Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 338
Filtrar
1.
J Neural Transm (Vienna) ; 127(4): 505-525, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32239353

RESUMO

The dorsal horns of the spinal cord and the trigeminal nuclei in the brainstem contain neuron populations that are critical to process sensory information. Neurons in these areas are highly heterogeneous in their morphology, molecular phenotype and intrinsic properties, making it difficult to identify functionally distinct cell populations, and to determine how these are engaged in pathophysiological conditions. There is a growing consensus concerning the classification of neuron populations, based on transcriptomic and transductomic analyses of the dorsal horn. These approaches have led to the discovery of several molecularly defined cell types that have been implicated in cutaneous mechanical allodynia, a highly prevalent and difficult-to-treat symptom of chronic pain, in which touch becomes painful. The main objective of this review is to provide a contemporary view of dorsal horn neuronal populations, and describe recent advances in our understanding of on how they participate in cutaneous mechanical allodynia.


Assuntos
Dor Crônica , Hiperalgesia , Inflamação , Neuralgia , Células do Corno Posterior , Animais , Dor Crônica/imunologia , Dor Crônica/metabolismo , Dor Crônica/fisiopatologia , Hiperalgesia/imunologia , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/fisiopatologia , Neuralgia/imunologia , Neuralgia/metabolismo , Neuralgia/fisiopatologia , Células do Corno Posterior/classificação , Células do Corno Posterior/citologia , Células do Corno Posterior/metabolismo
2.
Int J Mol Sci ; 20(24)2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31817540

RESUMO

Windup, a progressive increase in spinal response to repetitive stimulations of nociceptive peripheral fibers, is a useful model to study central sensitization to pain. Windup is expressed by neurons in both the dorsal and ventral horn of the spinal cord. In juvenile rats, it has been demonstrated both in vivo and in vitro that windup depends on calcium-dependent intrinsic properties and their modulation by synaptic components. However, the involvement of these two components in the adults remains controversial. In the present study, by means of electromyographic and extracellular recordings, we show that windup in adults, in vivo, depends on a synaptic balance between excitatory N-methyl-D-aspartate (NMDA) receptors and inhibitory glycinergic receptors. We also demonstrate the involvement of L-type calcium channels in both the dorsal and ventral horn of the spinal cord. These results indicate that windup in adults is similar to juvenile rats and that windup properties are the same regardless of the spinal network, i.e., sensory or motor.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Nociceptividade , Células do Corno Posterior/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Reflexo , Sinapses/metabolismo , Animais , Células do Corno Posterior/citologia , Ratos , Ratos Wistar
3.
Neuron ; 104(4): 749-764.e6, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31586516

RESUMO

Tactile stimuli are integrated and processed by neuronal circuits in the deep dorsal horn of the spinal cord. Several spinal interneuron populations have been implicated in tactile information processing. However, dorsal horn projection neurons that contribute to the postsynaptic dorsal column (PSDC) pathway transmitting tactile information to the brain are poorly characterized. Here, we show that spinal neurons marked by the expression of Zic2creER mediate light touch sensitivity and textural discrimination. A subset of Zic2creER neurons are PSDC neurons that project to brainstem dorsal column nuclei, and chemogenetic activation of Zic2 PSDC neurons increases sensitivity to light touch stimuli. Zic2 neurons receive direct input from the cortex and brainstem motor nuclei and are required for corrective motor movements. These results suggest that Zic2 neurons integrate sensory input from cutaneous afferents with descending signals from the brain to promote corrective movements and transmit processed touch information back to the brain. VIDEO ABSTRACT.


