Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.481
Filtrar
1.
Biochem Biophys Res Commun ; 716: 150002, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38697011

RESUMO

Type 2 diabetes mellitus (T2DM) significantly impairs the functionality and number of endothelial progenitor cells (EPCs) and resident endothelial cells, critical for vascular repair and regeneration, exacerbating the risk of vascular complications. GLP-1 receptor agonists, like dulaglutide, have emerged as promising therapeutic agents due to their multifaceted effects, including the enhancement of EPC activity and protection of endothelial cells. This study investigates dulaglutide's effects on peripheral blood levels of CD34+ and CD133+ cells in a mouse model of lower limb ischemia and its protective mechanisms against high-glucose-induced damage in endothelial cells. Results demonstrated that dulaglutide significantly improves blood flow, reduces tissue damage and inflammation in ischemic limbs, and enhances glycemic control. Furthermore, dulaglutide alleviated high-glucose-induced endothelial cell damage, evident from improved tube formation, reduced reactive oxygen species accumulation, and restored endothelial junction integrity. Mechanistically, dulaglutide mitigated mitochondrial fission in endothelial cells under high-glucose conditions, partly through maintaining SIRT1 expression, which is crucial for mitochondrial dynamics. This study reveals the potential of dulaglutide as a therapeutic option for vascular complications in T2DM patients, highlighting its role in improving endothelial function and mitochondrial integrity.


Assuntos
Diabetes Mellitus Experimental , Células Progenitoras Endoteliais , Peptídeos Semelhantes ao Glucagon , Glucose , Fragmentos Fc das Imunoglobulinas , Dinâmica Mitocondrial , Proteínas Recombinantes de Fusão , Sirtuína 1 , Animais , Fragmentos Fc das Imunoglobulinas/farmacologia , Peptídeos Semelhantes ao Glucagon/análogos & derivados , Peptídeos Semelhantes ao Glucagon/farmacologia , Peptídeos Semelhantes ao Glucagon/uso terapêutico , Sirtuína 1/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Células Progenitoras Endoteliais/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Masculino , Camundongos , Glucose/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Camundongos Endogâmicos C57BL , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Hipoglicemiantes/farmacologia , Humanos , Isquemia/metabolismo , Isquemia/tratamento farmacológico , Isquemia/patologia
2.
J Am Heart Assoc ; 13(9): e032698, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38690710

RESUMO

BACKGROUND: Provoked anger is associated with an increased risk of cardiovascular disease events. The underlying mechanism linking provoked anger as well as other core negative emotions including anxiety and sadness to cardiovascular disease remain unknown. The study objective was to examine the acute effects of provoked anger, and secondarily, anxiety and sadness on endothelial cell health. METHODS AND RESULTS: Apparently healthy adult participants (n=280) were randomized to an 8-minute anger recall task, a depressed mood recall task, an anxiety recall task, or an emotionally neutral condition. Pre-/post-assessments of endothelial health including endothelium-dependent vasodilation (reactive hyperemia index), circulating endothelial cell-derived microparticles (CD62E+, CD31+/CD42-, and CD31+/Annexin V+) and circulating bone marrow-derived endothelial progenitor cells (CD34+/CD133+/kinase insert domain receptor+ endothelial progenitor cells and CD34+/kinase insert domain receptor+ endothelial progenitor cells) were measured. There was a group×time interaction for the anger versus neutral condition on the change in reactive hyperemia index score from baseline to 40 minutes (P=0.007) with a mean±SD change in reactive hyperemia index score of 0.20±0.67 and 0.50±0.60 in the anger and neutral conditions, respectively. For the change in reactive hyperemia index score, the anxiety versus neutral condition group by time interaction approached but did not reach statistical significance (P=0.054), and the sadness versus neutral condition group by time interaction was not statistically significant (P=0.160). There were no consistent statistically significant group×time interactions for the anger, anxiety, and sadness versus neutral condition on endothelial cell-derived microparticles and endothelial progenitor cells from baseline to 40 minutes. CONCLUSIONS: In this randomized controlled experimental study, a brief provocation of anger adversely affected endothelial cell health by impairing endothelium-dependent vasodilation.


Assuntos
Ira , Ansiedade , Endotélio Vascular , Vasodilatação , Humanos , Masculino , Feminino , Adulto , Endotélio Vascular/fisiopatologia , Ansiedade/psicologia , Células Progenitoras Endoteliais/metabolismo , Pessoa de Meia-Idade , Tristeza , Micropartículas Derivadas de Células/metabolismo , Hiperemia/fisiopatologia , Emoções , Adulto Jovem , Fatores de Tempo , Células Endoteliais
3.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732080

RESUMO

Endothelial progenitor cells (EPCs) play a critical role in cardiovascular regeneration. Enhancement of their native properties would be highly beneficial to ensuring the proper functioning of the cardiovascular system. As androgens have a positive effect on the cardiovascular system, we hypothesized that dihydrotestosterone (DHT) could also influence EPC-mediated repair processes. To evaluate this hypothesis, we investigated the effects of DHT on cultured human EPCs' proliferation, viability, morphology, migration, angiogenesis, gene and protein expression, and ability to integrate into cardiac tissue. The results showed that DHT at different concentrations had no cytotoxic effect on EPCs, significantly enhanced the cell proliferation and viability and induces fast, androgen-receptor-dependent formation of capillary-like structures. DHT treatment of EPCs regulated gene expression of androgen receptors and the genes and proteins involved in cell migration and angiogenesis. Importantly, DHT stimulation promoted EPC migration and the cells' ability to adhere and integrate into murine cardiac slices, suggesting it has a role in promoting tissue regeneration. Mass spectrometry analysis further highlighted the impact of DHT on EPCs' functioning. In conclusion, DHT increases the proliferation, migration, and androgen-receptor-dependent angiogenesis of EPCs; enhances the cells' secretion of key factors involved in angiogenesis; and significantly potentiates cellular integration into heart tissue. The data offer support for potential therapeutic applications of DHT in cardiovascular regeneration and repair processes.


