Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.036
Filtrar
1.
Cells ; 13(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891037

RESUMO

Plasma gelsolin (pGSN) overexpression in ovarian cancer (OVCA) disarms immune function, contributing to chemoresistance. The aim of this study was to investigate the immunoregulatory effects of pGSN expression on natural killer (NK) cell function in OVCA. OVCA tissues from primary surgeries underwent immunofluorescent staining of pGSN and the activated NK cell marker natural cytotoxicity triggering receptor 1 to analyze the prognostic impact of pGSN expression and activated NK cell infiltration. The immunoregulatory effects of pGSN on NK cells were assessed using apoptosis assay, cytokine secretion, immune checkpoint-receptor expression, and phosphorylation of STAT3. In OVCA tissue analyses, activated NK cell infiltration provided survival advantages to patients. However, high pGSN expression attenuated the survival benefits of activated NK cell infiltration. In the in vitro experiment, pGSN in OVCA cells induced NK cell death through cell-to-cell contact. pGSN increased T-cell immunoglobulin and mucin-domain-containing-3 expression (TIM-3) on activated NK cells. Further, it decreased interferon-γ production in activated TIM-3+ NK cells, attenuating their anti-tumor effects. Thus, increased pGSN expression suppresses the anti-tumor functions of NK cells. The study provides insights into why immunotherapy is rarely effective in patients with OVCA and suggests novel treatment strategies.


Assuntos
Carcinoma Epitelial do Ovário , Resistencia a Medicamentos Antineoplásicos , Gelsolina , Células Matadoras Naturais , Neoplasias Ovarianas , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Feminino , Gelsolina/metabolismo , Gelsolina/sangue , Carcinoma Epitelial do Ovário/patologia , Carcinoma Epitelial do Ovário/imunologia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/tratamento farmacológico , Linhagem Celular Tumoral , Pessoa de Meia-Idade , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Apoptose/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Interferon gama/metabolismo
2.
Biomed Pharmacother ; 176: 116877, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850654

RESUMO

Multiple myeloma (MM) progression is closely dependent on cells in the bone marrow (BM) microenvironment, including fibroblasts (FBs) and immune cells. In their BM niche, MM cells adhere to FBs sustaining immune evasion, drug resistance and the undetectable endurance of tumor cells known as minimal residual disease (MRD). Here, we describe the novel bi-specific designed ankyrin repeat protein (DARPin) α-FAPx4-1BB (MP0310) with FAP-dependent 4-1BB agonistic activity. The α-FAPx4-1BB DARPin simultaneously binds to FAP and 4-1BB overexpressed by activated FBs and immune cells, respectively. Although flow cytometry analysis showed that T and NK cells from MM patients were not activated and did not express 4-1BB, stimulation with daratumumab or elotuzumab, monoclonal antibodies (mAbs) currently used for the treatment of MM, significantly upregulated 4-1BB both in vitro and in MM patients following mAb-based therapy. The mAb-induced 4-1BB overexpression allowed the engagement of α-FAPx4-1BB that acted as a bridge between FAP+FBs and 4-1BB+NK cells. Therefore, α-FAPx4-1BB enhanced both the adhesion of daratumumab-treated NK cells on FBs as well as their activation by improving release of CD107a and perforin, hence MM cell killing via antibody-mediated cell cytotoxicity (ADCC). Interestingly, α-FAPx4-1BB significantly potentiated daratumumab-mediated ADCC in the presence of FBs, suggesting that it may overcome the BM FBs' immunosuppressive effect. Overall, we speculate that treatment with α-FAPx4-1BB may represent a valuable strategy to improve mAb-induced NK cell activity fostering MRD negativity in MM patients through the eradication of latent MRD cells.


Assuntos
Anticorpos Monoclonais Humanizados , Anticorpos Monoclonais , Células Matadoras Naturais , Mieloma Múltiplo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Humanos , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais/farmacologia , Linhagem Celular Tumoral , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/agonistas , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/agonistas , Endopeptidases
3.
Biomed Pharmacother ; 176: 116853, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850663

RESUMO

Various adjuvants have been tested clinically for patients with problems with embryo implantation during in vitro fertilization (IVF)-embryo transfer (ET). Vitamin D3, an essential modulator of various physiological processes, has received attention as an important adjuvant for successful pregnancy, as many studies have shown a strong association between vitamin D deficiency and implantation failure and fetal growth restriction. However, vitamin D has been widely utilized in different protocols, resulting in non-reproducible and debatable outcomes. In the present study, we demonstrated that cyclic intrauterine administration of vitamin D3 increased endometrial receptivity and angiogenesis, which could be attributed to increased recruitment of uterus-resident natural killer cells. In particular, cyclic treatment of vitamin D3 promoted stable attachment of the embryo onto endometrial cells in vitro, suggesting its merit during the early stage of embryo implantation to support the initial maternal-fetal interactions. Our findings suggest that women with repeated implantation failure may benefit from the use of vitamin D3 as a risk-free adjuvant prior to IVF-ET procedures to improve the uterine environment, and make it favorable for embryo implantation.