Assuntos
Movimento/fisiologia , Células do Corno Posterior/fisiologia , Percepção do Tato/fisiologia , Animais , Camundongos , Camundongos Transgênicos , Células do Corno Posterior/citologia
4.
J Pharmacol Exp Ther ; 370(3): 472-479, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31235533

RESUMO

Celecoxib is a nonsteroidal anti-inflammatory drug (NSAID) commonly used to treat pain conditions in humans. In addition to its blocking activity on cyclooxygenase (COX) enzymes, several other targets could contribute to its analgesic activity. Here we explore the spinal antinociceptive actions of celecoxib and the potential implication of Kv7 channels in mediating its effects. Spinal cord in vitro preparations from hind paw-inflamed animals were used to assess the segmental sensory-motor and the early sensory processing of nociceptive information. Electrophysiological recordings of ventral roots and dorsal horn neurones were obtained, and the effects of celecoxib and Kv7 modulators on responses to repetitive dorsal root stimulation at C-fiber intensity were assessed. Celecoxib applied at clinically relevant concentrations produced depressant effects on responses to dorsal root stimulation recorded from both ventral roots and individual dorsal horn neurones; by contrast, the non-nociceptive monosynaptic reflex was unaffected. The NSAID indomethacin had no effect on spinal reflexes, but further coapplication of celecoxib still produced depressant effects. The depressant actions of celecoxib were abolished after Kv7 channel blockade and mimicked by its structural analog dimethyl-celecoxib, which lacks COX-blocking activity. The present results identify Kv7 channels as novel central targets for celecoxib, which may be relevant to its analgesic effect. This finding contributes to better understand the pharmacology of celecoxib and reinforces both the role of Kv7 channels in modulating the excitability of central pain pathways and its validity as target for the design of analgesics.


Assuntos
Analgésicos/farmacologia , Celecoxib/farmacologia , Canais de Potássio KCNQ/metabolismo , Medula Espinal/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Feminino , Masculino , Camundongos , Células do Corno Posterior/citologia , Células do Corno Posterior/efeitos dos fármacos , Medula Espinal/citologia , Medula Espinal/fisiologia
5.
J Comp Neurol ; 527(11): 1857-1871, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30734936

RESUMO

Excitatory interneurons account for the majority of dorsal horn neurons, and are required for perception of normal and pathological pain. We have identified largely non-overlapping populations in laminae I-III, based on expression of substance P, gastrin-releasing peptide, neurokinin B, and neurotensin. Cholecystokinin (CCK) is expressed by many dorsal horn neurons, particularly in the deeper laminae. Here, we have used immunocytochemistry and in situ hybridization to characterize the CCK cells. We show that they account for ~7% of excitatory neurons in laminae I-II, but between a third and a quarter of those in lamina III. They are largely separate from the neurokinin B, neurotensin, and gastrin-releasing peptide populations, but show limited overlap with the substance P cells. Laminae II-III neurons with protein kinase Cγ (PKCγ) have been implicated in mechanical allodynia following nerve injury, and we found that around 50% of CCK cells were PKCγ-immunoreactive. Neurotensin is also expressed by PKCγ cells, and among neurons with moderate to high levels of PKCγ, ~85% expressed CCK or neurotensin. A recent transcriptomic study identified mRNA for thyrotropin-releasing hormone in a specific subpopulation of CCK neurons, and we show that these account for half of the CCK/PKCγ cells. These findings indicate that the CCK cells are distinct from other excitatory interneuron populations that we have defined. They also show that PKCγ cells can be assigned to different classes based on neuropeptide expression, and it will be important to determine the differential contribution of these classes to neuropathic allodynia.


Assuntos
Colecistocinina/metabolismo , Interneurônios/citologia , Interneurônios/metabolismo , Células do Corno Posterior/citologia , Células do Corno Posterior/metabolismo , Animais , Colecistocinina/análise , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Proc Natl Acad Sci U S A ; 115(51): E12043-E12052, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30487217