Assuntos
Movimento Celular , Proliferação de Células , Di-Hidrotestosterona , Células Progenitoras Endoteliais , Neovascularização Fisiológica , Receptores Androgênicos , Di-Hidrotestosterona/farmacologia , Humanos , Movimento Celular/efeitos dos fármacos , Receptores Androgênicos/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/efeitos dos fármacos , Células Progenitoras Endoteliais/citologia , Animais , Células Cultivadas , Camundongos , Sobrevivência Celular/efeitos dos fármacos , Androgênios/farmacologia , Androgênios/metabolismo , Masculino
4.
Front Immunol ; 15: 1368099, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665923

RESUMO

Early increase in the level of endothelial progenitor cells (EPCs) in the systemic circulation occurs in patients with septic infection/sepsis. The significance and underlying mechanisms of this response remain unclear. This study investigated the bone marrow EPC response in adult mice with septic infection induced by intravenous injection (i.v.) of Escherichia coli. For in vitro experiments, sorted marrow stem/progenitor cells (SPCs) including lineage(lin)-stem cell factor receptor (c-kit)+stem cell antigen-1 (Sca-1)-, lin-c-kit+, and lin- cells were cultured with or without lipopolysaccharides (LPSs) and recombinant murine vascular endothelial growth factor (VEGF) in the absence and presence of anti-Sca-1 crosslinking antibodies. In a separate set of experiments, marrow lin-c-kit+ cells from green fluorescence protein (GFP)+ mice, i.v. challenged with heat-inactivated E. coli or saline for 24 h, were subcutaneously implanted in Matrigel plugs for 5 weeks. Marrow lin-c-kit+ cells from Sca-1 knockout (KO) mice challenged with heat-inactivated E. coli for 24 h were cultured in the Matrigel medium for 8 weeks. The marrow pool of EPCs bearing the lin-c-kit+Sca-1+VEGF receptor 2 (VEGFR2)+ (LKS VEGFR2+) and LKS CD133+VEGFR2+ surface markers expanded rapidly following septic infection, which was supported by both proliferative activation and phenotypic conversion of marrow stem/progenitor cells. Increase in marrow EPCs and their reprogramming for enhancing angiogenic activity correlated with cell-marked upregulation of Sca-1 expression. Sca-1 was coupled with Ras-related C3 botulinum toxin substrate 2 (Rac2) in signaling the marrow EPC response. Septic infection caused a substantial increase in plasma levels of IFN-γ, VEGF, G-CSF, and SDF-1. The early increase in circulating EPCs was accompanied by their active homing and incorporation into pulmonary microvasculature. These results demonstrate that the marrow EPC response is a critical component of the host defense system. Sca-1 signaling plays a pivotal role in the regulation of EPC response in mice with septic infection.


Assuntos
Células Progenitoras Endoteliais , Proteínas de Membrana , Sepse , Animais , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/imunologia , Sepse/imunologia , Sepse/metabolismo , Camundongos , Camundongos Knockout , Escherichia coli/imunologia , Infecções por Escherichia coli/imunologia , Camundongos Endogâmicos C57BL , Fator A de Crescimento do Endotélio Vascular/metabolismo , Antígenos Ly/metabolismo , Células da Medula Óssea/metabolismo , Células da Medula Óssea/imunologia , Células Cultivadas , Masculino
5.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674031

RESUMO

Hemangioblasts give rise to endothelial progenitor cells (EPCs), which also express the cell surface markers CD133 and c-kit. They may differentiate into the outgrowth endothelial cells (OECs) that control neovascularization in the developing embryo. According to numerous studies, reduced levels of EPCs in circulation have been linked to human cardiovascular disorders. Furthermore, preeclampsia and senescence have been linked to levels of EPCs produced from cord blood. Uncertainties surround how preeclampsia affects the way EPCs function. It is reasonable to speculate that preeclampsia may have an impact on the function of fetal EPCs during the in utero period; however, the present literature suggests that maternal vasculopathies, including preeclampsia, damage fetal circulation. Additionally, the differentiation potential and general activity of EPCs may serve as an indicator of the health of the fetal vascular system as they promote neovascularization and repair during pregnancy. Thus, the purpose of this review is to compare-through the assessment of their quantity, differentiation potency, angiogenic activity, and senescence-the angiogenic function of fetal EPCs obtained from cord blood for normal and pregnancy problems (preeclampsia, gestational diabetes mellitus, and fetal growth restriction). This will shed light on the relationship between the angiogenic function of fetal EPCs and pregnancy complications, which could have an effect on the management of long-term health issues like metabolic and cardiovascular disorders in offspring with abnormal vasculature development.


