Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
1.
Int J Biol Macromol ; 190: 474-486, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34508717

RESUMO

The ECM of cartilage is composed of proteoglycans (PG) that contain glycosaminoglycan (GAG), aggrecan, hyaluronic acid (HA) and other molecular components which play an important role in regulating chondrocyte functions via cell-matrix interactions, integrin-mediated signalling etc. Implantation of chondrocytes encapsulated in scaffolds that mimic the micro-architecture of proteoglycan, is expected to enhance cartilage repair. With an aim to create a hydrogel having macromolecular structure that resembles the cartilage-specific ECM, we constructed a hierarchal structure that mimic the PG. The bottle brush structure of the aggrecan was obtained using chondroitin sulphate and carboxymethyl cellulose which served as GAG and core protein mimic respectively. A proteoglycan-like structure was obtained by cross-linking it with modified chitosan that served as a HA substitute. The physico-chemical characteristics of the above cross-linked injectable hydrogel supported long term human articular chondrocyte subsistence and excellent post-injection viability. The chondrocytes encapsulated in the PMH expressed significant levels of articular cartilage specific markers like collagen II, aggrecan, GAGs etc., indicating the ability of the hydrogel to support chondrocyte differentiation. The biocompatibility and biodegradability of the hydrogels was confirmed using suitable in vivo studies. The results revealed that the PG-mimetic hydrogel could serve as a promising scaffold for chondrocyte implantation.


Assuntos
Condrócitos/citologia , Condrogênese , Hidrogéis/química , Hidrogéis/farmacologia , Injeções , Proteoglicanas/química , Animais , Carboximetilcelulose Sódica/química , Bovinos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Imobilizadas/citologia , Células Imobilizadas/efeitos dos fármacos , Quitosana/análogos & derivados , Quitosana/química , Condrócitos/efeitos dos fármacos , Condrócitos/ultraestrutura , Condrogênese/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Módulo de Elasticidade , Humanos , Ratos Sprague-Dawley , Reologia , Espectroscopia de Infravermelho com Transformada de Fourier
2.
J Tissue Eng Regen Med ; 15(11): 936-947, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34388313

RESUMO

Various research about cartilage regeneration using biomaterials has been done recently. Particularly, gellan gum hydrogel (GG) is reported to be suitable as a biomaterial for cartilage tissue engineering (TE) for its water uptaking ability, producibility, and environmental resemblance of native cartilage. Despite these advantages, mechanical and cell adhesion properties are still difficult to modulate. Reinforcement is essential to overcome these problems. Herein, GG was modified by physically blending with different lengths of silk fiber (SF). As SF is expected to improve such disadvantages of GG, mechanical and biological properties were characterized to confirm its reinforcement ability. Mechanical properties such as degradation rate, swelling rate, compression strength, and viscosity were studied and it was confirmed that SF significantly reinforces the mechanical properties of GG. Furthermore, in vitro study was carried out to confirm morphology, biocompatibility, proliferation, and chondrogenesis of chondrocytes encapsulated in the hydrogels. Overall, chondrocytes in the GG blended with SF (SF/GG) showed enhanced cell viability and growth. According to this study, SF/GG can be a promising biomaterial for cartilage TE biomaterial.


Assuntos
Hidrogéis/síntese química , Hidrogéis/farmacologia , Polissacarídeos Bacterianos/síntese química , Polissacarídeos Bacterianos/farmacologia , Seda/farmacologia , Animais , Materiais Biocompatíveis/farmacologia , Fenômenos Biomecânicos , Cartilagem , Células Imobilizadas/citologia , Células Imobilizadas/efeitos dos fármacos , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Coelhos , Seda/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual
3.
Stem Cell Reports ; 16(5): 1347-1362, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33979603