RESUMO

The auxiliary α2δ calcium channel subunits play key roles in voltage-gated calcium channel function. Independent of this, α2δ-1 has also been suggested to be important for synaptogenesis. Using an epitope-tagged knockin mouse strategy, we examined the effect of α2δ-1 on CaV2.2 localization in the pain pathway in vivo, where CaV2.2 is important for nociceptive transmission and α2δ-1 plays a critical role in neuropathic pain. We find CaV2.2 is preferentially expressed on the plasma membrane of calcitonin gene-related peptide-positive small nociceptors. This is paralleled by strong presynaptic expression of CaV2.2 in the superficial spinal cord dorsal horn. EM-immunogold localization shows CaV2.2 predominantly in active zones of glomerular primary afferent terminals. Genetic ablation of α2δ-1 abolishes CaV2.2 cell-surface expression in dorsal root ganglion neurons and dramatically reduces dorsal horn expression. There was no effect of α2δ-1 knockout on other dorsal horn pre- and postsynaptic markers, indicating the primary afferent pathways are not otherwise affected by α2δ-1 ablation.


Assuntos
Técnicas de Ablação/métodos , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo N/metabolismo , Membrana Celular/metabolismo , Dor/metabolismo , Transporte Proteico/fisiologia , Animais , Gânglios Espinais/metabolismo , Camundongos , Camundongos Knockout , Neuralgia/metabolismo , Neurônios/metabolismo , Dor/enfermagem , Células do Corno Posterior/citologia , Células do Corno Posterior/metabolismo , Medula Espinal/patologia
7.
Methods Mol Biol ; 1791: 115-129, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30006705

RESUMO

Our understanding of the processes controlling peripheral nervous system myelination have been significantly benefited by the development of an in vitro myelinating culture system in which primary Schwann cells are cocultured together with primary sensory neurons. In this chapter, we describe the protocol currently used in our laboratories to establish Schwann cells neuronal myelinating cocultures. We also include a detailed description of the various substrates that can be used to establish it.


Assuntos
Técnicas de Cocultura , Células do Corno Posterior/citologia , Cultura Primária de Células , Células de Schwann/citologia , Animais , Biomarcadores , Feminino , Camundongos , Células do Corno Posterior/metabolismo , Células do Corno Posterior/ultraestrutura , Gravidez , Cultura Primária de Células/métodos , Ratos , Células de Schwann/metabolismo , Células de Schwann/ultraestrutura
8.
Pain ; 159(11): 2214-2222, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29939963

RESUMO

The dorsal horn of the spinal cord (laminae I-VI) processes diverse modalities of nociceptive and nonnociceptive sensory information. Antenna-type neurons with cell bodies located in lamina III and large dendritic trees extending from the superficial lamina I to deep lamina IV are best shaped for the integration of a wide variety of inputs arising from primary afferent fibers and intrinsic spinal circuitries. Although the somatodendritic morphology, the hallmark of antenna neurons, has been well studied, little is still known about the axon structure and basic physiological properties of these cells. Here, we did whole-cell recordings in a rat (P9-P12) spinal cord preparation with attached dorsal roots to examine the axon course, intrinsic firing properties, and primary afferent inputs of antenna cells. Nine antenna cells were identified from a large sample of biocytin-filled lamina III neurons (n = 46). Axon of antenna cells showed intensive branching in laminae III-IV and, in half of the cases, issued dorsally directed collaterals reaching lamina I. Antenna cells exhibited tonic and rhythmic firing patterns; single spikes were followed by hyperpolarization or depolarization. The neurons received monosynaptic inputs from the low-threshold Aß afferents, Aδ afferents, as well as from the high-threshold Aδ, and C afferents. When selectively activated, C-fiber-driven monosynaptic and polysynaptic excitatory postsynaptic potentials were sufficiently strong to evoke firing in the neurons. Thus, lamina III antenna neurons integrate low-threshold and nociceptive high-threshold primary afferent inputs and can function as wide dynamic range neurons able to directly connect deep dorsal horn with the major nociceptive projection area lamina I.