Assuntos
Colecalciferol , Implantação do Embrião , Implantação do Embrião/efeitos dos fármacos , Feminino , Colecalciferol/farmacologia , Colecalciferol/administração & dosagem , Gravidez , Humanos , Animais , Endométrio/efeitos dos fármacos , Fertilização in vitro/métodos , Transferência Embrionária , Células Matadoras Naturais/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Útero/efeitos dos fármacos
4.
Molecules ; 29(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38930852

RESUMO

Nutraceutical immune support offers potential for designing blends with complementary mechanisms of action for robust support of innate immune alertness. We documented enhanced immune activation when bovine colostrum peptides (BC-Pep) were added to an immune blend (IB) containing ß-glucans from yeast, shiitake, maitake, and botanical non-ß-glucan polysaccharides. Human peripheral blood mononuclear cells (PBMCs) were cultured with IB, BC-Pep, and IB + BC-Pep for 20 h, whereafter expression of the activation marker CD69 was evaluated on NK cells, NKT cells, and T cells. Cytokine levels were tested in culture supernatants. PBMCs were co-cultured with K562 target cells to evaluate T cell-mediated cytotoxicity. IB + BC-Pep triggered highly significant increases in IL-1ß, IL-6, and TNF-α, above that of cultures treated with matching doses of either IB or BC-Pep. NK cell and T cell activation was increased by IB + BC-Pep, reaching levels of CD69 expression several fold higher than either BC-Pep or IB alone. IB + BC-Pep significantly increased T cell-mediated cytotoxic killing of K562 target cells. This synergistic effect suggests unique amplification of signal transduction of NK cells and T cells due to modulation of IB-induced signaling pathways by BC-Pep and is of interest for further pre-clinical and clinical testing of immune defense activity against virally infected and transformed cells.


Assuntos
Colostro , Imunidade Inata , Peptídeos , beta-Glucanas , Animais , Bovinos , Humanos , Colostro/química , Colostro/imunologia , Imunidade Inata/efeitos dos fármacos , beta-Glucanas/farmacologia , beta-Glucanas/química , Peptídeos/farmacologia , Peptídeos/química , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Citocinas/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Agaricales/química , Antígenos de Diferenciação de Linfócitos T/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células K562 , Antígenos CD/metabolismo , Lectinas Tipo C
5.
Sci Rep ; 14(1): 14595, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918496

RESUMO

There are two known mechanisms by which natural killer (NK) cells recognize and kill diseased targets: (i) direct killing and (ii) antibody-dependent cell-mediated cytotoxicity (ADCC). We investigated an indirect NK cell activation strategy for the enhancement of human NK cell killing function. We did this by leveraging the fact that toll-like receptor 9 (TLR9) agonism within pools of human peripheral blood mononuclear cells (PBMCs) results in a robust interferon signaling cascade that leads to NK cell activation. After TLR9 agonist stimulation, NK cells were enriched and incorporated into assays to assess their ability to kill tumor cell line targets. Notably, differential impacts of TLR9 agonism were observed-direct killing was enhanced while ADCC was not increased. To ensure that the observed differential effects were not attributable to differences between human donors, we recapitulated the observation using our Natural Killer-Simultaneous ADCC and Direct Killing Assay (NK-SADKA) that controls for human-to-human differences. Next, we observed a treatment-induced decrease in NK cell surface CD16-known to be shed by NK cells post-activation. Given the essential role of CD16 in ADCC, such shedding could account for the observed differential impact of TLR9 agonism on NK cell-mediated killing capacity.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Células Matadoras Naturais , Receptor Toll-Like 9 , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Receptores de IgG/metabolismo , Receptores de IgG/imunologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica/efeitos dos fármacos
6.
Sci Rep ; 14(1): 13133, 2024 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849432

RESUMO

The short-lived nature and heterogeneity of Natural Killer (NK) cells limit the development of NK cell-based therapies, despite their proven safety and efficacy against cancer. Here, we describe the biological basis, detailed phenotype and function of long-lived anti-tumour human NK cells (CD56highCD16+), obtained without cell sorting or feeder cells, after priming of peripheral blood cells with Bacillus Calmette-Guérin (BCG). Further, we demonstrate that survival doses of a cytokine combination, excluding IL18, administered just weekly to BCG-primed NK cells avoids innate lymphocyte exhaustion and leads to specific long-term proliferation of innate cells that exert potent cytotoxic function against a broad range of solid tumours, mainly through NKG2D. Strikingly, a NKG2C+CD57-FcεRIγ+ NK cell population expands after BCG and cytokine stimulation, independently of HCMV serology. This strategy was exploited to rescue anti-tumour NK cells even from the suppressor environment of cancer patients' bone marrow, demonstrating that BCG confers durable anti-tumour features to NK cells.