RESUMO

Human periimplantation development requires the transformation of the naive pluripotent epiblast into a polarized epithelium. Lumenogenesis plays a critical role in this process, as the epiblast undergoes rosette formation and lumen expansion to form the amniotic cavity. Here, we present a high-throughput in vitro model for epiblast morphogenesis. We established a microfluidic workflow to encapsulate human pluripotent stem cells (hPSCs) into monodisperse agarose microgels. Strikingly, hPSCs self-organized into polarized epiblast spheroids that could be maintained in self-renewing and differentiating conditions. Encapsulated primed hPSCs required Rho-associated kinase inhibition, in contrast to naive hPSCs. We applied microgel suspension culture to examine the lumen-forming capacity of hPSCs and reveal an increase in lumenogenesis during the naive-to-primed transition. Finally, we demonstrate the feasibility of co-encapsulating cell types across different lineages and species. Our work provides a foundation for stem cell-based embryo models to interrogate the critical components of human epiblast self-organization and morphogenesis.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Pluripotentes Induzidas/citologia , Microgéis/química , Morfogênese , Sefarose/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Imobilizadas/citologia , Células Imobilizadas/efeitos dos fármacos , Camadas Germinativas/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Morfogênese/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo
4.
J Mater Chem B ; 8(48): 10990-11000, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33300520

RESUMO

Bone diseases such as osteomalacia, osteoporosis, and osteomyelitis are major illnesses that threaten the health of human. This study aimed to provide an idea at the molecular level of material properties determined with UV specific surface approaches. The tert-butyl hydroperoxide (t-BHP) exposure aging model bone mesenchymal stem cells (BMSCs) were reverted by using a poly-hybrid scaffold (PS), which is a carbon nanotube (CNT) coated polycaprolactone (PCL) and polylactic acid (PLA) scaffold, combined with insulin-like growth factor-1 (IGF). Then, the region-specific PS photo-immobilized with different growth factors (GFs) was obtained by interference and diffraction of ultraviolet (UV) light. Additionally, the reverted BMSCs were regionally pattern differentiated into three kinds of cells on the GF immobilized PS (GFs/PS). In vivo, the GFs/PS accelerate bone healing in injured Sprague-Dawley (SD) rats. The data showed that GFs/PS effectively promoted the differentiation of reverted BMSCs in the designated area on 21st day. These results suggest region-specific interface immobilization of GFs concurrently differentiating reverted BMSCs into three different cells in the same scaffold. This method might be considered as a short-time, low cost, and simple operational approach to scaffold modification for tissue regeneration in the future.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Células Imobilizadas/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Alicerces Teciduais , Raios Ultravioleta , Animais , Células da Medula Óssea/fisiologia , Células da Medula Óssea/efeitos da radiação , Regeneração Óssea/fisiologia , Regeneração Óssea/efeitos da radiação , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Diferenciação Celular/efeitos da radiação , Células Cultivadas , Células Imobilizadas/fisiologia , Células Imobilizadas/efeitos da radiação , Feminino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Células-Tronco Mesenquimais/efeitos da radiação , Ratos , Ratos Sprague-Dawley
5.
J Tissue Eng Regen Med ; 14(11): 1592-1603, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32767724

RESUMO

Hydrogels have a large amount of water that provides a cartilage-like environment and is used in tissue engineering with biocompatibility and adequate degradation rates. In order to differentiate stem cells, it is necessary to adjust the characteristics of the matrix such as stiffness, stress-relaxing time, and microenvironment. Double network (DN) hydrogels provide differences in cellular biological behavior and have interpenetrating networks that combine the advantages of the components. In this study, by varying the viscous substrate of pullulan (PL), the DN hydrogels of gellan gum (GG) and PL were prepared to determine the cartilage differentiation of bone marrow stem cell (BMSC). The characteristics of GG/PL hydrogel were investigated by examining the swelling ratio, weight loss, sol fraction, compressive modulus, and gelation temperature. The viability, proliferation, and toxicity of BMSCs encapsulated in hydrogels were evaluated. Cartilage phenotype and cartilage differentiation were confirmed by morphology, GAG content, and cartilage-specific gene expression. Overall results demonstrate that GG/PL hydrogels can form cartilage differentiation of BMSCs and can be applied for tissue engineering purposes.


Assuntos
Células da Medula Óssea/citologia , Diferenciação Celular , Condrogênese , Glucanos/farmacologia , Polissacarídeos Bacterianos/farmacologia , Células-Tronco/citologia , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/ultraestrutura , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Imobilizadas/citologia , Células Imobilizadas/efeitos dos fármacos , Células Imobilizadas/ultraestrutura , Condrogênese/efeitos dos fármacos , DNA/metabolismo , Feminino , Glicosaminoglicanos/metabolismo , Hidrogéis/farmacologia , Coelhos , Espectroscopia de Infravermelho com Transformada de Fourier , Células-Tronco/efeitos dos fármacos , Células-Tronco/ultraestrutura , Viscosidade
6.
J Tissue Eng Regen Med ; 14(9): 1236-1249, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32615018

