Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 286
Filtrar
1.
Tissue Cell ; 83: 102140, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37329686

RESUMO

This paper reports on glycogen store in the retinal horizontal cells (HC) of the African mud catfish Clarias gariepinus, as seen by histochemical reaction with periodic acid Schiff (PAS) and transmission electron microscopy in light- as well as dark-adapted state. Glycogen is abundant in the large somata and less in their axons, characterised ultrastructurally by many microtubules and extensive gap junctions interconnecting them. There was no apparent difference in glycogen content in HC somata between light- and dark adaptation, but the axons clearly showed absence of glycogen in dark condition. The HC somata (presynaptic) make synapses with dendrites in the outer plexiform layer. Müller cell inner processes, which contain more densely packed glycogen, invest the HC. Other cells of the inner nuclear layer do not show any appreciable content of glycogen. Rods, but not cones, contain abundant glycogen in their inner segments and synaptic terminals. It is likely that glycogen is used as energy substrate in hypoxia for this species that dwell muddy aquatic environment with low oxygen content. They appear to have high energy demand, and a high glycogen content in HC could act as a ready source to fulfil physiological processes, like microtubule-based transport of cargo from the large somata to axons and the maintenance of electrical activities across the gap junctions between the axonal processes. It is also likely that they can supplement glucose to the neighbouring inner nuclear layer neurons, which are clearly devoid of glycogen.


Assuntos
Peixes-Gato , Animais , Células Horizontais da Retina , Glicogênio , Retina , Neurônios , Sinapses/ultraestrutura
2.
J Neurophysiol ; 128(5): 1337-1343, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36288938

RESUMO

Retinal horizontal cells form a broad receptive field, which contributes to generating antagonistic surround responses in retinal bipolar cells. Here, I report that certain horizontal cells themselves have center-surround antagonistic receptive fields. The receptive fields of yellow/red, blue-type horizontal cells (Y/RB HCs) in the carp retina were measured by the response to the slit of light stimulus using the conventional intracellular electrode. A center stimulus of monochromatic light of 500 nm hyperpolarized Y/RB HCs, whereas the peripheral light depolarized the cells, suggesting that these cells exhibit an antagonistic receptive field at 500 nm light. The length constant of Y/RB HC's depolarizing responses to 600 nm light was 1.22 ± 0.08 mm, which was larger than that (0.61 ± 0.06 mm) of hyperpolarizing responses to 500 nm light. Thus, depolarizing responses of Y/RB HCs exhibit a larger receptive field than hyperpolarizing responses. The length constant of hyperpolarizing responses of luminosity-type HCs (LHCs) was 1.19 ± 0.07 mm, which was similar to that of 500 nm depolarizing responses of Y/RB HCs (1.34 ± 0.11 mm). Depolarizing response of Y/RB HCs was decreased by bath application of GABA and picrotoxin, a GABA receptor antagonist, suggesting that GABAergic signaling may modulate center-surround antagonistic mechanisms in Y/RB HCs. Bipolar cells display center-surround antagonistic receptive fields that play important roles to improve visual contrast. Wide receptive fields of HCs contribute to generating surround responses in bipolar cells. Therefore, the response polarity of Y/RB HCs may affect the width of the surround receptive field in bipolar cells.NEW & NOTEWORTHY Retinal horizontal cells form a broad receptive field, which contributes to generating antagonistic surround responses in retinal bipolar cells. Here, I found that depolarizing responses of yellow/red, blue-type horizontal cells (Y/RB HCs) exhibit a larger receptive field than hyperpolarizing responses at monochromatic lights between 480 nm and 520 nm. Because bipolar cells play a key role in the detection of visual contrast, depolarization or hyperpolarization of Y/RB HCs may regulate the size of the surround receptive field in the bipolar cells.