Assuntos
Proliferação de Células , Células Matadoras Naturais , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Humanos , Proliferação de Células/efeitos dos fármacos , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Vacina BCG/imunologia , Vacina BCG/administração & dosagem , Mycobacterium bovis/imunologia , Ativação Linfocitária/efeitos dos fármacos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Interleucinas/metabolismo , Antígeno CD56/metabolismo , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo
7.
Mar Drugs ; 22(6)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38921545

RESUMO

Deep seawater (DS), obtained from a depth over 200 m, has health benefits due to its rich nutrients and minerals, and intake of DS has shown diverse immunomodulatory effects in allergies and cancer. Therefore, the immunostimulatory effects of Korean mineral-rich seawaters were examined in a cyclophosphamide (CPA)-induced immunosuppression model. Three samples of Korean seawater, namely DS from the East Sea off the coasts of Pohang (PDS) and Uljin (UDS), and seawater from the West Sea off the coast of Boryeong (BS), were collected. The seawaters were abundant in several minerals (calcium, iron, zinc, selenium, etc.). Mice were orally administered the seawaters for 42 days, followed by CPA-induced immunosuppression. The CPA induction reduced the weight of the spleen and lymph nodes; however, the administration of seawaters increased the weight of the lymphoid organs, accompanied by stimulation of natural killer cells' activity and NF-kB-mediated cytokine production (IFNγ, TNFα, IL1ß, IL6, and IL12). The mouse-derived splenocytes showed lymphoproliferation without cytotoxicity in the seawater groups. Histopathological analysis revealed that the seawaters improved the CPA-induced atrophic changes by promoting lymphoproliferation in the spleen and lymph nodes. These results provide useful information for the use of Korean mineral-rich seawaters, particularly PDS and UDS, as alternative immunostimulants under immunosuppressive conditions.


Assuntos
Ciclofosfamida , Água do Mar , Animais , Ciclofosfamida/farmacologia , Camundongos , Minerais/farmacologia , Citocinas/metabolismo , República da Coreia , Terapia de Imunossupressão , Baço/efeitos dos fármacos , Baço/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Masculino , Adjuvantes Imunológicos/farmacologia , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Imunossupressores/farmacologia , Camundongos Endogâmicos BALB C
8.
Int Immunopharmacol ; 136: 112327, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38820963

RESUMO

BACKGROUND: Natural killer cells (NK) and innate lymphoid cells with their subsets (ILC) are part of the innate immune system. OBJECTIVE: The aim is to evaluate how NK cells and ILC cells interact in atopic dermatitis (AD) patients (with and without dupilumab therapy) compared to control group. MATERIALS AND METHODS: Complete dermatological examination was performed in all patients included in the study (19 AD patients with dupilumab, 17 AD patients without dupilumab). Surface molecules expressed on NK cells and ILC cells were analyzed by flow cytometry. The association between NK cells and total ILC cells, ILC-1, ILC-2, ILC-3, NCR+ILC3, NCR-ILC3 were compared in AD patients and in the control group. The non-parametric Spearman's rank correlation coefficient was used for this statistical analysis. We evaluated the association of parameters with AD severity at the time of treatment.Non-parametric Mann-Whitney, Kolmogorov-Smirnov tests were used. RESULTS: We confirmed the higher association between NK cells and total ILC cells in AD patients without dupilumab therapy (in 30.3 %) and in healthy controls (in 27.2 %); this association is low in AD patients with dupilumab therapy (in 0.1 %). The higher association was confirmed between NK cells and ILCs subsets only in AD patients without dupilumab therapy; in these patients the highest association was confirmed between NK cells and ILC-2 cells (in 38.6 %). No statistically significant difference in the count of NK cells and ILC cells was found between mild and moderate form of AD patients treated with dupilumab. CONCLUSION: Targeting these cell types or the cytokines they produce could represent potential therapeutic strategies for controlling inflammation and alleviating symptoms in AD patients.