Assuntos
Diabetes Gestacional , Células Progenitoras Endoteliais , Sangue Fetal , Retardo do Crescimento Fetal , Pré-Eclâmpsia , Humanos , Gravidez , Feminino , Diabetes Gestacional/metabolismo , Diabetes Gestacional/sangue , Pré-Eclâmpsia/sangue , Células Progenitoras Endoteliais/metabolismo , Sangue Fetal/citologia , Sangue Fetal/metabolismo , Retardo do Crescimento Fetal/patologia , Diferenciação Celular
6.
J Am Heart Assoc ; 13(9): e031972, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38639380

RESUMO

BACKGROUND: Coronary microvascular dysfunction (CMD) represents an early functional characteristic of coronary vascular aging. Klotho (α-klotho) is a circulating protein inversely linked to physiological aging. We examined low klotho as a potential marker for vascular aging in patients with CMD and no coronary artery disease. METHODS AND RESULTS: Patients undergoing nonurgent angiogram for chest pain who had no coronary artery disease underwent invasive coronary microvascular and endothelial function testing. CMD was defined by ≤50% increase in coronary blood flow (percentage change in coronary blood flow) in response to intracoronary acetylcholine or coronary flow reserve ≤2. Fresh arterial whole blood was used to analyze circulating endothelial progenitor cells with flow cytometry. Stored arterial plasma was used for klotho analysis by ELISA. Participants with CMD (n=62) were compared with those without CMD (n=36). Those with CMD were age 55±10 years (versus 51±11 years; P=0.07) and 73% women (versus 81%; P=0.38). Traditional risk factors for coronary artery disease were similar between groups. Patients with CMD had less klotho (0.88±1.50 versus 1.75±2.38 ng/mL; P=0.03), and the odds of low klotho in CMD were significant in a logistic regression model after adjusting for traditional cardiovascular risk factors (odds ratio [OR], 0.80 [95% CI, 0.636-0.996]; P=0.05). Higher klotho was associated with higher numbers of endothelial progenitor cells with vascular regenerative potential (CD34+ and CD34+CD133+KDR+). Among a subgroup of patients with atherosclerotic cardiovascular disease risk <5% (n=58), CMD remained associated with lower klotho (OR, 0.80 [95% CI, 0.636-0.996]; P=0.047). CONCLUSIONS: Klotho may be a biomarker for CMD and may be a therapeutic target for groups of patients without significant traditional cardiovascular risk.


Assuntos
Biomarcadores , Circulação Coronária , Glucuronidase , Proteínas Klotho , Humanos , Feminino , Masculino , Glucuronidase/sangue , Pessoa de Meia-Idade , Biomarcadores/sangue , Circulação Coronária/fisiologia , Vasos Coronários/fisiopatologia , Vasos Coronários/diagnóstico por imagem , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/patologia , Adulto , Angiografia Coronária , Microcirculação , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/fisiopatologia , Doença da Artéria Coronariana/diagnóstico , Idoso , Citometria de Fluxo , Ensaio de Imunoadsorção Enzimática
7.
Circ Res ; 134(7): 875-891, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38440901

RESUMO

BACKGROUND: Systemic sclerosis (SSc) is a connective tissue disease that can serve as a model to study vascular changes in response to inflammation, autoimmunity, and fibrotic remodeling. Although microvascular changes are the earliest histopathologic manifestation of SSc, the vascular pathophysiology remains poorly understood. METHODS: We applied spatial proteomic approaches to deconvolute the heterogeneity of vascular cells at the single-cell level in situ and characterize cellular alterations of the vascular niches of patients with SSc. Skin biopsies of patients with SSc and control individuals were analyzed by imaging mass cytometry, yielding a total of 90 755 cells including 2987 endothelial cells and 4096 immune cells. RESULTS: We identified 7 different subpopulations of blood vascular endothelial cells (VECs), 2 subpopulations of lymphatic endothelial cells, and 3 subpopulations of pericytes. A novel population of CD34+;αSMA+ (α-smooth muscle actin);CD31+ VECs was more common in SSc, whereas endothelial precursor cells were decreased. Co-detection by indexing and tyramide signal amplification confirmed these findings. The microenvironment of CD34+;αSMA+;CD31+ VECs was enriched for immune cells and myofibroblasts, and CD34+;αSMA+;CD31+ VECs expressed markers of endothelial-to-mesenchymal transition. The density of CD34+;αSMA+;CD31+ VECs was associated with clinical progression of fibrosis in SSc. CONCLUSIONS: Using spatial proteomics, we unraveled the heterogeneity of vascular cells in control individuals and patients with SSc. We identified CD34+;αSMA+;CD31+ VECs as a novel endothelial cell population that is increased in patients with SSc, expresses markers for endothelial-to-mesenchymal transition, and is located in close proximity to immune cells and myofibroblasts. CD34+;αSMA+;CD31+ VEC counts were associated with clinical outcomes of progressive fibrotic remodeling, thus providing a novel cellular correlate for the crosstalk of vasculopathy and fibrosis.