Assuntos
Retina , Células Horizontais da Retina , Estimulação Luminosa , Retina/fisiologia , Células Bipolares da Retina/fisiologia , Antagonistas GABAérgicos/farmacologia
3.
Exp Eye Res ; 218: 109018, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35240197

RESUMO

The process of eye axis lengthening in myopic eyes is regulated by multiple mechanisms in the retina, and horizontal cells (HCs) are an essential interneuron in the visual regulatory system. Wherein intracellular Ca2+ plays an important role in the events involved in the regulatory role of HCs in the retinal neural network. It is unknown if intracellular Ca2+ regulation in HCs mediates changes in the retinal neural network during myopia progression. We describe here a novel calcium fluorescence indicator system that monitors HCs' intracellular Ca2+ levels during form-deprivation myopia (FDM) in mice. AAV injection of GCaMP6s, as a protein calcium sensor, into a Gja10-Cre mouse monitored the changes in Ca2+signaling in HC that accompany FDM progression in mice. An alternative Gja10-Cre/Ai96-GCaMP6s mouse model was created by cross mating Gja10-Cre with Ai96 mice. Immunofluorescence imaging and live imaging of the retinal cells verified the identity of these animal models. Changes in retinal horizontal cellular Ca2+ levels were resolved during FDM development. The numbers of GCaMP6s and the proportion of HCs were tracked based on profiling changes in GCaMP6s+calbindin+/calbindin+ coimmunostaining patterns. They significantly decreased more after either two days (P < 0.01) or two weeks (P < 0.001) in form deprived eyes than in the untreated fellow eyes. These decreases in their proportion reached significance only in the retinal central region rather than also in the retinal periphery. A novel approach employing a GCaMP6s mouse model was developed that may ultimately clarify if HCs mediate Ca2+ signals that contribute to controlling FDM progression in mice. The results indicate so far that FDM progression is associated with declines in HC Ca2+ signaling activity.


Assuntos
Miopia , Células Horizontais da Retina , Animais , Calbindinas/metabolismo , Cálcio/metabolismo , Modelos Animais de Doenças , Camundongos , Miopia/metabolismo , Retina/metabolismo , Células Horizontais da Retina/metabolismo , Privação Sensorial
4.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35064086

RESUMO

Sensory receptive fields combine features that originate in different neural pathways. Retinal ganglion cell receptive fields compute intensity changes across space and time using a peripheral region known as the surround, a property that improves information transmission about natural scenes. The visual features that construct this fundamental property have not been quantitatively assigned to specific interneurons. Here, we describe a generalizable approach using simultaneous intracellular and multielectrode recording to directly measure and manipulate the sensory feature conveyed by a neural pathway to a downstream neuron. By directly controlling the gain of individual interneurons in the circuit, we show that rather than transmitting different temporal features, inhibitory horizontal cells and linear amacrine cells synchronously create the linear surround at different spatial scales and that these two components fully account for the surround. By analyzing a large population of ganglion cells, we observe substantial diversity in the relative contribution of amacrine and horizontal cell visual features while still allowing individual cells to increase information transmission under the statistics of natural scenes. Established theories of efficient coding have shown that optimal information transmission under natural scenes allows a diverse set of receptive fields. Our results give a mechanism for this theory, showing how distinct neural pathways synthesize a sensory computation and how this architecture both generates computational diversity and achieves the objective of high information transmission.


Assuntos
Modelos Biológicos , Retina/fisiologia , Vias Visuais , Algoritmos , Células Amácrinas/metabolismo , Interneurônios/metabolismo , Células Ganglionares da Retina/metabolismo , Células Horizontais da Retina/metabolismo , Transmissão Sináptica
5.
Curr Biol ; 32(3): 545-558.e5, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34910950

RESUMO

In the outer plexiform layer (OPL) of the mammalian retina, cone photoreceptors (cones) provide input to more than a dozen types of cone bipolar cells (CBCs). In the mouse, this transmission is modulated by a single horizontal cell (HC) type. HCs perform global signaling within their laterally coupled network but also provide local, cone-specific feedback. However, it is unknown how HCs provide local feedback to cones at the same time as global forward signaling to CBCs and where the underlying synapses are located. To assess how HCs simultaneously perform different modes of signaling, we reconstructed the dendritic trees of five HCs as well as cone axon terminals and CBC dendrites in a serial block-face electron microscopy volume and analyzed their connectivity. In addition to the fine HC dendritic tips invaginating cone axon terminals, we also identified "bulbs," short segments of increased dendritic diameter on the primary dendrites of HCs. These bulbs are in an OPL stratum well below the cone axon terminal base and make contacts with other HCs and CBCs. Our results from immunolabeling, electron microscopy, and glutamate imaging suggest that HC bulbs represent GABAergic synapses that do not receive any direct photoreceptor input. Together, our data suggest the existence of two synaptic strata in the mouse OPL, spatially separating cone-specific feedback and feedforward signaling to CBCs. A biophysical model of a HC dendritic branch and voltage imaging support the hypothesis that this spatial arrangement of synaptic contacts allows for simultaneous local feedback and global feedforward signaling by HCs.