Assuntos
Anticorpos Monoclonais Humanizados , Dermatite Atópica , Células Matadoras Naturais , Humanos , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/imunologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Imunidade Inata/efeitos dos fármacos , Adulto Jovem , Linfócitos/imunologia , Linfócitos/efeitos dos fármacos , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/efeitos dos fármacos , Comunicação Celular
9.
J Immunother Cancer ; 12(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754915

RESUMO

BACKGROUND: Allogeneic hematopoietic stem cell transplantation (HSCT) remains the standard of care for chemotherapy-refractory leukemia patients, but cure rates are still dismal. To prevent leukemia relapse following HSCT, we aim to improve the early graft-versus-leukemia effect mediated by natural killer (NK) cells. Our approach is based on the adoptive transfer of Therapeutic Inducers of Natural Killer cell Killing (ThINKK). ThINKK are expanded and differentiated from HSC, and exhibit blood plasmacytoid dendritic cell (pDC) features. We previously demonstrated that ThINKK stimulate NK cells and control acute lymphoblastic leukemia (ALL) development in a preclinical mouse model of HSCT for ALL. Here, we assessed the cellular identity of ThINKK and investigated their potential to activate allogeneic T cells. We finally evaluated the effect of immunosuppressive drugs on ThINKK-NK cell interaction. METHODS: ThINKK cellular identity was explored using single-cell RNA sequencing and flow cytometry. Their T-cell activating potential was investigated by coculture of allogeneic T cells and antigen-presenting cells in the presence or the absence of ThINKK. A preclinical human-to-mouse xenograft model was used to evaluate the impact of ThINKK injections on graft-versus-host disease (GvHD). Finally, the effect of immunosuppressive drugs on ThINKK-induced NK cell cytotoxicity against ALL cells was tested. RESULTS: The large majority of ThINKK shared the key characteristics of canonical blood pDC, including potent type-I interferon (IFN) production following Toll-like receptor stimulation. A minor subset expressed some, although not all, markers of other dendritic cell populations. Importantly, while ThINKK were not killed by allogeneic T or NK cells, they did not increase T cell proliferation induced by antigen-presenting cells nor worsened GvHD in vivo. Finally, tacrolimus, sirolimus or mycophenolate did not decrease ThINKK-induced NK cell activation and cytotoxicity. CONCLUSION: Our results indicate that ThINKK are type I IFN producing cells with low T cell activation capacity. Therefore, ThINKK adoptive immunotherapy is not expected to increase the risk of GvHD after allogeneic HSCT. Furthermore, our data predict that the use of tacrolimus, sirolimus or mycophenolate as anti-GvHD prophylaxis regimen will not decrease ThINKK therapeutic efficacy. Collectively, these preclinical data support the testing of ThINKK immunotherapy in a phase I clinical trial.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células Matadoras Naturais , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Humanos , Transplante de Células-Tronco Hematopoéticas/métodos , Animais , Camundongos , Transplante Homólogo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Doença Enxerto-Hospedeiro/prevenção & controle
10.
Environ Res ; 256: 119221, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38795951

RESUMO

Per- and polyfluoroalkyl substances (PFAS) constitutes a group of highly persistent man-made substances. Recent evidence indicates that PFAS negatively impact the immune system. However, it remains unclear how different PFAS are associated with alterations in circulating leukocyte subpopulations. More detailed knowledge of such potential associations can provide better understanding into mechanisms of PFAS immunotoxicity in humans. In this exploratory study, associations of serum levels of common PFAS (perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonic acid (PFHxS)) and immune cell profiles of peripheral blood mononuclear cells, both with and without immunostimulation, were investigated. High-dimensional single cell analysis by mass cytometry was done on blood leukocytes from fifty participants in the Norwegian human biomonitoring EuroMix study. Different PFAS were associated with changes in various subpopulations of natural killer (NK), T helper (Th), and cytotoxic T (Tc) cells. Broadly, PFAS concentrations were related to increased frequencies of NK cells and activated subpopulations of NK cells. Additionally, increased levels of activated T helper memory cell subpopulations point to Th2/Th17 and Treg-like skewed profiles. Finally, PFAS concentrations were associated with decreased frequencies of T cytotoxic cell subpopulations with CXCR3+ effector memory (EM) phenotypes. Several of these observations point to biologically plausible mechanisms that may contribute to explaining the epidemiological reports of immunosuppression by PFAS. Our results suggest that PFAS exposures even at relatively low levels are associated with changes in immune cell subpopulations, a finding which should be explored more thoroughly in a larger cohort. Additionally, causal relationships should be confirmed in experimental studies. Overall, this study demonstrates the strength of profiling by mass cytometry in revealing detailed changes in immune cells at a single cell level.