RESUMO

Self-assembling peptide (SAP) hydrogel has been shown to be an excellent biological material for three-dimensional cell culture and stimulatie cell migration and differentiation into the scaffold, as well as for repairing bone tissue defects. Herein, we designed one of the SAP scaffolds KLD (KLDLKLDLKLDL) through direct coupling to short bioactive motif O1 (EEGGC) and O2 (EEEEE) of which bioactivity on osteogenic differentiation was previously demonstrated and self-assembled in different concentrations (0.5%, 1%, and 2%). Our aim was to enhance osteogenesis and biomineralization of injectable SAP hydrogels with controlled mechanical properties so that the peptide hydrogel also becomes capable of being injected to bone defects. The molecular integration of the nanofibrous peptide scaffolds was observed using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The rheological properties and degradation profile of SAP hydrogels were evaluated to ensure stability of SAPs. Compared with pure KLD scaffold, we found that these designed bioactive peptide scaffolds significantly promoted hMSCs proliferation depicted by biochemical analysis of alkaline phosphatase (ALP) activity, total calcium deposition. Moreover, key osteogenic markers of ALP activity, collagen type I (COL-1), osteopontin (OP), and osteocalcin (OCN) expression levels determined by real-time polymerase chain reaction (PCR) and immunofluorescence analysis were also significantly increased with the addition of glutamic acid residues to KLD. We demonstrated that the designed SAP scaffolds promoted the proliferation and osteogenic differentiation of hMSCs. Our results suggest that these designed bioactive peptide scaffolds may be useful for promoting bone tissue regeneration.


Assuntos
Ácido Glutâmico/farmacologia , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Peptídeos/farmacologia , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Biomarcadores/metabolismo , Cálcio/metabolismo , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Imobilizadas/citologia , Células Imobilizadas/efeitos dos fármacos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , DNA/metabolismo , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Osteogênese/genética , Osteopontina/genética , Osteopontina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
Biochem Biophys Res Commun ; 528(4): 650-657, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32513541

RESUMO

INTRODUCTION: The extension of islet transplantation to a wider number of type 1 diabetes patients is compromised by severe adverse events related to the immunosuppressant therapy required for allogenic islet transplantation. In this context, microencapsulation offers the prospects of immunosuppressive-free therapy by physically isolating islets from the immune system. However, current biomaterials need to be optimized to: improve biocompatibility, guaranty the maintenance of graft viability and functionality, and prevent fibrosis overgrowth around the capsule in vivo. Accumulating evidence suggest that mesenchymal stem cells (MSCs) and anchor points consisting of tripeptides arg-gly-asp (RGD) have cytoprotective effects on pancreatic islets. Here, we investigated the effect of supplementing reference M-rich alginate microcapsules with MSCs and RGD-G rich alginate on bioprocessing as well as on human pancreatic islets viability and functionality. METHODS: We characterized the microcapsules components, and then for the new microcapsule composite product: we analyzed the empty capsules biocompatibility and then investigated the benefits of MSCs and RGD-G rich alginate on viability and functionality on the encapsulated human pancreatic islets in vitro. We performed viability tests by confocal microscopy and glucose stimulated insulin secretion (GSIS) test in vitro to assess the functionality of naked and encapsulated islets. RESULTS: Encapsulation in reference M-rich alginate capsules induced a reduction in viability and functionality compared to naked islets. This side-effect of encapsulation was in part counteracted by the presence of MSCs but the restoration was complete with the combination of both MSCs and the RGD-G rich alginate. CONCLUSIONS: The present findings show that bioprocessing a favorable composite environment inside the M-rich alginate capsule with both MSCs and RGD-G rich alginate improves human islets survival and functionality in vitro.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Células Imobilizadas/citologia , Ilhotas Pancreáticas/citologia , Células-Tronco Mesenquimais/citologia , Oligopeptídeos/farmacologia , Adulto , Alginatos/química , Células Cultivadas , Células Imobilizadas/efeitos dos fármacos , Humanos , Ilhotas Pancreáticas/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Pessoa de Meia-Idade
8.
Macromol Biosci ; 20(8): e2000021, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32567161