Assuntos
Células Fotorreceptoras Retinianas Cones , Células Horizontais da Retina , Animais , Retroalimentação , Mamíferos , Camundongos , Retina , Células Horizontais da Retina/metabolismo , Sinapses
6.
J Neurochem ; 160(2): 283-296, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34726780

RESUMO

The retina has the highest relative energy consumption of any tissue, depending on a steady supply of glucose from the bloodstream. Glucose uptake is mediated by specific transporters whose regulation and expression are critical for the pathogenesis of many diseases, including diabetes and diabetic retinopathy. Here, we used immunofluorescence to show that glucose transporter-2 (GLUT2) is expressed in horizontal cells of the mouse neuroretina in proximity to inner retinal capillaries. To study the function of GLUT2 in the murine retina, we used organotypic retinal explants, cultivated under entirely controlled, serum-free conditions and exposed them to streptozotocin, a cytotoxic drug transported exclusively by GLUT2. Contrary to our expectations, streptozotocin did not measurably affect horizontal cell viability, while it ablated rod and cone photoreceptors in a concentration-dependent manner. Staining for poly-ADP-ribose (PAR) indicated that the detrimental effect of streptozotocin on photoreceptors may be associated with DNA damage. The negative effect of streptozotocin on the viability of rod photoreceptors was counteracted by co-administration of either the inhibitor of connexin-formed hemi-channels meclofenamic acid or the blocker of clathrin-mediated endocytosis dynasore. Remarkably, cone photoreceptors were not protected from streptozotocin-induced degeneration by neither of the two drugs. Overall, these data suggest the existence of a GLUT2-dependent glucose transport shuttle, from horizontal cells into photoreceptor synapses. Moreover, our study points at different glucose uptake mechanisms in rod and cone photoreceptors.


Assuntos
Transportador de Glucose Tipo 2/metabolismo , Glucose/metabolismo , Células Fotorreceptoras/metabolismo , Células Horizontais da Retina/metabolismo , Sinapses/metabolismo , Animais , Transporte Biológico , Camundongos , Retina/metabolismo
7.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360929

RESUMO

Complexins (Cplxs) 1 to 4 are components of the presynaptic compartment of chemical synapses where they regulate important steps in synaptic vesicle exocytosis. In the retina, all four Cplxs are present, and while we know a lot about Cplxs 3 and 4, little is known about Cplxs 1 and 2. Here, we performed in situ hybridization experiments and bioinformatics and exploited Cplx 1 and Cplx 2 single-knockout mice combined with immunocytochemistry and light microscopy to characterize in detail the cell type and synapse-specific distribution of Cplx 1 and Cplx 2. We found that Cplx 2 and not Cplx 1 is the main isoform expressed in normal and displaced amacrine cells and ganglion cells in mouse retinae and that amacrine cells seem to operate with a single Cplx isoform at their conventional chemical synapses. Surprising was the finding that retinal function, determined with electroretinographic recordings, was altered in Cplx 1 but not Cplx 2 single-knockout mice. In summary, the results provide an important basis for future studies on the function of Cplxs 1 and 2 in the processing of visual signals in the mammalian retina.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Células Amácrinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células Fotorreceptoras/metabolismo , Células Bipolares da Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Células Horizontais da Retina/metabolismo , Proteínas SNARE/metabolismo , Sinapses/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Células Cultivadas , Biologia Computacional/métodos , Eletrorretinografia/métodos , Feminino , Imuno-Histoquímica/métodos , Hibridização In Situ/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética
8.
J Exp Biol ; 224(18)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34402511

