplasias Hepáticas/química , Neoplasias Hepáticas/diagnóstico , Camundongos , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Fenilpropionatos/farmacocinética , Tiadiazóis/farmacocinética
4.
Transl Res ; 170: 89-98.e3, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26746804

RESUMO

Immune deficiency or suppression in host animals is an essential precondition for the success of cancer cell xenotransplantation because the host immune system has a tendency to reject implanted cells. However, in such animals, the typical tumor microenvironment seen in cancer subjects does not form because of the lack of normal immunity. Here, we developed a novel zebrafish (Danio rerio) model based on 2 rounds of cancer cell xenotransplantation that achieved cancer-specific immunologic tolerance without immunosuppression. We irradiated human cancer cells (PC-3, K562 and HepG2) to abolish their proliferative abilities and implanted them into zebrafish larvae. These cells survived for 2 weeks in the developing host. Three months after the first implantation, the zebrafish were implanted with the same, but nonirradiated, cell lines. These cancer cells proliferated and exhibited metastasis without immune suppression. To reveal the transcriptional mechanism of this immune tolerance, we conducted dual RNA-seq of the tumor with its surrounding tissues and identified several regulatory zebrafish genes that are involved in immunity; the expression of plasminogen activator, urokinase, and forkhead box P3 was altered in response to immunologic tolerance. In conclusion, this xenograft method has potential as a platform for zebrafish-based anticancer drug discovery because it can closely mimic human clinical cancers without inducing immune suppression.


Assuntos
Linhagem Celular Tumoral/transplante , Xenoenxertos/imunologia , Transplante Heterólogo , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/imunologia , Animais , Linhagem Celular Tumoral/patologia , Linhagem Celular Tumoral/efeitos da radiação , Proliferação de Células , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Rejeição de Enxerto/imunologia , Células Hep G2/efeitos da radiação , Células Hep G2/transplante , Humanos , Tolerância Imunológica/genética , Células K562/efeitos da radiação , Células K562/transplante , Ativadores de Plasminogênio/genética , Ativadores de Plasminogênio/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/imunologia
5.
Tumour Biol ; 37(5): 5821-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26581909

RESUMO

We examined the expression pattern and functional roles of microRNA 15a-5p (miR-15a-5p) in human hepatocellular carcinoma (HCC). Possible miR-15a-5p aberrant expression in HCC cell lines or clinical HCC specimens was examined by quantitative real-time PCR (qRT-PCR). In HCC HepG2 and SNU-182 cells, miR-15a-5p was ectopically overexpressed by lentiviral transduction. Its effect on HCC proliferation, cancer division, and in vivo tumor growth were examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell cycle assay, and tumorigenicity assay, respectively. The targeting of miR-15a-5p on its downstream gene, brain-derived neurotrophic factor (BDNF), was examined by dual-luciferase assay, qRT-PCR, and Western blot, respectively. BDNF was then overexpressed in HepG2 and SNU-182 cells to evaluate its selective effect on miR-15a-5p in HCC modulation. MiR-15a-5p is aberrantly downregulated in in vitro HCC cell lines and in vivo HCC clinical specimens. Ectopic overexpression of miR-15a-5p suppressed cancer proliferation, induced cell cycle arrest in HepG2 or SNU-182 cells in vitro, and inhibited HCC tumor growth in vivo. MiR-15a-5p selectively and negatively regulated BDNF at both gene and protein levels in HCC cells. Forced overexpression of BDNF effectively reversed the tumor suppressive functions of miR-15a-5p on HCC proliferation and cell division in vitro. Our study demonstrated that miR-15a-5p is a tumor suppressor in HCC and its regulation is through BDNF in HCC.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , MicroRNAs/genética , Proteínas de Neoplasias/fisiologia , RNA Neoplásico/genética , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Carcinoma Hepatocelular/genética , Divisão Celular , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Vetores Genéticos , Células Hep G2/transplante , Humanos , Lentivirus , Neoplasias Hepáticas/genética , Camundongos , Camundongos Nus , Proteínas de Neoplasias/genética , Proteínas Recombinantes de Fusão/metabolismo
6.
PLoS One ; 8(8): e71374, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23951150

RESUMO

Umbilical cord matrix stem cells (UCMSC) have generated great interest in various therapeutic approaches, including liver regeneration. This article aims to analyze the specific characteristics and the potential occurrence of premalignant alterations of UCMSC during long-term expansion, which are important issues for clinical applications. UCMSC were isolated from the umbilical cord of 14 full-term newborns and expanded in vitro until senescence. We examined the long-term growth potential, senescence characteristics, immunophenotype and multilineage differentiation capacity of these cells. In addition, their genetic stability was assessed through karyotyping, telomerase maintenance mechanisms and analysis of expression and functionality of cell cycle regulation genes. The tumorigenic potential was also studied in immunocompromised mice. In vitro, UCMSC reached up to 33.7 ± 2.1 cumulative population doublings before entering replicative senescence. Their immunophenotype and differentiation potential, notably into hepatocyte-like cells, remained stable over time. Cytogenetic analyses did not reveal any chromosomal abnormality and the expression of oncogenes was not induced. Telomere maintenance mechanisms were not activated. Just as UCMSC lacked transformed features in vitro, they could not give rise to tumors in vivo. UCMSC could be expanded in long-term cultures while maintaining stable genetic features and endodermal differentiation potential. UCMSC therefore represent safe candidates for liver regenerative medicine.


Assuntos
Linhagem da Célula/genética , Senescência Celular/genética , Instabilidade Genômica , Hepatócitos/citologia , Células-Tronco Mesenquimais/citologia , Cordão Umbilical/citologia , Animais , Biomarcadores/metabolismo , Ciclo Celular/genética , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Células Hep G2/transplante , Hepatócitos/metabolismo , Hepatócitos/transplante , Humanos , Imunofenotipagem , Cariotipagem , Células-Tronco Mesenquimais/metabolismo , Camundongos , Telomerase/genética , Telomerase/metabolismo , Cordão Umbilical/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...