Assuntos
Fluorocarbonos , Células Matadoras Naturais , Humanos , Fluorocarbonos/toxicidade , Fluorocarbonos/sangue , Masculino , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Adulto , Feminino , Pessoa de Meia-Idade , Poluentes Ambientais/toxicidade , Poluentes Ambientais/sangue , Exposição Ambiental , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/imunologia , Noruega , Ácidos Alcanossulfônicos/toxicidade , Ácidos Alcanossulfônicos/sangue , Idoso
11.
Cell Rep Med ; 5(5): 101531, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38697105

RESUMO

The clinical applications of immunocytokines are severely restricted by dose-limiting toxicities. To address this challenge, here we propose a next-generation immunocytokine concept involving the design of LH05, a tumor-conditional anti-PD-L1/interleukin-15 (IL-15) prodrug. LH05 innovatively masks IL-15 with steric hindrance, mitigating the "cytokine sink" effect of IL-15 and reducing systemic toxicities associated with wild-type anti-PD-L1/IL-15. Moreover, upon specific proteolytic cleavage within the tumor microenvironment, LH05 releases an active IL-15 superagonist, exerting potent antitumor effects. Mechanistically, the antitumor efficacy of LH05 depends on the increased infiltration of CD8+ T and natural killer cells by stimulating the chemokines CXCL9 and CXCL10, thereby converting cold tumors into hot tumors. Additionally, the tumor-conditional anti-PD-L1/IL-15 can synergize with an oncolytic virus or checkpoint blockade in advanced and metastatic tumor models. Our findings provide a compelling proof of concept for the development of next-generation immunocytokines, contributing significantly to current knowledge and strategies of immunotherapy.


Assuntos
Antígeno B7-H1 , Interleucina-15 , Microambiente Tumoral , Interleucina-15/imunologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/imunologia , Antígeno B7-H1/genética , Animais , Humanos , Camundongos , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Imunoterapia/métodos , Camundongos Endogâmicos C57BL , Feminino , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/farmacologia
12.
Genes Genomics ; 46(7): 803-815, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38776050

RESUMO

BACKGROUND: Patients of ovary endometriosis have an abnormal immune micro-environment, leading to endometrial tissue that from retrograde menstruation evade immune surveillance and subsequently develop into ectopic lesions. OBJECTIVE: This study aims to elucidate the crucial immune cells and molecular pathways that are associated with an aberrant immune micro-environment of endometriosis. METHOD: In this study, we identified differentially expressed genes between ovarian ectopic endometrial tissue (OVE) and eutopic endometrial tissue from patients with endometriosis (PE) and non-endometriosis patients (CON) by analyzing the mRNA sequencing data. Additionally, we used WGCNA(Weighted Gene Co-expression Network Analysis) to screen for key genes related to immune cell infiltration and compared the sub-types of infiltrating immune cells using CIBERSORT(cell-type identification by estimating relative subsets of RNA transcript). Subsequently, we conducted a single-cell analysis on the identified key genes. Furthermore, we analyzed potential drugs suitable for ovarian endometriosis treatment using pRRophertic. RESULTS: Seven key genes associated with immune cell infiltration were screened out. The expression of these genes in OVE was significantly lower than that in PE and CON. These key genes were mainly enriched in the NK cell-mediated cytotoxicity pathway, especially for CD16 + CD56dim NK. Moreover, NK cells infiltration in ovarian endometriosis was significantly reduced compared with PE and CON, while M2 macrophage shown the opposite. Results of the single-cell analysis showed that the expression of the seven key genes in NK cells and monocyte-macrophages in OVE was significantly lower than that in PE or CON. Additionally, we identified potential drugs suitable for ovarian endometriosis treatment. CONCLUSION: The decreased infiltration of NK cells and increased infiltration of M2 macrophages contribute to the evasion of immune surveillance against endometrial tissue, promoting the progression of OVE. Therefore, potential strategies for the treatment of OVE include increasing NK cell activation and decreasing M2 macrophage polarization.