RESUMO

Neurons of the retina require oxygen to survive. In hypoxia, neuronal ATP production is impaired, ATP-dependent ion pumping is reduced, transmembrane ion gradients are dysregulated, and intracellular Ca2+ concentration ([Ca2+]i) increases enough to trigger excitotoxic cell death. Central neurons of the common goldfish (Carassius auratus) are hypoxia tolerant, but little is known about how goldfish retinas withstand hypoxia. To study the cellular mechanisms of hypoxia tolerance, we isolated retinal interneurons (horizontal cells; HCs), and measured [Ca2+]i with Fura-2. Goldfish HCs maintained [Ca2+]i throughout 1 h of hypoxia, whereas [Ca2+]i increased irreversibly in HCs of the hypoxia-sensitive rainbow trout (Oncorhynchus mykiss) with just 20 min of hypoxia. Our results suggest mitochondrial ATP-dependent K+ channels (mKATP) are necessary to stabilize [Ca2+]i throughout hypoxia. In goldfish HCs, [Ca2+]i increased when mKATP channels were blocked with glibenclamide or 5-hydroxydecanoic acid, whereas the mKATP channel agonist diazoxide prevented [Ca2+]i from increasing in hypoxia in trout HCs. We found that hypoxia protects against increases in [Ca2+]i in goldfish HCs via mKATP channels. Glycolytic inhibition with 2-deoxyglucose increased [Ca2+]i, which was rescued by hypoxia in a mKATP channel-dependent manner. We found no evidence of plasmalemmal KATP channels in patch-clamp experiments. Instead, we confirmed the involvement of KATP in mitochondria with TMRE imaging, as hypoxia rapidly (<5 min) depolarized mitochondria in a mKATP channel-sensitive manner. We conclude that mKATP channels initiate a neuroprotective pathway in goldfish HCs to maintain [Ca2+]i and avoid excitotoxicity in hypoxia. This model provides novel insight into the cellular mechanisms of hypoxia tolerance in the retina.


Assuntos
Carpa Dourada , Células Horizontais da Retina , Trifosfato de Adenosina , Animais , Cálcio/metabolismo , Carpa Dourada/metabolismo , Hipóxia , Canais KATP , Células Horizontais da Retina/metabolismo
9.
Dev Biol ; 476: 218-239, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33848537

RESUMO

Synapses in the outer retina are the first information relay points in vision. Here, photoreceptors form synapses onto two types of interneurons, bipolar cells and horizontal cells. Because outer retina synapses are particularly large and highly ordered, they have been a useful system for the discovery of mechanisms underlying synapse specificity and maintenance. Understanding these processes is critical to efforts aimed at restoring visual function through repairing or replacing neurons and promoting their connectivity. We review outer retina neuron synapse architecture, neural migration modes, and the cellular and molecular pathways that play key roles in the development and maintenance of these connections. We further discuss how these mechanisms may impact connectivity in the retina.


Assuntos
Células Fotorreceptoras/citologia , Sinapses/metabolismo , Visão Ocular/fisiologia , Animais , Humanos , Interneurônios/fisiologia , Células Fotorreceptoras/fisiologia , Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Horizontais da Retina/fisiologia , Sinapses/fisiologia
10.
Dev Biol ; 476: 88-100, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33774011

RESUMO

During retinal development, multipotent and restricted progenitor cells generate all of the neuronal cells of the retina. Among these are horizontal cells, which are interneurons that modulate the light-induced signal from photoreceptors. This study utilizes the identification of novel cis-regulatory elements as a method to examine the gene regulatory networks that direct the development of horizontal cells. Here we describe a screen for cis-regulatory elements, or enhancers, for the horizontal cell-associated genes PTF1A, ONECUT1 (OC1), TFAP2A (AP2A), and LHX1. The OC1ECR22 and Tfap2aACR5 elements were shown to be potential enhancers for OC1 and TFAP2A, respectively, and to be specifically active in developing horizontal cells. The OC1ECR22 element is activated by PTF1A and RBPJ, which translates to regulation of OC1 expression and suggests that PTF1A is a direct activator of OC1 expression in developing horizontal cells. The region within the Tfap2aACR5 element that is responsible for its activation was determined to be a 100 bp sequence named Motif 4. Both OC1ECR22 and Tfap2aACR5 are negatively regulated by the nuclear receptors THRB and RXRG, as is the expression of OC1 and AP2A, suggesting that nuclear receptors may have a role in the negative regulation of horizontal cell development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Retina/embriologia , Células Horizontais da Retina/metabolismo , Animais , Diferenciação Celular/fisiologia , Embrião de Galinha , Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Proteínas de Homeodomínio/metabolismo , Proteínas com Homeodomínio LIM , Neurônios/metabolismo , Fatores de Transcrição Onecut , Retina/metabolismo , Células Horizontais da Retina/fisiologia , Células-Tronco/metabolismo , Fator de Transcrição AP-2 , Fatores de Transcrição/metabolismo
11.
Invest Ophthalmol Vis Sci ; 62(1): 31, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33507230