Assuntos
Vias Aferentes/fisiologia , Células do Corno Posterior/fisiologia , Medula Espinal/citologia , Animais , Animais Recém-Nascidos , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Técnicas In Vitro , Potenciais da Membrana/fisiologia , Fibras Nervosas Amielínicas/fisiologia , Técnicas de Patch-Clamp , Células do Corno Posterior/citologia , Ratos , Ratos Wistar
9.
Pain ; 159(9): 1719-1730, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29746349

RESUMO

Spinal projection neurons convey nociceptive signals to multiple brain regions including the parabrachial (PB) nucleus, which contributes to the emotional valence of pain perception. Despite the clear importance of projection neurons to pain processing, our understanding of the factors that shape their intrinsic membrane excitability remains limited. Here, we investigate a potential role for the Na leak channel NALCN in regulating the activity of spino-PB neurons in the developing rodent. Pharmacological reduction of NALCN current (INALCN), or the genetic deletion of NALCN channels, significantly reduced the intrinsic excitability of lamina I spino-PB neurons. In addition, substance P (SP) activated INALCN in ascending projection neurons through downstream Src kinase signaling, and the knockout of NALCN prevented SP-evoked action potential discharge in this neuronal population. These results identify, for the first time, NALCN as a strong regulator of neuronal activity within central pain circuits and also elucidate an additional ionic mechanism by which SP can modulate spinal nociceptive processing. Collectively, these findings indicate that the level of NALCN conductance within spino-PB neurons tightly governs ascending nociceptive transmission to the brain and thereby potentially influences pain perception.


Assuntos
Potenciais de Ação/fisiologia , Canais Iônicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Núcleos Parabraquiais/metabolismo , Células do Corno Posterior/metabolismo , Medula Espinal/metabolismo , Animais , Animais Recém-Nascidos , Canais Iônicos/genética , Proteínas de Membrana , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Núcleos Parabraquiais/citologia , Células do Corno Posterior/citologia , Ratos , Ratos Sprague-Dawley , Medula Espinal/citologia
10.
Biochem Biophys Res Commun ; 500(4): 897-901, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29702090

RESUMO

ß-alanine is a structural analog of glycine and γ-aminobutyric acid (GABA) and is thought to be involved in the modulation of nociceptive information at the spinal cord. However, it is not known whether ß-alanine exerts its effect in substantia gelatinosa (SG) neurons of the spinal dorsal horn, where glycine and GABA play an important role in regulating nociceptive transmission from the periphery. Here, we investigated the effects of ß-alanine on inhibitory synaptic transmission in adult rat SG neurons using whole-cell patch-clamp. ß-alanine dose-dependently induced outward currents in SG neurons. Current-voltage plots revealed a reversal potential at approximately -70 mV, which was close to the equilibrium potential of Cl-. Pharmacological analysis revealed that ß-alanine activates glycine receptors, but not GABAA receptors. These results suggest that ß-alanine hyperpolarizes the membrane potential of SG neurons by activating Cl- channels through glycine receptors. Our findings raise the possibility that ß-alanine may modulate pain sensation through glycine receptors.


Assuntos
Nociceptividade/efeitos dos fármacos , Células do Corno Posterior/efeitos dos fármacos , Receptores de Glicina/metabolismo , Substância Gelatinosa/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , beta-Alanina/farmacologia , Animais , Glicina/metabolismo , Glicina/farmacologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Nociceptividade/fisiologia , Técnicas de Patch-Clamp , Células do Corno Posterior/citologia , Células do Corno Posterior/metabolismo , Ratos , Ratos Wistar , Receptores de GABA-A/metabolismo , Receptores de Glicina/agonistas , Substância Gelatinosa/citologia , Substância Gelatinosa/metabolismo , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologia
11.
J Physiol ; 596(9): 1681-1697, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29352464