Assuntos
Células Progenitoras Endoteliais , Escleroderma Sistêmico , Humanos , Proteômica , Escleroderma Sistêmico/complicações , Escleroderma Sistêmico/patologia , Fibrose , Miofibroblastos/patologia
8.
Biomed Pharmacother ; 173: 116343, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428311

RESUMO

Therapeutic neovascularization is a strategy to promote blood vessel growth and improve blood flow, which is critical to tissue repair and regeneration in ischemic diseases. Here, we investigated the role of endothelial progenitor cell - derived exosomes (EPC-Exos) in therapeutic neovascularization and clarified the mechanism of hsa_circ_0093884 in EPC-Exos mediated neovascularization. Injection of EPC-Exos improved mouse ischemic hindlimb perfusion, promoted angiogenesis in Matrigel plugs and mouse skin wound healing. In vitro coculture with EPC-Exos improved HUVEC proliferation, angiogenic and migration ability, while alleviated hypoxia-induced apoptosis. hsa_circ_0093884 was identified from eleven types of circRNA derived from SIRT1 and proved to be enriched in EPC-Exos. Overexpression of hsa_circ_0093884 in EPC-Exos further enhanced the angiogenic capacity, while knockdown of hsa_circ_0093884 abolished the benefits. Mechanistically, EPC-Exos mediated shuttling of hsa_circ_0093884 induced cytoplasmic sponge of miR-145, thereby releasing repression of SIRT1. In vitro co-transfection indicated silence of miR-145 further strengthened the angiogenic effect of hsa_circ_0093884, while overexpression of miR-145 inhibited hsa_circ_0093884 mediated angiogenesis and abolished the beneficial effect of EPC-Exos. Furthermore, in vivo experiments using endothelial specific SIRT1 conditional knockout mice indicated hsa_circ_0093884 overexpressing EPC-Exos failed to promote therapeutic neovascularization in SIRT1cKO mice. Collectively, our results demonstrated that EPC-Exos promoted therapeutic neovascularization through hsa_circ_0093884/miR-145/SIRT1 axis.


Assuntos
Células Progenitoras Endoteliais , MicroRNAs , Camundongos , Animais , Células Progenitoras Endoteliais/metabolismo , MicroRNAs/metabolismo , Sirtuína 1/genética , Neovascularização Fisiológica/genética , Neovascularização Patológica/genética , Proliferação de Células/genética
9.
ACS Nano ; 18(12): 8718-8732, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38465955

RESUMO

Although stem cell therapy is proved to be a promising strategy for bone repair and regeneration, transplanted allogeneic stem cells generally suffer from unfavorable apoptosis instead of differentiation into osteocytes. How the apoptotic stem cells promote bone regeneration still needs to be uncovered. In this work, we found that apoptotic extracellular vesicles released by allogeneic stem cells are critical mediators for promoting bone regeneration. Based on the results of in vivo experiments, a mechanism of apoptotic stem cells determined autologous stem cell recruitment and enhance osteogenesis was proposed. The nanoscaled apoptotic extracellular vesicles released from transplanted stem cells were endocytosed by vascular endothelial cells and preferentially distribute at endoplasmic reticular region. The oxidized phosphatidylcholine enriched in the vesicles activated the endoplasmic reticulum stress and triggered the reflective elevation of adhesion molecules, which induced the recruitment of autologous stem cells located in the blood vessels, transported them into the defect region, and promoted osteogenesis and bone repair. These findings not only reveal the mechanism of stem cell therapy of bone defects but also provide a cue for investigation of the biological process of stem cell therapy for other diseases and develop stem cell therapeutic strategies.


Assuntos
Células Progenitoras Endoteliais , Vesículas Extracelulares , Transplante de Células-Tronco Hematopoéticas , Osteogênese , Vesículas Extracelulares/metabolismo , Diferenciação Celular
10.
Biochem Biophys Res Commun ; 709: 149853, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38555838

RESUMO

BACKGROUND: Tibial transverse transport (TTT) can promote the healing of chronic foot ulcers, but the specific cellular and molecular mechanisms by which TTT promotes wound healing remain unclear. METHODS: New Zealand White rabbits were selected to induce foot ulcer models. The treatment included unilateral TTT surgery and bilateral TTT surgery. Observation of tissue neovascularization structure by HE staining and CD31 immunofluorescence detection. Collagen fiber formation was detected through the Masson staining. The mobilization of endothelial progenitor cell (EPCs) were analyzed by VEGFR2 immunofluorescence detection and flow cytometry detection of the number of VEGFR2/Tie-2-positive cells in peripheral blood. ELISA and qPCR assay were performed to detect VEGFA and CXCL12 levels. RESULTS: The complete healing time of ulcer surfaces in sham, unilateral and bilateral TTT groups was about 22 days, 17 days and 13 days, respectively. TTT treatment significantly increased the deposition of granulation tissue and epithelialization of wounds. It also led to an increase in collagen fiber content and the level of the microvascular marker CD31. Furthermore, TTT treatment upregulated the levels of VEGFA and CXCL12 in peripheral blood and wound tissues, as well as increased the expression of VEGFR2 in wound tissues and the proportion of VEGFR2/Tie-2 in peripheral blood. Moreover, these effects of TTT treatment in the bilateral group was more significant than that in the unilateral group. CONCLUSIONS: TTT may facilitate wound fibroblasts to release VEGFA and CXCL12, causing EPC mobilization, thus promoting angiogenesis and ulcer wound healing.