RESUMO

Purpose: The three-dimensional configurations of rod and cone bipolar cell (BC) dendrites and horizontal cell (HC) processes outside rod and cone synaptic terminals have not been fully elucidated. We reveal how these neurites are mutually arranged to coordinate formation and maintenance of the postsynaptic complex of ribbon synapses in mouse and monkey retinas. Methods: Serial section transmission electron microscopy was utilized to reconstruct BC and HC neurites in macaque monkey and mouse, including metabotropic glutamate receptor 6 (mGluR6)-knockout mice. Results: Starting from sporadically distributed branching points, rod BC and HC neurites (B and H, respectively) took specific paths to rod spherules by gradually adjusting their mutual positions, which resulted in a closed alternating pattern of H‒B‒H‒B neurites at the rod spherule aperture. This order corresponded to the array of elements constituting the postsynaptic complex of ribbon synapses. We identified novel helical coils of HC processes surrounding the rod BC dendrite in both mouse and macaque retinas, and these structures occurred more frequently in mGluR6-knockout than wild-type mouse retinas. Horizontal cell processes also formed hook-like protrusions that encircled cone BC and HC neurites below the cone pedicles in the macaque retina. Conclusions: Bipolar and horizontal cell neurites take specific paths to adjust their mutual positions at the rod spherule aperture. Some HC processes are helically coiled around rod BC dendrites or form hook-like protrusions around cone BC dendrites and HC processes. Loss of mGluR6 signaling may be one factor promoting unbalanced neurite growth and compensatory neurite coiling.


Assuntos
Fasciculação Axônica/fisiologia , Neuritos/ultraestrutura , Células Bipolares da Retina/ultraestrutura , Células Horizontais da Retina/ultraestrutura , Células Fotorreceptoras Retinianas Bastonetes/ultraestrutura , Vias Visuais/ultraestrutura , Animais , Feminino , Macaca fuscata , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Terminações Pré-Sinápticas , Receptores de Glutamato Metabotrópico/fisiologia , Sinapses
12.
Curr Biol ; 31(2): R65-R66, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33497630

RESUMO

The discoveries of the photopigment melanopsin and intrinsically photosensitive retinal ganglion cells (ipRGCs) have revealed novel mechanisms of light detection now known to control several kinds of non-image-forming vision, including regulation of mood, the circadian rhythm, and the pupillary light reflex (PLR). These remarkable discoveries have been made mostly on mammals, but many vertebrates express melanopsin and adjust the diameter of the pupil to the ambient light intensity to extend the operating range of vision and reduce spherical aberration1. We were curious to know whether a PLR controlled by melanopsin is also present in lamprey, which are members of the only remaining group of jawless vertebrates (agnathans) which diverged from all other vertebrates about 500 million years ago2. We now show that lamprey have a robust PLR mediated by melanopsin apparently without any contribution from signals of rods and cones, suggesting that non-image-forming perception emerged long before the radiation of present vertebrate lines and was already present in the late Cambrian.


Assuntos
Petromyzon/fisiologia , Reflexo Pupilar/fisiologia , Visão Ocular/fisiologia , Animais , Células Ganglionares da Retina/metabolismo , Células Horizontais da Retina/metabolismo , Opsinas de Bastonetes/metabolismo
13.
J Comp Neurol ; 529(8): 1756-1767, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33070331