RESUMO

Macroencapsulation of islets of Langerhans is a promising strategy for transplantation of insulin-producing cells in the absence of immunosuppression to treat type 1 diabetes. Hollow fiber membranes are of interest there because they offer a large surface-to-volume ratio and can potentially be retrieved or refilled. However, current available fibers have limitations in exchange of nutrients, oxygen, and delivery of insulin potentially impacting graft survival. Here, multibore hollow fibers for islets encapsulation are designed and tested. They consist of seven bores and are prepared using nondegradable polymers with high mechanical stability and low cell adhesion properties. Human islets encapsulated there have a glucose induced insulin response (GIIS) similar to nonencapsulated islets. During 7 d of cell culture in vitro, the GIIS increases with graded doses of islets demonstrating the suitability of the microenvironment for islet survival. Moreover, first implantation studies in mice demonstrate device material biocompatibility with minimal tissue responses. Besides, formation of new blood vessels close to the implanted device is observed, an important requirement for maintaining islet viability and fast exchange of glucose and insulin. The results indicate that the developed fibers have high islet bearing capacity and can potentially be applied for a clinically applicable bioartificial pancreas.


Assuntos
Ilhotas Pancreáticas/citologia , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Materiais Biocompatíveis/farmacologia , Vasos Sanguíneos/crescimento & desenvolvimento , Células Imobilizadas/citologia , Células Imobilizadas/efeitos dos fármacos , Humanos , Ilhotas Pancreáticas/fisiologia , Membranas Artificiais , Neovascularização Fisiológica/efeitos dos fármacos , Água
9.
Mater Sci Eng C Mater Biol Appl ; 112: 110932, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32409080

RESUMO

Tumor spheroids have been considered valuable miniaturized three dimensional (3D) tissue models for fundamental biological investigation as well as drug screening applications. Most tumor spheroids are generated utilizing the inherent aggregate behavior of tumor cells, and the effect of microenvironmental factors such as extracellular matrix (ECM) on tumor spheroid formation has not been extensively elucidated to date. Herein, uniform-sized spherical microgels encapsulated with different subtypes of breast tumor cells, based on tumor aggressiveness, are developed by flow-focusing microfluidics technology. Mechanical properties of microgels are controlled in a wide range via polymer concentration, and their influence on tumor physiology and spheroid formation is shown to be highly dependent on cell subtype. Specifically, the formation of polyploid/multinucleated giant cancer cells is a key early step in determining initial proliferation and eventual tumor spheroid generation within microgels with varying mechanics. In addition, chemotherapeutic screening performed on these tumor spheroids in microgels also display significantly variable cytotoxic effects based on microgel mechanics for each cell subtype, further highlighting the importance of microenvironmental factors on tumor spheroid physiology.


Assuntos
Antineoplásicos/química , Microgéis/química , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Imobilizadas/efeitos dos fármacos , Células Imobilizadas/metabolismo , Cisplatino/química , Cisplatino/farmacologia , Matriz Extracelular/metabolismo , Feminino , Humanos , Microfluídica , Paclitaxel/química , Paclitaxel/farmacologia , Polímeros/química , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo
10.
Ecotoxicol Environ Saf ; 198: 110649, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32325259

RESUMO

Immobilized cells (ICs) have been widely used to enhance the remediation of organic-contaminated soil (e.g., polycyclic aromatic hydrocarbons, PAHs). Once ICs are added to the heterogeneous soil, degradation hotspots are immediately formed near the carrier, leaving the remaining soil lack of degrading bacteria. Therefore, it remains unclear how ICs efficiently utilize PAHs in soil. In this study, the viability of Silica-IC (Cells@Sawdust@Silica) and the distribution of inoculated ICs and phenanthrene (Phe) in a slurry system (soil to water ratio 1:2) were investigated to explore the removal mechanism of PAHs by the ICs. Results showed that the Silica-IC maintained (i) good reproductive ability (displayed by the growth curve in soil and water phase), (ii) excellent stability, which was identified by the ratio of colony forming units in the soil phase to the water phase, the difference between the colony number and the DNA copies, and characteristics of the biomaterial observed by the FESEM, and (iii) high metabolic activity (the removal percentages of Phe in soil by the ICs were more than 95% after 48 h). Finally, the possible pathways for the ICs to efficiently utilize Phe in soil are proposed based on the distribution and correlation of Phe and ICs between the soil and water phase. The adsorption-degradation process was dominant, i.e., the enhanced degradation occurred between the ICs and carrier-adsorbed Phe. This study provided new insights on developing a bio-material for efficient bio-remediation of PAHs-contaminated soil.