Assuntos
Angiogênese , Células Progenitoras Endoteliais , Úlcera , Cicatrização , Animais , Coelhos , Colágeno
11.
Sci Rep ; 14(1): 4465, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396011

RESUMO

The main objective of this study is to evaluate the influence of exosomes derived from endothelial progenitor cells (EPC-Exo) on neointimal formation induced by balloon injury in rats. Furthermore, the study aims to investigate the potential of EPC-Exo to promote proliferation, migration, and anti-apoptotic effects of vascular endothelial cells (VECs) in vitro. The underlying mechanisms responsible for these observed effects will also be thoroughly explored and analyzed. Endothelial progenitor cells (EPCs) was isolated aseptically from Sprague-Dawley (SD) rats and cultured in complete medium. The cells were then identified using immunofluorescence and flow cytometry. The EPC-Exo were isolated and confirmed the identities by western-blot, transmission electron microscope, and nanoparticle analysis. The effects of EPC-Exo on the rat carotid artery balloon injury (BI) were detected by hematoxylin and eosin (H&E) staining, ELISA, immunohistochemistry, immunofluorescence, western-blot and qPCR. LPS was used to establish an oxidative damage model of VECs. The mechanism of EPC-Exo repairing injured vascular endothelial cells was detected by measuring the proliferation, migration, and tube function of VECs, actin cytoskeleton staining, TUNEL staining, immunofluorescence, western-blot and qPCR. In vivo, EPC-Exo exhibit inhibitory effects on neointima formation following carotid artery injury and reduce the levels of inflammatory factors, including TNF-α and IL-6. Additionally, EPC-Exo downregulate the expression of adhesion molecules on the injured vascular wall. Notably, EPC-Exo can adhere to the injured vascular area, promoting enhanced endothelial function and inhibiting vascular endothelial hyperplasia Moreover, they regulate the expression of proteins and genes associated with apoptosis, including B-cell lymphoma-2 (Bcl2), Bcl2-associated x (Bax), and Caspase-3. In vitro, experiments further confirmed that EPC-Exo treatment significantly enhances the proliferation, migration, and tube formation of VECs. Furthermore, EPC-Exo effectively attenuate lipopolysaccharides (LPS)-induced apoptosis of VECs and regulate the Bcl2/Bax/Caspase-3 signaling pathway. This study demonstrates that exosomes derived from EPCs have the ability to inhibit excessive carotid intimal hyperplasia after BI, promote the repair of endothelial cells in the area of intimal injury, and enhance endothelial function. The underlying mechanism involves the suppression of inflammation and anti-apoptotic effects. The fundamental mechanism for this anti-apoptotic effect involves the regulation of the Bcl2/Bax/Caspase-3 signaling pathway.


Assuntos
Lesões das Artérias Carótidas , Células Progenitoras Endoteliais , Exossomos , Animais , Ratos , Proteína X Associada a bcl-2/metabolismo , Lesões das Artérias Carótidas/metabolismo , Caspase 3/metabolismo , Proliferação de Células , Células Progenitoras Endoteliais/metabolismo , Exossomos/metabolismo , Hiperplasia/metabolismo , Lipopolissacarídeos/metabolismo , Ratos Sprague-Dawley , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
12.
Oncogene ; 43(13): 944-961, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351345

RESUMO

Metastasis causes most cancer-related deaths, and the role and mechanism of periostin (POSTN) in the metastasis of hepatocellular carcinoma (HCC) remain undiscovered. In this study, DEN and HTVi HCC models were performed in hepatic-specific Postn ablation and Postn knock-in mouse to reveal the role of POSTN in HCC metastasis. Furthermore, POSTN was positively correlated with circulating EPCs level and promoted EPC mobilization and tumour infiltration. POSTN also mediated the crosstalk between HCC and EPCs, which promoted metastasis ability and upregulated CD36 expression in HCC through indirect crosstalk. Chemokine arrays further revealed that hepatic-derived POSTN induced elevated CCL2 expression and secretion in EPCs, and CCL2 promoted prometastatic traits in HCC. Mechanistic studies showed that POSTN upregulated CCL2 expression in EPCs via the αvß3/ILK/NF-κB pathway. CCL2 further induced CD36 expression via the CCR2/STAT3 pathway by directly binding to the promoter region of CD36. Finally, CD36 was verified to have a prometastatic role in vitro and to be correlated with POSTN expression, metastasis and recurrence in HCC in clinical samples. Our findings revealed that crosstalk between HCC and EPCs is mediated by periostin/CCL2/CD36 signalling which promotes HCC metastasis and emphasizes a potential therapeutic strategy for preventing HCC metastasis.


Assuntos
Antígenos CD36 , Carcinoma Hepatocelular , Quimiocina CCL2 , Células Progenitoras Endoteliais , Neoplasias Hepáticas , Periostina , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/patologia , Neoplasias Hepáticas/patologia , Transdução de Sinais/genética , Microambiente Tumoral/genética , Quimiocina CCL2/metabolismo , Antígenos CD36/metabolismo
13.
PLoS One ; 19(2): e0296671, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38394221

RESUMO

Bone marrow-derived CD34-positive (CD34+) endothelial progenitor cells (EPCs) has unique functions in the mechanism of compensatory lung growth (CLG). The content of this study is mainly to describe the effect of microRNA (miR)-155 in the mechanisms of EPCs and CLG. Our study found that transfection of miR-155 mimic could promote EPC proliferation, migration and tube formation, while transfection of miR-155 inhibitor had the opposite effect. It was also found that transfection of pc-JARID2 inhibited EPC proliferation, migration and tube formation, while transfection of si-JARID2 had the opposite effect. miR-155 can target and negatively regulate JARID2 expression. Overexpression of JARID2 weakened the promoting effects of miR-155 mimic on EPC proliferation, migration, and tubular formation, while silencing JARID2 weakened the inhibitory effects of miR-155 inhibitors on EPC proliferation, migration, and tubular formation. Transplantation of EPCs transfected with miR-155 mimic into the left lung model effectively increased lung volume, total alveolar number, diaphragm surface area, and lung endothelial cell number, while transplantation of EPCs co-transfected with miR-155 mimic and pc-JARID2 reversed this phenomenon. Overall, we found that miR-155 activates CD34+ EPC by targeting negative regulation of JARID2 and promotes CLG.