RESUMO

Horizontal cells (HCs) are neurons of the outer retina, which provide inhibitory feedback onto photoreceptors and contribute to image processing. HCs in teleosts are classified into four subtypes (H1-H4), each having different roles: H1-H3 feed back onto different sets of cones, H4 feed back onto rods, and only H1 store and release the inhibitory neurotransmitter, γ-aminobutyric acid (GABA). Dissociated HCs exhibit spontaneous Ca2+ -based action potentials (APs), yet it is unclear if APs occur in situ, or if all subtypes exhibit APs. We measured intracellular Ca2+ and report APs in slice preparations of the goldfish retina. In HCs furthest from photoreceptors (i.e., H3/H4), APs were less frequent, with greater duration and area under the curve (a measure of Ca2+ flux). Next, we classified acutely dissociated HCs into subtypes by integrating the ratio of dendritic field size vs. soma size (rd/s ). H1 and H2 subtypes had low rd/s values (<8); H3/H4 had high rd/s (>12). To verify this model, H1s were identified by immunoreactivity for GABA and 95% of these cells had an rd/s < 4. In Ca2+ imaging experiments, as rd/s increased, AP duration and area under the curve increased, while frequency decreased. Our results demonstrate the presence of Ca2+ -based APs in the goldfish retina in situ and show that HC subtypes H1 through H4 exhibit progressively longer and less frequent spontaneous APs. These results suggest that APs may play an important role in inhibitory feedback, and may have implications for understanding the relative contributions of HC subtypes in the outer retina.


Assuntos
Potenciais de Ação/fisiologia , Células Horizontais da Retina/fisiologia , Percepção Visual/fisiologia , Animais , Carpa Dourada
14.
Front Neural Circuits ; 14: 583391, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33177995

RESUMO

During development, neurons generate excess processes which are then eliminated in concert with circuit maturation. C1q is the initiating protein in the complement cascade and has been implicated in this process, but whether C1q-mediated elimination is targeted to particular neural compartments is unclear. Using the murine retina, we identify C1q as a specific regulator of horizontal cell neurite confinement. Subsets of horizontal cell dendritic and axonal neurites extend into the outer retina suggesting that complement achieves both cellular and subcellular selectivity. These alterations emerge as outer retina synapses become mature. C1q expression is restricted to retina microglia, and the loss of C1q results in decreased microglia activation. This pathway appears independent of the C3a receptor (C3aR) and complement receptor 3 (CR3), as horizontal cells are normal when either protein is absent. Together, these data identify a new role for C1q in cell and neurite-specific confinement and implicate microglia-mediated phagocytosis in this process.


Assuntos
Complemento C1q/fisiologia , Microglia/metabolismo , Neuritos/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Complemento C3a , Camundongos , Camundongos Knockout , Microglia/fisiologia , Fagocitose , Receptores de Complemento , Células Horizontais da Retina
15.
eNeuro ; 7(5)2020.
Artigo em Inglês | MEDLINE | ID: mdl-33060180

RESUMO

Horizontal cells (HCs) form reciprocal synapses with rod and cone photoreceptors, an arrangement that underlies lateral inhibition in the retina. HCs send negative and positive feedback signals to photoreceptors, but how HCs initiate these signals remains unclear. Unfortunately, because HCs have no unique neurotransmitter receptors, there are no pharmacological treatments for perturbing membrane potential specifically in HCs. Here we use transgenic zebrafish whose HCs express alien receptors, enabling cell-type-specific control by cognate alien agonists. To depolarize HCs, we used the Phe-Met-Arg-Phe-amide (FMRFamide)-gated Na+ channel (FaNaC) activated by the invertebrate neuropeptide FMRFamide. To hyperpolarize HCs we used a pharmacologically selective actuator module (PSAM)-glycine receptor (GlyR), an engineered Cl- selective channel activated by a synthetic agonist. Expression of FaNaC or PSAM-GlyR was restricted to HCs with the cell-type selective promoter for connexin-55.5. We assessed HC-feedback control of photoreceptor synapses in three ways. First, we measured presynaptic exocytosis from photoreceptor terminals using the fluorescent dye FM1-43. Second, we measured the electroretinogram (ERG) b-wave, a signal generated by postsynaptic responses. Third, we used Ca2+ imaging in retinal ganglion cells (RGCs) expressing the Ca2+ indicator GCaMP6. Addition of FMRFamide significantly decreased FM1-43 destaining in darkness, whereas the addition of PSAM-GlyR significantly increased it. However, both agonists decreased the light-elicited ERG b-wave and eliminated surround inhibition of the Ca2+ response of RGCs. Taken together, our findings show that chemogenetic tools can selectively manipulate negative feedback from HCs, providing a platform for understanding its mechanism and helping to elucidate its functional roles in visual information processing at a succession of downstream stages.