Assuntos
Células Imobilizadas/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Fenantrenos/análise , Dióxido de Silício/química , Poluentes do Solo/análise , Sphingomonas/metabolismo , Madeira/química , Adsorção , Biodegradação Ambiental , Células Imobilizadas/efeitos dos fármacos , Modelos Teóricos , Fenantrenos/metabolismo , Solo/química , Microbiologia do Solo , Poluentes do Solo/metabolismo , Sphingomonas/efeitos dos fármacos
11.
Talanta ; 206: 120192, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31514850

RESUMO

In biosensors fabrication, entrapment in polymeric matrices allows efficient immobilization of the biorecognition elements without compromising their structure and activity. When considering living cells, the biocompatibility of both the matrix and the polymerization procedure are additional critical factors. Bio-polymeric gels (e.g. alginate) are biocompatible and polymerize under mild conditions, but they have poor stability. Most synthetic polymers (e.g. PVA), on the other hand, present improved stability at the expense of complex protocols involving chemical/physical treatments that decrease their biological compatibility. In an attempt to explore new solutions to this problem we have developed a procedure for the immobilization of bacterial cells in polyethersulfone (PES) using phase separation. The technology has been tested successfully in the construction of a bacterial biosensor for toxicity assessment. Biosensors were coated with a 300  µm bacteria-containing PES membrane, using non-solvent induced phase separation (membrane thickness ≈ 300 µm). With this method, up to 2.3 × 106 cells were immobilized in the electrode surface with an entrapment efficiency of 8.2%, without compromising cell integrity or viability. Biosensing was performed electrochemically through ferricyanide respirometry, with metabolically-active entrapped bacteria reducing ferricyanide in the presence of glucose. PES biosensors showed good stability and reusability during dry frozen storage for up to 1 month. The analytical performance of the sensors was assessed carrying out a toxicity assay in which 3,5-dichlorophenol (DCP) was used as a model toxic compound. The biosensor provided a concentration-dependent response to DCP with half-maximal effective concentration (EC50) of 9.2 ppm, well in agreement with reported values. This entrapment methodology is susceptible of mass production and allows easy and repetitive production of robust and sensitive bacterial biosensors.


Assuntos
Técnicas Biossensoriais/métodos , Clorofenóis/toxicidade , Escherichia coli/isolamento & purificação , Polímeros/química , Sulfonas/química , Testes de Toxicidade/métodos , Sobrevivência Celular/efeitos dos fármacos , Células Imobilizadas/efeitos dos fármacos , Células Imobilizadas/metabolismo , Técnicas Eletroquímicas/métodos , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Ferricianetos/química , Ferricianetos/metabolismo , Glucose/metabolismo , Membranas Artificiais , Oxirredução , Reprodutibilidade dos Testes
12.
Biomaterials ; 225: 119513, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31569016

RESUMO

Mesenchymal stem cell (MSC) transplantation is promising for repairing heart tissues post myocardial infarction (MI). In particular, paracrine effects of the transplanted MSCs have been highlighted to play major roles in heart regeneration by secreting multiple growth factors and immune-modulatory cytokines. Nevertheless, its therapeutic efficacy still remains low, which is strongly associated with low viability and activity of the transplanted stem cells, because the transplanted MSCs are exposed to high shear stress during injection and harsh environments (e.g., high oxidative stress and host immune reactions) post injection. In this study, we aimed to develop novel injectable MSC-delivery microgel systems possessing high anti-oxidant activities. Specifically, we encapsulated MSCs in graphene oxide (GO)/alginate composite microgels by electrospraying. To further enhance the anti-oxidizing activities of the gels, we developed reduced MSC-embedded GO/alginate microgels (i.e., r(GO/alginate)), which have the potential to protect MSCs from the abovementioned harsh environments within MI tissues. Our in vitro studies demonstrated that the MSCs encapsulated in the r(GO/alginate) microgels showed increased viability under oxidative stress conditions with H2O2. Furthermore, cardiomyocytes (CMs), co-cultured with the encapsulated MSCs in transwells with H2O2 treatment, showed higher cell viability and cardiac maturation compared to monolayer cultured CMs, likely due to ROS scavenging by the gels and positive paracrine signals from the encapsulated MSCs. In vivo experiments with acute MI models demonstrated improved therapeutic efficacy of MSC delivery in r(GO/alginate) microgels, exhibiting significant decreases in the infarction area and the improvement of cardiac function. We believe that our novel MSC encapsulation system with GO, alginate, and mild reduction, which exhibits high cell protection capacity (e.g., anti-oxidant activity), will serve as an effective platform for the delivery of stem cells and other therapeutic cell types to treat various injuries and diseases, including MI.