Assuntos
Células Progenitoras Endoteliais , Pulmão , MicroRNAs , Antígenos CD34/metabolismo , Movimento Celular , Proliferação de Células , Células Progenitoras Endoteliais/metabolismo , Pulmão/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Camundongos , Complexo Repressor Polycomb 2/metabolismo
14.
J Am Heart Assoc ; 13(4): e030054, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38348774

RESUMO

BACKGROUND: This study investigated whether gCTRP9 (globular C1q/tumor necrosis factor-related protein-9) could restore high-glucose (HG)-suppressed endothelial progenitor cell (EPC) functions by activating the endothelial nitric oxide synthase (eNOS). METHODS AND RESULTS: EPCs were treated with HG (25 mmol/L) and gCTRP9. Migration, adhesion, and tube formation assays were performed. Adiponectin receptor 1, adiponectin receptor 2, and N-cadherin expression and AMP-activated protein kinase, protein kinase B, and eNOS phosphorylation were measured by Western blotting. eNOS activity was determined using nitrite production measurement. In vivo reendothelialization and EPC homing assays were performed using Evans blue and immunofluorescence in mice. Treatment with gCTRP9 at physiological levels enhanced migration, adhesion, and tube formation of EPCs. gCTRP9 upregulated the phosphorylation of AMP-activated protein kinase, protein kinase B, and eNOS and increased nitrite production in a concentration-dependent manner. Exposure of EPCs to HG-attenuated EPC functions induced cellular senescence and decreased eNOS activity and nitric oxide synthesis; the effects of HG were reversed by gCTRP9. Protein kinase B knockdown inhibited eNOS phosphorylation but did not affect gCTRP9-induced AMP-activated protein kinase phosphorylation. HG impaired N-cadherin expression, but treatment with gCTRP9 restored N-cadherin expression after HG stimulation. gCTRP9 restored HG-impaired EPC functions through both adiponectin receptor 1 and N-cadherin-mediated AMP-activated protein kinase /protein kinase B/eNOS signaling. Nude mice that received EPCs treated with gCTRP9 under HG medium showed a significant enhancement of the reendothelialization capacity compared with those with EPCs incubated under HG conditions. CONCLUSIONS: CTRP9 promotes EPC migration, adhesion, and tube formation and restores these functions under HG conditions through eNOS-mediated signaling mechanisms. Therefore, CTRP9 modulation could eventually be used for vascular healing after injury.


Assuntos
Adiponectina , Células Progenitoras Endoteliais , Glicoproteínas , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Progenitoras Endoteliais/metabolismo , Complemento C1q/metabolismo , Complemento C1q/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Citocinas/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Camundongos Nus , Receptores de Adiponectina/metabolismo , Nitritos , Movimento Celular , Glucose/farmacologia , Glucose/metabolismo , Caderinas/metabolismo , Fatores de Necrose Tumoral/metabolismo , Fatores de Necrose Tumoral/farmacologia , Óxido Nítrico/metabolismo , Células Cultivadas
15.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256220

RESUMO

We have recently demonstrated that exosomal communication between endothelial progenitor cells (EPCs) and brain endothelial cells is compromised in hypertensive conditions, which might contribute to the poor outcomes of stroke subjects with hypertension. The present study investigated whether exercise intervention can regulate EPC-exosome (EPC-EX) functions in hypertensive conditions. Bone marrow EPCs from sedentary and exercised hypertensive transgenic mice were used for generating EPC-EXs, denoted as R-EPC-EXs and R-EPC-EXET. The exosomal microRNA profile was analyzed, and EX functions were determined in a co-culture system with N2a cells challenged by angiotensin II (Ang II) plus hypoxia. EX-uptake efficiency, cellular survival ability, reactive oxygen species (ROS) production, mitochondrial membrane potential, and the expressions of cytochrome c and superoxide-generating enzyme (Nox4) were assessed. We found that (1) exercise intervention improves the uptake efficiency of EPC-EXs by N2a cells. (2) exercise intervention restores miR-27a levels in R-EPC-EXs. (3) R-EPC-EXET improved the survival ability and reduced ROS overproduction in N2a cells challenged with Ang II and hypoxia. (4) R-EPC-EXET improved the mitochondrial membrane potential and decreased cytochrome c and Nox4 levels in Ang II plus hypoxia-injured N2a cells. All these effects were significantly reduced by miR-27a inhibitor. Together, these data have demonstrated that exercise-intervened EPC-EXs improved the mitochondrial function of N2a cells in hypertensive conditions, which might be ascribed to their carried miR-27a.