Assuntos
Células Horizontais da Retina , Peixe-Zebra , Animais , Potenciais da Membrana , Retina , Células Fotorreceptoras Retinianas Cones
16.
Prog Brain Res ; 256(1): 1-29, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32958209

RESUMO

To study short and long-term effects of acute ocular hypertension (AOHT) on inner and outer retinal layers, in adult Sprague-Dawley rats AOHT (87mmHg) was induced for 90min and the retinas were examined longitudinally in vivo with electroretinogram (ERG) recordings and optical coherent tomography (OCT) from 1 to 90 days (d). Ex vivo, the retinas were analyzed for rod (RBC) and cone (CBC) bipolar cells, with antibodies against protein kinase Cα and recoverin, respectively in cross sections, and for cones, horizontal (HZ) and ganglion (RGC) cells with antibodies against arrestin, calbindin and Brn3a, respectively in wholemounts. The inner retina thinned progressively up to 7d with no further changes, while the external retina had a normal thickness until 30d, with a 20% thinning between 30 and 90d. Functionally, the a-wave showed an initial reduction by 24h and a further reduction from 30 to 90d. All other main ERG waves were significantly reduced by 1d without significant recovery by 90d. Radial sections showed a normal population of RBCs but their terminals were reduced. The CBCs showed a progressive decrease with a loss of 56% by 30d. In wholemount retinas, RGCs diminished to 40% by 3d and to 16% by 30d without further loss. Cones diminished to 58% and 35% by 3 and 7d, respectively and further decreased between 30 and 90d. HZs showed normal values throughout the study. In conclusion, AOHT affects both the inner and outer retina, with a more pronounced degeneration of the cone than the rod pathway.


Assuntos
Hipertensão Ocular/patologia , Hipertensão Ocular/fisiopatologia , Retina/patologia , Retina/fisiopatologia , Doença Aguda , Animais , Modelos Animais de Doenças , Eletrorretinografia , Glaucoma/diagnóstico por imagem , Glaucoma/patologia , Glaucoma/fisiopatologia , Hipertensão Ocular/diagnóstico por imagem , Ratos , Ratos Sprague-Dawley , Retina/diagnóstico por imagem , Células Fotorreceptoras Retinianas Cones/patologia , Células Ganglionares da Retina/patologia , Células Horizontais da Retina/patologia , Tomografia de Coerência Óptica
17.
Neuron ; 108(1): 111-127.e6, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32795398

RESUMO

Cajal recognized that the elaborate shape of neurons is fundamental to their function in the brain. However, there are no simple and generalizable genetic methods to study neuronal or glial cell morphology in the mammalian brain. Here, we describe four mouse lines conferring Cre-dependent sparse cell labeling based on mononucleotide repeat frameshift (MORF) as a stochastic translational switch. Notably, the optimized MORF3 mice, with a membrane-bound multivalent immunoreporter, confer Cre-dependent sparse and bright labeling of thousands of neurons, astrocytes, or microglia in each brain, revealing their intricate morphologies. MORF3 mice are compatible with imaging in tissue-cleared thick brain sections and with immuno-EM. An analysis of 151 MORF3-labeled developing retinal horizontal cells reveals novel morphological cell clusters and axonal maturation patterns. Our study demonstrates a conceptually novel, simple, generalizable, and scalable mouse genetic solution to sparsely label and illuminate the morphology of genetically defined neurons and glia in the mammalian brain.


Assuntos
Astrócitos/ultraestrutura , Encéfalo/ultraestrutura , Microglia/ultraestrutura , Neurônios/ultraestrutura , Células Horizontais da Retina/ultraestrutura , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Mutação da Fase de Leitura/genética , Proteínas de Fluorescência Verde/genética , Integrases , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Repetições de Microssatélites/genética , Neurônios/metabolismo , Neurônios/patologia , Células Horizontais da Retina/metabolismo , Células Horizontais da Retina/patologia
18.
Neuron ; 107(2): 320-337.e6, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32473094

RESUMO

In the eye, the function of same-type photoreceptors must be regionally adjusted to process a highly asymmetrical natural visual world. Here, we show that UV cones in the larval zebrafish area temporalis are specifically tuned for UV-bright prey capture in their upper frontal visual field, which may use the signal from a single cone at a time. For this, UV-photon detection probability is regionally boosted more than 10-fold. Next, in vivo two-photon imaging, transcriptomics, and computational modeling reveal that these cones use an elevated baseline of synaptic calcium to facilitate the encoding of bright objects, which in turn results from expressional tuning of phototransduction genes. Moreover, the light-driven synaptic calcium signal is regionally slowed by interactions with horizontal cells and later accentuated at the level of glutamate release driving retinal networks. These regional differences tally with variations between peripheral and foveal cones in primates and hint at a common mechanistic origin.