Assuntos
Alginatos/farmacologia , Antioxidantes/farmacologia , Células Imobilizadas/citologia , Grafite/farmacologia , Células-Tronco Mesenquimais/citologia , Microgéis , Infarto do Miocárdio/terapia , Regeneração , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Imobilizadas/efeitos dos fármacos , Citocinas/biossíntese , Humanos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Remodelação Ventricular/efeitos dos fármacos
13.
Anal Chem ; 91(22): 14220-14225, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31660722

RESUMO

Antimicrobial resistance (AMR) is an urgent threat to public health. Rapid bacterial identification and AMR tests are important to promote personalized treatment of patients and to limit the spread of AMR. Herein, we explore the utility of plasmonic colloidosomes in bacterial analysis based on mass spectrometry (MS) and Raman scattering. It is found that colloidosomes can provide a rigid micrometer-size platform for bacterial culture and analysis. Coupled with matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS, this platform enables bacterial identification at the species level with cell counts as low as 50, >100 times more sensitive than the standard method of MALDI-TOF MS based bacterial identification. Coupled with Raman scattering, it can distinguish single bacterial cells at the strain level and recognize AMR at the single-cell level. These reveal the broad potential of the platform for flexible and versatile bacterial detection and typing.


Assuntos
Antibacterianos/farmacologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Técnicas de Tipagem Bacteriana/instrumentação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Análise Espectral Raman/instrumentação , Bactérias/química , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Células Imobilizadas/química , Células Imobilizadas/classificação , Células Imobilizadas/efeitos dos fármacos , Farmacorresistência Bacteriana , Humanos , Nanopartículas/química
14.
Biosens Bioelectron ; 146: 111710, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31600628

RESUMO

Farming, industry and urbanization lead to increases in the concentrations of potentially harmful compounds in waste, surface and drinking waters. One example of such pollution are estrogens, the steroidal female reproductive hormones. Already at a few nanograms per litre, these hormones can trigger endocrine disruption and cause acute and chronic health problems in humans and wildlife. Here, we present a Saccharomyces cerevisiae estrogen biosensor capable of detecting estradiol, as well as ethinylestradiol, at concentrations of 1 nM. After an initial characterization of the sensor strain performance in an optimal laboratory setting, we focused on developing a biosensor device. We addressed current limitations of biosensors, such as the requirement of the cells for a liquid growth matrix, controlled storage conditions required to preserve cell viability, and the usually required bulky, as well as expensive, laboratory equipment. Our study provides significant new insights into the field of applied biosensors. The system presented in this work takes microorganism-based analytics one step closer to field application in decentralized locations.


Assuntos
Técnicas Biossensoriais/instrumentação , Disruptores Endócrinos/análise , Estradiol/análise , Saccharomyces cerevisiae/efeitos dos fármacos , Poluentes Químicos da Água/análise , Células Imobilizadas/efeitos dos fármacos , Células Imobilizadas/metabolismo , Disruptores Endócrinos/metabolismo , Desenho de Equipamento , Estradiol/metabolismo , Humanos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Smartphone , Poluentes Químicos da Água/metabolismo
15.
J Biomed Mater Res A ; 107(10): 2282-2295, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31152570