Assuntos
Células Progenitoras Endoteliais , Exossomos , MicroRNAs , Animais , Camundongos , Humanos , Citocromos c , Espécies Reativas de Oxigênio , Mitocôndrias , Angiotensina II/farmacologia , Hipóxia , MicroRNAs/genética
16.
Stem Cell Res Ther ; 15(1): 7, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169418

RESUMO

Venous thromboembolism, which includes deep venous thrombosis (DVT) and pulmonary embolism, is the third most common vascular disease in the world and seriously threatens the lives of patients. Currently, the effect of conventional treatments on DVT is limited. Endothelial progenitor cells (EPCs) play an important role in the resolution and recanalization of DVT, but an unfavorable microenvironment reduces EPC function. Non-coding RNAs, especially long non-coding RNAs and microRNAs, play a crucial role in improving the biological function of EPCs. Non-coding RNAs have become clinical biomarkers of diseases and are expected to serve as new targets for disease intervention. A theoretical and experimental basis for the development of new methods for preventing and treating DVT in the clinic will be provided by studies on the role and molecular mechanism of non-coding RNAs regulating EPC function in the occurrence and development of DVT. To summarize, the characteristics of venous thrombosis, the regulatory role of EPCs in venous thrombosis, and the effect of non-coding RNAs regulating EPCs on venous thrombosis are reviewed. This summary serves as a useful reference and theoretical basis for research into the diagnosis, prevention, treatment, and prognosis of venous thrombosis.


Assuntos
Células Progenitoras Endoteliais , MicroRNAs , Doenças Vasculares , Trombose Venosa , Humanos , MicroRNAs/genética , Trombose Venosa/genética , Trombose Venosa/terapia , Movimento Celular
17.
Free Radic Biol Med ; 213: 327-342, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38281628

RESUMO

BACKGROUND: Bone marrow-derived endothelial progenitor cells (EPCs) play a dynamic role in maintaining the structure and function of blood vessels. But how these cells maintain their growth and angiogenic capacity under bone marrow hypoxic niche is still unclear. This study aims to explore the mechanisms from a perspective of cellular metabolism. METHODS: XFe96 Extracellular Flux Analyzer was used to analyze the metabolic status of EPCs. Gas Chromatography-Mass Spectrometry (GC-MS) was used to trace the carbon movement of 13C-labeled glucose and glutamine under 1 % O2 (hypoxia) and ∼20 % O2 (normoxia). Moreover, RNA interference, targeting isocitrate dehydrogenase-1 (IDH1) and IDH2, was used to inhibit the reverse tricarboxylic acid (TCA) cycle and analyze metabolic changes via isotope tracing as well as changes in cell growth and angiogenic potential under hypoxia. The therapeutic potential of EPCs under hypoxia was investigated in the ischemic hindlimb model. RESULTS: Compared with normoxic cells, hypoxic cells showed increased glycolysis and decreased mitochondrial respiration. Isotope metabolic tracing revealed that under hypoxia, the forward TCA cycle was decreased and the reverse TCA cycle was enhanced, mediating the conversion of α-ketoglutarate (α-KG) into isocitrate/citrate, and de novo lipid synthesis was promoted. Downregulation of IDH1 or IDH2 under hypoxia suppressed the reverse TCA cycle, attenuated de novo lipid synthesis (DNL), elevated α-KG levels, and decreased the expression of hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor A (VEGFA), eventually inhibiting the growth and angiogenic capacity of EPCs. Importantly, the transplantation of hypoxia-cultured EPCs in a mouse model of limb ischemia promoted new blood vessel regeneration and blood supply recovery in the ischemic area better than the transplantation of normoxia-cultured EPCs. CONCLUSIONS: Under hypoxia, the IDH1- and IDH2-mediated reverse TCA cycle promotes glutamine-derived de novo lipogenesis and stabilizes the expression of α-KG and HIF-1α, thereby enhancing the growth and angiogenic capacity of EPCs.


Assuntos
Células Progenitoras Endoteliais , Animais , Camundongos , Medula Óssea/metabolismo , Hipóxia Celular , Células Progenitoras Endoteliais/metabolismo , Glutamina/metabolismo , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isquemia/metabolismo , Isótopos/metabolismo , Lipídeos , Lipogênese , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
Cancer Immunol Immunother ; 73(1): 3, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175307

RESUMO

A number of the inhibitors against programmed death protein 1 (PD-1) have been approved to treat recurrent or metastatic squamous cell carcinoma of head and neck (HNSCC). The interaction between PD-1 and its ligand (PD-L1) serves as an immune checkpoint that governs cytotoxic immune effectors against tumors. Numerous clinical trials of PD-1/PD-L1 inhibitors have so far been discordant about having sufficient PD-L1 expression in the tumor as a prerequisite for a successful anti-PD-1 treatment. On the other hand, vascular endothelial cells modulate immune activities through PD-L1 expression, and thus it is possible that the expressions of circulating endothelial cells (CECs) and circulating endothelial progenitor cells (CPCs) could affect antitumor immunity as well as neoangiogenesis. Here we investigated the potential involvement of PD-L1+ CECs and PD-L1+ CPCs in PD-1 blockade treatments for HNSCC patients. We measured CD8+ T cells, CECs, and CPCs in the peripheral blood of the HNSCC patients treated by anti-PD-1 therapies. We found that their PD-L1+ CPC expression before anti-PD1 therapies was strongly correlated with treatment responses and overall survival. Moreover, if the first infusion of PD-1 inhibitors reduced ≥ 50% PD-L1+ CPCs, a significantly better outcome could be predicted. In these patients as well as in an animal model of oral cancer, Pd-l1+ CPC expression was associated with limited CD8+ T-cell infiltration into the tumors, and anti-PD-1 treatments also targeted Pd-l1+ CPCs and increased CD8+ T-cell infiltration. Our results highlight PD-L1+ CPC as a potential regulator in the anti-PD-1 treatments for HNSCC.