Assuntos
Células Fotorreceptoras de Vertebrados/fisiologia , Comportamento Predatório/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Peixe-Zebra/fisiologia , Animais , Sinalização do Cálcio , Simulação por Computador , Ácido Glutâmico/metabolismo , Larva , Luz , Transdução de Sinal Luminoso , Células Horizontais da Retina/fisiologia , Sinapses/fisiologia , Transcriptoma , Raios Ultravioleta , Campos Visuais
19.
Biosci Rep ; 40(6)2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32452512

RESUMO

The fragile X mental retardation protein (FMRP) is a regulator of local translation through its mRNA targets in the neurons. Previous studies have demonstrated that FMRP may function in distinct ways during the development of different visual subcircuits. However, the localization of the FMRP in different types of retinal cells is unclear. In this work, the FMRP expression in rat retina was detected by Western blot and immunofluorescence double labeling. Results showed that the FMRP expression could be detected in rat retina and that the FMRP had a strong immunoreaction (IR) in the ganglion cell (GC) layer, inner nucleus layer (INL), and outer plexiform layer (OPL) of rat retina. In the outer retina, the bipolar cells (BCs) labeled by homeobox protein ChX10 (ChX10) and the horizontal cells (HCs) labeled by calbindin (CB) were FMRP-positive. In the inner retina, GABAergic amacrine cells (ACs) labeled by glutamate decarbonylase colocalized with the FMRP. The dopaminergic ACs (tyrosine hydroxylase marker) and cholinergic ACs (choline acetyltransferase (ChAT) marker) were co-labeled with the FMRP. In most GCs (labeled by Brn3a) and melanopsin-positive intrinsically photosensitive retinal GCs (ipRGCs) were also FMRP-positive. The FMRP expression was observed in the cellular retinal binding protein-positive Müller cells. These results suggest that the FMRP could be involved in the visual pathway transmission.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/metabolismo , Neurônios Retinianos/metabolismo , Células Amácrinas/metabolismo , Animais , Biomarcadores/metabolismo , Células Ependimogliais/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos Sprague-Dawley , Células Bipolares da Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Células Horizontais da Retina/metabolismo , Visão Ocular
20.
Exp Eye Res ; 195: 108028, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32277973

RESUMO

Expression patterns of voltage-gated ion channels determine the spatio-temporal dynamics of ion currents that supply excitable neurons in developing tissue with proper electrophysiological properties. The purpose of the study was to identify fast cationic inward currents in mouse retinal horizontal cells (HCs) and describe their biophysical properties at different developmental stages. We also aimed to reveal their physiological role in shaping light responses (LRs) in adult HCs. HCs were recorded in horizontal slices of wild-type mouse retina at postnatal stages ranging from p8 through p60. Voltage-dependent inward currents were isolated with appropriate voltage protocols and blockers specific for sodium and T-type calcium channels. LRs were evoked with full-field flashes (130 µW/cm2). Transient and steady inward currents were identified at all developmental stages. Transient currents were mediated by T-type calcium and TTX-sensitive sodium channels, whereas steady currents were blocked by cadmium, indicating the presence of high voltage-activated calcium channels. Activation and steady-state inactivation kinetics of T-type calcium channels revealed a contribution to the resting membrane potential during postnatal development. Additionally, both sodium and T-type calcium channels had an impact on HC LRs at light offset in adult animals. Our results showed that the voltage-dependent inward currents of postnatally developing mouse HCs consist of T-type calcium, TTX-sensitive sodium, and high voltage-activated calcium channels, and that transient ionic currents contributed to light-evoked responses of adult HCs, suggesting a role in HC information processing.


Assuntos
Canais de Cálcio/metabolismo , Potenciais da Membrana/fisiologia , Células Horizontais da Retina/metabolismo , Canais de Sódio/metabolismo , Animais , Canais de Cálcio/efeitos dos fármacos , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Técnicas de Patch-Clamp , Células Horizontais da Retina/citologia , Células Horizontais da Retina/efeitos dos fármacos , Canais de Sódio/efeitos dos fármacos , Tetrodotoxina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...