Assuntos
Endometriose , Células Matadoras Naturais , Humanos , Feminino , Endometriose/genética , Endometriose/tratamento farmacológico , Endometriose/imunologia , Endometriose/patologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Endométrio/metabolismo , Endométrio/patologia , Endométrio/imunologia , Adulto , Avaliação Pré-Clínica de Medicamentos , Análise de Célula Única , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Transcriptoma
13.
Oncoimmunology ; 13(1): 2348254, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737793

RESUMO

Metastatic (m) colorectal cancer (CRC) is an incurable disease with a poor prognosis and thus remains an unmet clinical need. Immune checkpoint blockade (ICB)-based immunotherapy is effective for mismatch repair-deficient (dMMR)/microsatellite instability-high (MSI-H) mCRC patients, but it does not benefit the majority of mCRC patients. NK cells are innate lymphoid cells with potent effector responses against a variety of tumor cells but are frequently dysfunctional in cancer patients. Memory-like (ML) NK cells differentiated after IL-12/IL-15/IL-18 activation overcome many challenges to effective NK cell anti-tumor responses, exhibiting enhanced recognition, function, and in vivo persistence. We hypothesized that ML differentiation enhances the NK cell responses to CRC. Compared to conventional (c) NK cells, ML NK cells displayed increased IFN-γ production against both CRC cell lines and primary patient-derived CRC spheroids. ML NK cells also exhibited improved killing of CRC target cells in vitro in short-term and sustained cytotoxicity assays, as well as in vivo in NSG mice. Mechanistically, enhanced ML NK cell responses were dependent on the activating receptor NKG2D as its blockade significantly decreased ML NK cell functions. Compared to cNK cells, ML NK cells exhibited greater antibody-dependent cytotoxicity when targeted against CRC by cetuximab. ML NK cells from healthy donors and mCRC patients exhibited increased anti-CRC responses. Collectively, our findings demonstrate that ML NK cells exhibit enhanced responses against CRC targets, warranting further investigation in clinical trials for mCRC patients, including those who have failed ICB.


Assuntos
Diferenciação Celular , Neoplasias Colorretais , Memória Imunológica , Células Matadoras Naturais , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Humanos , Animais , Camundongos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Interferon gama/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Camundongos Endogâmicos NOD , Feminino
14.
J Vis Exp ; (206)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38738886

RESUMO

Monoclonal antibody-based immunotherapy targeting tumor antigens is now a mainstay of cancer treatment. One of the clinically relevant mechanisms of action of the antibodies is antibody-dependent cellular cytotoxicity (ADCC), where the antibody binds to the cancer cells and engages the cellular component of the immune system, e.g., natural killer (NK) cells, to kill the tumor cells. The effectiveness of these therapies could be improved by identifying adjuvant compounds that increase the sensitivity of the cancer cells or the potency of the immune cells. In addition, undiscovered drug interactions in cancer patients co-medicated for previous conditions or cancer-associated symptoms may determine the success of the antibody therapy; therefore, such unwanted drug interactions need to be eliminated. With these goals in mind, we created a cancer ADCC model and describe here a simple protocol to find ADCC-modulating drugs. Since 3D models such as cancer cell spheroids are superior to 2D cultures in predicting in vivo responses of tumors to anticancer therapies, spheroid co-cultures of EGFP-expressing HER2+ JIMT-1 breast cancer cells and the NK92.CD16 cell lines were set up and induced with Trastuzumab, a monoclonal antibody clinically approved against HER2-positive breast cancer. JIMT-1 spheroids were allowed to form in cell-repellent U-bottom 96-well plates. On day 3, NK cells and Trastuzumab were added. The spheroids were then stained with Annexin V-Alexa 647 to measure apoptotic cell death, which was quantitated in the peripheral zone of the spheroids with an automated microscope. The applicability of our assay to identify ADCC-modulating molecules is demonstrated by showing that Sunitinib, a receptor tyrosine kinase inhibitor approved by the FDA against metastatic cancer, almost completely abolishes ADCC. The generation of the spheroids and image acquisition and analysis pipelines are compatible with high-throughput screening for ADCC-modulating compounds in cancer cell spheroids.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Esferoides Celulares , Humanos , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/imunologia , Descoberta de Drogas/métodos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Linhagem Celular Tumoral , Receptores de IgG/imunologia , Antineoplásicos Imunológicos/farmacologia , Trastuzumab/farmacologia
15.
Molecules ; 29(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38792234

RESUMO

The tumor microenvironment (TME) can aid tumor cells in evading surveillance and clearance by immune cells, creating an internal environment conducive to tumor cell growth. Consequently, there is a growing focus on researching anti-tumor immunity through the regulation of immune cells within the TME. Various bioactive compounds in traditional Chinese medicine (TCM) are known to alter the immune balance by modulating the activity of immune cells in the TME. In turn, this enhances the body's immune response, thus promoting the effective elimination of tumor cells. This study aims to consolidate recent findings on the regulatory effects of bioactive compounds from TCM on immune cells within the TME. The bioactive compounds of TCM regulate the TME by modulating macrophages, dendritic cells, natural killer cells and T lymphocytes and their immune checkpoints. TCM has a long history of having been used in clinical practice in China. Chinese medicine contains various chemical constituents, including alkaloids, polysaccharides, saponins and flavonoids. These components activate various immune cells, thereby improving systemic functions and maintaining overall health. In this review, recent progress in relation to bioactive compounds derived from TCM will be covered, including TCM alkaloids, polysaccharides, saponins and flavonoids. This study provides a basis for further in-depth research and development in the field of anti-tumor immunomodulation using bioactive compounds from TCM.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Neoplasias , Microambiente Tumoral , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Animais , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Imunomodulação/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo
16.
Exp Dermatol ; 33(5): e15098, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38770557