Assuntos
Células Progenitoras Endoteliais , Neoplasias de Cabeça e Pescoço , Animais , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Receptor de Morte Celular Programada 1 , Antígeno B7-H1 , Linfócitos T CD8-Positivos , Inibidores de Checkpoint Imunológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Imunidade
19.
J Cell Physiol ; 239(4): e31175, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38214142

RESUMO

Carotid body tumor (CBT) is a rare neck tumor located at the adventitia of the common carotid artery bifurcation. The prominent pathological features of CBT are high vascularization and abnormal proliferation. However, single-cell transcriptome analysis of the microenvironment composition and molecular complexity in CBT has yet to be performed. In this study, we performed single-cell RNA sequencing (scRNA-seq) analysis on human CBT to define the cells that contribute to hypervascularization and chronic hyperplasia. Unbiased clustering analysis of transcriptional profiles identified 16 distinct cell populations including endothelial cells (ECs), smooth muscle cells (SMCs), neuron cells, macrophage cells, neutrophil cells, and T cells. Within the ECs population, we defined subsets with angiogenic capacity plus clear signs of later endothelial progenitor cells (EPCs) to normal ECs. Two populations of macrophages were detectable in CBT, macrophage1 showed enrichment in hypoxia-inducible factor-1 (HIF-1) and as well as an early EPCs cell-like population expressing CD14 and vascular endothelial growth factor. In addition to HIF-1-related transcriptional protein expression, macrophages1 also display a neovasculogenesis-promoting phenotype. SMCs included three populations showing platelet-derived growth factor receptor beta and vimentin expression, indicative of a cancer-associated fibroblast phenotype. Finally, we identified three types of neuronal cells, including chief cells and sustentacular cells, and elucidated their distinct roles in the pathogenesis of CBT and abnormal proliferation of tumors. Overall, our study provided the first comprehensive characterization of the transcriptional landscape of CBT at scRNA-seq profiles, providing novel insights into the mechanisms underlying its formation.


Assuntos
Tumor do Corpo Carotídeo , Células Progenitoras Endoteliais , Neovascularização Patológica , Humanos , Artérias Carótidas/patologia , Tumor do Corpo Carotídeo/irrigação sanguínea , Análise de Célula Única , Análise da Expressão Gênica de Célula Única , Transcriptoma/genética , Microambiente Tumoral/genética , Fator A de Crescimento do Endotélio Vascular , Neovascularização Patológica/diagnóstico , Neovascularização Patológica/genética
20.
Acta Neuropsychiatr ; 36(3): 153-161, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38178721

RESUMO

OBJECTIVES: Despite mounting evidence demonstrates circulating endothelial progenitor cells (cEPCs) quantitative changes in depression, no study has investigated cEPC functions in major depressive disorder (MDD). We investigated the role of cEPC adhesive and apoptotic functions in MDD. METHODS: We recruited 68 patients with MDD and 56 healthy controls (HCs). The depression symptoms, anxiety, psychosomatic symptoms, subjective cognitive dysfunction, quality of life, and functional disability were evaluated using the Hamilton Depression Rating Scale and Montgomery-Åsberg Depression Rating Scale, Hamilton Anxiety Rating Scale, Depression and Somatic Symptoms Scale (DSSS), Perceived Deficits Questionnaire-Depression, 12-Item Short Form Health Survey (SF-12), and Sheehan Disability Scale (SDS), respectively. Working memory and executive function were assessed using a 2-back task and Wisconsin Card Sorting Test (WCST). Inflammatory marker (soluble interleukin-6 receptor, C-reactive protein, and tumor necrosis factor-α receptor-1), cEPC adhesive, and apoptotic levels were measured using in vitro assays. RESULTS: The MDD patients showed significantly lower cEPC adhesive levels than the HCs, and this difference in adhesive function remained statistically significant even after adjusting for inflammatory marker levels. The cEPC adhesion levels were in inverse correlations with commission and omission errors in 2-back task, the percent perseverative response and percent perseverative errors in WCST, and the DSSS and SDS scores, but in positive correlations with SF-12 physical and mental component scores. cEPC apoptotic levels did not differ significantly between the groups. CONCLUSION: The findings indicate that cEPC adhesive function is diminished in MDD and impacts various aspects of cognitive and psychosocial functions associated with the disorder.


Assuntos
Transtorno Depressivo Maior , Células Progenitoras Endoteliais , Humanos , Transtorno Depressivo Maior/sangue , Transtorno Depressivo Maior/psicologia , Feminino , Masculino , Células Progenitoras Endoteliais/metabolismo , Adulto , Pessoa de Meia-Idade , Apoptose/fisiologia , Função Executiva/fisiologia , Adesão Celular , Estudos de Casos e Controles , Escalas de Graduação Psiquiátrica , Testes Neuropsicológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...