RESUMO

Stem cell-based therapies provide a promising approach for bone repair. In the present work, we developed a novel 3D vehicle system for dual-delivery of encapsulated bone marrow mesenchymal stem cells (BM-MSCs) and bone morphogenetic protein-2 (BMP-2) for treatment of large bone defects. The vehicle system consists of sodium alginate microcapsules and polylactic acid (PLLA) microspheres. BM-MSCs are encapsulated in the microcapsules, and BMP-2 proteins are encapsulated in the PLLA microspheres. This vehicle system acted as a multicore structure for sustained release of BMP-2, which enabled pulsed dosing induction of osteogenic differentiation of the co-embedded BM-MSCs. in vitro experiments showed that the loaded BMP-2 was constitutively released up to 30 days. Bioactivity of the incorporated BMP-2 in the microspheres was preserved and osteogenic differentiation of the BM-MSCs in the microcapsules was improved. In vivo, osteogenesis studies demonstrated that satisfactory degree of repair of a rat calvarial defect was achieved with the delivery of either encapsulated BM-MSCs alone or encapsulated BMP-2 alone. Transplantation of encapsulated both BM-MSCs and BMP-2 exhibited the greatest repair potential following 4- or 8-weeks treatment. In conclusion, microencapsulation of BM-MSCs and BMP-2 promoted the maturity of newly generated bone and improved new bone formation. Transplantation of BM-MSCs and BMP-2 in our novel 3-D vehicle system is a promising strategy for regenerative therapies of large bone defects.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Diferenciação Celular , Células Imobilizadas/citologia , Sistemas de Liberação de Medicamentos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Osteogênese , Fator de Crescimento Transformador beta/farmacologia , Alginatos/química , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Imobilizadas/efeitos dos fármacos , Liberação Controlada de Fármacos , Humanos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Microesferas , Osteogênese/efeitos dos fármacos , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacologia , Crânio/diagnóstico por imagem , Crânio/patologia , Microtomografia por Raio-X
16.
Biomater Sci ; 7(7): 2793-2802, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31044192

RESUMO

Three-dimensional tissue organization is still an obstacle in the field of tissue engineering, which generally involves cell immobilization, proliferation, and organization. As an artificial extracellular matrix (ECM) for providing a suitable environment of cells to construct tissues, combination of cytocompatible polymer hydrogels and natural ECM produced by the immobilized cells was considered. In this research, we designed a spontaneously forming hydrogel system between two water-soluble polymers for the immobilization of cells. These polymers were poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate-co-p-vinylphenylboronic acid-co-N-succinimidyloxycarbonyl tetra(ethylene glycol)methacrylate) (PMBVS) and poly(vinyl alcohol) (PVA) to form a PMBVS/PVA hydrogel in a cell culture medium under mild conditions. Basic fibroblast growth factor (bFGF) was conjugated with PMBVS (PMBV-bFGF). To enhance the growth of the immobilized cells, mouse fibroblast L929 cells were immobilized in the PMBVS/PVA hydrogel and the PMBV-bFGF/PVA hydrogel, and their proliferation and secretion of the ECM under stimulation with bFGF was observed. The ECM infiltrated and replaced the hydrogel, resulting in the formation of a hybrid hydrogel with the ECM and laden cells.


Assuntos
Materiais Biocompatíveis/farmacologia , Células Imobilizadas/citologia , Células Imobilizadas/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Hidrogéis/química , Fosfolipídeos/química , Polímeros/química , Animais , Materiais Biocompatíveis/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fator 2 de Crescimento de Fibroblastos/química , Camundongos , Álcool de Polivinil/química , Reologia , Solubilidade , Água/química
17.
Biomaterials ; 210: 51-61, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31075723

RESUMO

Hydrogels have been widely used as the carrier material of therapeutic cell and drugs for articular cartilage repair. We previously demonstrated a unique host-guest macromer (HGM) approach to prepare mechanically resilient, self-healing and injectable supramolecular gelatin hydrogels free of chemical crosslinking. In this work, we show that compared with conventional hydrogels our supramolecular gelatin hydrogels mediate more sustained release of small molecular (kartogenin) and proteinaceous (TGF-ß1) chondrogenic agents, leading to enhanced chondrogenesis of the encapsulated human bone marrow-derived mesenchymal stem cells (hBMSCs) in vitro and in vivo. More importantly, the supramolecular nature of our hydrogels allows injection of the pre-fabricated hydrogels containing the encapsulated hBMSCs and chondrogenic agents, and our data show that the injection process has little negative impact on the viability and chondrogenesis of the encapsulated cells and subsequent neocartilage development. Furthermore, the stem cell-laden supramolecular hydrogels administered via injection through a needle effectively promote the regeneration of both hyaline cartilage and subchondral bone in the rat osteochondral defect model. These results demonstrate that our supramolecular HGM hydrogels are promising delivery biomaterials of therapeutic agents and cells for cartilage repair via minimally invasive procedures. This unique capability of injecting cell-laden hydrogels to target sites will greatly facilitate stem cell therapies.