RESUMO

Healing of complex wounds requires dressings that must, at least, not hinder and should ideally promote the activity of key healing cells, in particular fibroblasts. This in vitro study assessed the effects of three wound-dressings (a pure Ca2+ alginate: Algostéril®, a Ca2+ alginate + carboxymethylcellulose: Biatain alginate® and a polyacrylate impregnated with lipido-colloid matrix: UrgoClean®) on dermal fibroblast activity. The results showed the pure calcium alginate to be non-cytotoxic, whereas the other wound-dressings showed moderate to strong cytotoxicity. The two alginates stimulated fibroblast migration and proliferation, whereas the polyacrylate altered migration and had no effect on proliferation. The pure Ca2+ alginate significantly increased the TGF-ß-induced fibroblast activation, which is essential to healing. This activation was confirmed by a significant increase in Vascular endothelial growth factor (VEGF) secretion and a higher collagen production. The other dressings reduced these fibroblast activities. The pure Ca2+ alginate was also able to counteract the inhibitory effect of NK cell supernatants on fibroblast migration. These in vitro results demonstrate that tested wound-dressings are not equivalent for fibroblast activation. Only Algostéril was found to promote all the fibroblast activities tested, which could contribute to its healing efficacy demonstrated in the clinic.


Assuntos
Alginatos , Movimento Celular , Proliferação de Células , Fibroblastos , Fator A de Crescimento do Endotélio Vascular , Cicatrização , Fibroblastos/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Humanos , Alginatos/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Colágeno/metabolismo , Bandagens , Fator de Crescimento Transformador beta/metabolismo , Carboximetilcelulose Sódica , Células Cultivadas , Células Matadoras Naturais/efeitos dos fármacos , Resinas Acrílicas , Ácidos Hexurônicos , Ácido Glucurônico , Pele
17.
Front Immunol ; 15: 1383281, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711506

RESUMO

NK cell therapeutics have gained significant attention as a potential cancer treatment. Towards therapeutic use, NK cells need to be activated and expanded to attain high potency and large quantities for an effective dosage. This is typically done by ex vivo stimulation with cytokines to enhance functionality or expansion for 10-14 days to increase both their activity and quantity. Attaining a robust methodology to produce large doses of potent NK cells for an off-the-shelf product is highly desirable. Notably, past reports have shown that stimulating NK cells with IL-12, IL-15, and IL-18 endows them with memory-like properties, better anti-tumor activity, and persistence. While this approach produces NK cells with clinically favorable characteristics supported by encouraging early results for the treatment of hematological malignancies, its limited scalability, variability in initial doses, and the necessity for patient-specific production hinder its broader application. In this study, stimulation of NK cells with PM21-particles derived from K562-41BBL-mbIL21 cells was combined with memory-like induction using cytokines IL-12, IL-15, and IL-18 to produce NK cells with enhanced anti-tumor function. The use of cytokines combined with PM21-particles (cytokine and particle, CAP) significantly enhanced NK cell expansion, achieving a remarkable 8,200-fold in 14 days. Mechanistically, this significant improvement over expansion with PM21-particles alone was due to the upregulation of receptors for key stimulating ligands (4-1BBL and IL-2), resulting in a synergy that drives substantial NK cell growth, showcasing the potential for more effective therapeutic applications. The therapeutic potential of CAP-NK cells was demonstrated by the enhanced metabolic fitness, persistence, and anti-tumor function both in vitro and in vivo. Finally, CAP-NK cells were amenable to current technologies used in developing therapeutic NK cell products, including CRISPR/Cas9-based techniques to generate a triple-gene knockout or a gene knock-in. Taken together, these data demonstrate that the addition of cytokines enhanced the already effective method of ex vivo generation of therapeutic NK cells with PM21-particles, yielding a superior NK cell product for manufacturing efficiency and potential therapeutic applications.


Assuntos
Citocinas , Memória Imunológica , Células Matadoras Naturais , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Humanos , Citocinas/metabolismo , Animais , Camundongos , Células K562 , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ativação Linfocitária
18.
Nat Commun ; 15(1): 4120, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750052

RESUMO

5q-associated spinal muscular atrophy (SMA) is a motoneuron disease caused by mutations in the survival motor neuron 1 (SMN1) gene. Adaptive immunity may contribute to SMA as described in other motoneuron diseases, yet mechanisms remain elusive. Nusinersen, an antisense treatment, enhances SMN2 expression, benefiting SMA patients. Here we have longitudinally investigated SMA and nusinersen effects on local immune responses in the cerebrospinal fluid (CSF) - a surrogate of central nervous system parenchyma. Single-cell transcriptomics (SMA: N = 9 versus Control: N = 9) reveal NK cell and CD8+ T cell expansions in untreated SMA CSF, exhibiting activation and degranulation markers. Spatial transcriptomics coupled with multiplex immunohistochemistry elucidate cytotoxicity near chromatolytic motoneurons (N = 4). Post-nusinersen treatment, CSF shows unaltered protein/transcriptional profiles. These findings underscore cytotoxicity's role in SMA pathogenesis and propose it as a therapeutic target. Our study illuminates cell-mediated cytotoxicity as shared features across motoneuron diseases, suggesting broader implications.


Assuntos
Encéfalo , Células Matadoras Naturais , Neurônios Motores , Atrofia Muscular Espinal , Oligonucleotídeos , Humanos , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/patologia , Atrofia Muscular Espinal/genética , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , Neurônios Motores/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/efeitos dos fármacos , Feminino , Masculino , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Análise de Célula Única , Citotoxicidade Imunológica/efeitos dos fármacos , Lactente , Pré-Escolar , Criança , Transcriptoma
19.
Cell Rep Med ; 5(6): 101584, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38776911

RESUMO

Iberdomide is a potent cereblon E3 ligase modulator (CELMoD agent) with promising efficacy and safety as a monotherapy or in combination with other therapies in patients with relapsed/refractory multiple myeloma (RRMM). Using a custom mass cytometry panel designed for large-scale immunophenotyping of the bone marrow tumor microenvironment (TME), we demonstrate significant increases of effector T and natural killer (NK) cells in a cohort of 93 patients with multiple myeloma (MM) treated with iberdomide, correlating findings to disease characteristics, prior therapy, and a peripheral blood immune phenotype. Notably, changes are dose dependent, associated with objective response, and independent of prior refractoriness to MM therapies. This suggests that iberdomide broadly induces innate and adaptive immune activation in the TME, contributing to its antitumor efficacy. Our approach establishes a strategy to study treatment-induced changes in the TME of patients with MM and, more broadly, patients with cancer and establishes rational combination strategies for iberdomide with immune-enhancing therapies to treat MM.


Assuntos
Medula Óssea , Imunidade Inata , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Imunidade Inata/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Medula Óssea/patologia , Medula Óssea/imunologia , Imunidade Adaptativa/efeitos dos fármacos , Feminino , Masculino , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Pessoa de Meia-Idade , Idoso , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/tratamento farmacológico
20.
Cell Rep Med ; 5(6): 101580, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38776913

RESUMO

Natural killer (NK) cell-based immunotherapy holds promise for cancer treatment; however, its efficacy remains limited, necessitating the development of alternative strategies. Here, we report that venetoclax, an FDA-approved BCL-2 inhibitor, directly activates NK cells, enhancing their cytotoxicity against acute myeloid leukemia (AML) both in vitro and in vivo, likely independent of BCL-2 inhibition. Through comprehensive approaches, including bulk and single-cell RNA sequencing, avidity measurement, and functional assays, we demonstrate that venetoclax increases the avidity of NK cells to AML cells and promotes lytic granule polarization during immunological synapse (IS) formation. Notably, we identify a distinct CD161lowCD218b+ NK cell subpopulation that exhibits remarkable sensitivity to venetoclax treatment. Furthermore, venetoclax promotes mitochondrial respiration and ATP synthesis via the NF-κB pathway, thereby facilitating IS formation in NK cells. Collectively, our findings establish venetoclax as a multifaceted immunometabolic modulator of NK cell function and provide a promising strategy for augmenting NK cell-based cancer immunotherapy.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Imunoterapia Adotiva , Células Matadoras Naturais , Leucemia Mieloide Aguda , Sulfonamidas , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Humanos , Sulfonamidas/farmacologia , Animais , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Camundongos , Imunoterapia Adotiva/métodos , Linhagem Celular Tumoral , NF-kappa B/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Camundongos Endogâmicos NOD
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...