Assuntos
Condrogênese/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Hidrogéis/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Injeções , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Anilidas/farmacologia , Animais , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Cartilagem/efeitos dos fármacos , Cartilagem/fisiologia , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Células Imobilizadas/citologia , Células Imobilizadas/efeitos dos fármacos , Gelatina/química , Humanos , Metacrilatos/química , Camundongos Nus , Ácidos Ftálicos/farmacologia , Ratos , Soroalbumina Bovina/química
18.
Biomaterials ; 210: 1-11, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31029812

RESUMO

Tissue-engineered devices have the potential to significantly improve human health. A major impediment to the success of clinically scaled transplants, however, is insufficient oxygen transport, which leads to extensive cell death and dysfunction. To provide in situ supplementation of oxygen within a cellular implant, we developed a hydrolytically reactive oxygen generating material in the form of polydimethylsiloxane (PDMS) encapsulated solid calcium peroxide, termed OxySite. Herein, we demonstrate, for the first time, the successful implementation of this in situ oxygen-generating biomaterial to support elevated cellular function and efficacy of macroencapsulation devices for the treatment of type 1 diabetes. Under extreme hypoxic conditions, devices supplemented with OxySite exhibited substantially elevated beta cell and islet viability and function. Furthermore, the inclusion of OxySite within implanted macrodevices resulted in the significant improvement of graft efficacy and insulin production in a diabetic rodent model. Translating to human islets at elevated loading densities further validated the advantages of this material. This simple biomaterial-based approach for delivering a localized and controllable oxygen supply provides a broad and impactful platform for improving the therapeutic efficacy of cell-based approaches.


Assuntos
Materiais Biocompatíveis/farmacologia , Células Imobilizadas/citologia , Células Secretoras de Insulina/citologia , Oxigênio/farmacologia , Animais , Linhagem Celular , Células Imobilizadas/efeitos dos fármacos , Células Imobilizadas/metabolismo , Diabetes Mellitus Experimental/patologia , Modelos Animais de Doenças , Sobrevivência de Enxerto/efeitos dos fármacos , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos Endogâmicos C57BL
19.
Lab Chip ; 19(8): 1417-1426, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30869093

RESUMO

There is an urgent need to develop novel methods for assessing the response of bacteria to antibiotics in a timely manner. Antibiotics are traditionally assessed via their effect on bacteria in a culture medium, which takes 24-48 h and exploits only a single parameter, i.e. growth. Here, we present a multiparameter approach at the single-cell level that takes approximately an hour from spiking the culture to correctly classify susceptible and resistant strains. By hydrodynamically trapping hundreds of bacteria, we simultaneously monitor the evolution of motility and morphology of individual bacteria upon drug administration. We show how this combined detection method provides insights into the activity of antimicrobials at the onset of their action which single parameter and traditional tests cannot offer. Our observations complement the current growth-based methods and highlight the need for future antimicrobial susceptibility tests to take multiple parameters into account.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Células Imobilizadas/efeitos dos fármacos , Hidrodinâmica , Movimento , Fatores de Tempo
20.
Bioresour Technol ; 282: 378-383, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30884457

RESUMO

Immobilized whole-cell fermentation has been proven to be an effective method to improve the performance and cost-effectiveness of Gluconobacter oxydans ATCC 621. In the bio-oxidation of xylose to xylonic acid, the oxygen supply through the immobilized beads is a well-known factor that limits the biocatalytic performance of Gluconobacter oxydans as obligate aerobic bacteria. The activity of immobilized cells could be efficiently improved by execution of pressurized pure oxygen supply strategy. Subsequently, in order to further enhance the production efficiency of xylonic acid and reduce end-product inhibition, online-electrodialysis was employed. Finally, a design of pressurized oxygen supply bioreactor combining with online-electrodialysis was put forward for implementing successive production of xylonic acid. The central features of this a highly integrated design are feasible and thus might enable cost-competitive bacterial xylonic acid production.


Assuntos
Reatores Biológicos , Gluconobacter oxydans/metabolismo , Xilose/análogos & derivados , Biocatálise , Células Imobilizadas/efeitos dos fármacos , Células Imobilizadas/metabolismo , Diálise , Fermentação , Gluconobacter oxydans/efeitos dos fármacos , Oxigênio/farmacologia , Xilose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...