RESUMO

KEY POINTS: Distinct spiking patterns may arise from qualitative differences in ion channel expression (i.e. when different neurons express distinct ion channels) and/or when quantitative differences in expression levels qualitatively alter the spike generation process. We hypothesized that spiking patterns in neurons of the superficial dorsal horn (SDH) of spinal cord reflect both mechanisms. We reproduced SDH neuron spiking patterns by varying densities of KV 1- and A-type potassium conductances. Plotting the spiking patterns that emerge from different density combinations revealed spiking-pattern regions separated by boundaries (bifurcations). This map suggests that certain spiking pattern combinations occur when the distribution of potassium channel densities straddle boundaries, whereas other spiking patterns reflect distinct patterns of ion channel expression. The former mechanism may explain why certain spiking patterns co-occur in genetically identified neuron types. We also present algorithms to predict spiking pattern proportions from ion channel density distributions, and vice versa. ABSTRACT: Neurons are often classified by spiking pattern. Yet, some neurons exhibit distinct patterns under subtly different test conditions, which suggests that they operate near an abrupt transition, or bifurcation. A set of such neurons may exhibit heterogeneous spiking patterns not because of qualitative differences in which ion channels they express, but rather because quantitative differences in expression levels cause neurons to operate on opposite sides of a bifurcation. Neurons in the spinal dorsal horn, for example, respond to somatic current injection with patterns that include tonic, single, gap, delayed and reluctant spiking. It is unclear whether these patterns reflect five cell populations (defined by distinct ion channel expression patterns), heterogeneity within a single population, or some combination thereof. We reproduced all five spiking patterns in a computational model by varying the densities of a low-threshold (KV 1-type) potassium conductance and an inactivating (A-type) potassium conductance and found that single, gap, delayed and reluctant spiking arise when the joint probability distribution of those channel densities spans two intersecting bifurcations that divide the parameter space into quadrants, each associated with a different spiking pattern. Tonic spiking likely arises from a separate distribution of potassium channel densities. These results argue in favour of two cell populations, one characterized by tonic spiking and the other by heterogeneous spiking patterns. We present algorithms to predict spiking pattern proportions based on ion channel density distributions and, conversely, to estimate ion channel density distributions based on spiking pattern proportions. The implications for classifying cells based on spiking pattern are discussed.


Assuntos
Potenciais de Ação , Biologia Computacional/métodos , Simulação por Computador , Canais Iônicos/fisiologia , Modelos Neurológicos , Células do Corno Posterior/fisiologia , Animais , Células do Corno Posterior/citologia , Canais de Potássio/fisiologia
12.
Neuroscience ; 371: 178-190, 2018 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-29229559

RESUMO

Sensory information stimulates receptors of somatosensory system neurons generating a signal that codifies the characteristics of peripheral stimulation. This information reaches the spinal cord and is relayed to supra-spinal structures through two main systems: the postsynaptic dorsal column-medial lemniscal (DC-ML) and the anterolateral (AL) systems. From the classical point of view, the DC-ML has an ipsilateral ascending pathway to the Gracilis (GRA) or Cuneate (CUN) nuclei and the AL has a contralateral ascending pathway to the ventral posterolateral (VPL) thalamic nucleus. These two systems have been the subject of multiple studies that established their independence and interactions. To analyze the ascending projections of L1-L5 spinal dorsal horn neurons in the rat, two retrograde neuronal tracers were injected into the GRA and the VPL. Additionally, an electrophysiological study was performed by applying electrical stimulation at the GRA or VPL and recording antidromic evoked activity in single unit spinal cord cells. Importantly, a subset of spinal dorsal horn neurons exhibited double staining, indicating that these neurons projected to both the GRA and the VPL. These double-stained neurons were located on both sides of the dorsal horn of the spinal cord. The spinal dorsal horn neurons exhibited antidromic and collision activities in response to both GRA and VPL electrical activation. These results show spinal cord neurons with bifurcated bilateral projections to both the DC-ML and AL systems. Based on these results, we named these neurons bilateral and bifurcated cells.


Assuntos
Axônios/fisiologia , Células do Corno Posterior/citologia , Células do Corno Posterior/fisiologia , Animais , Vértebras Lombares , Masculino , Bulbo/citologia , Bulbo/fisiologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Técnicas de Rastreamento Neuroanatômico , Ratos Sprague-Dawley , Ratos Wistar , Núcleos Ventrais do Tálamo/citologia , Núcleos Ventrais do Tálamo/fisiologia
13.
Neuroscience ; 363: 120-133, 2017 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-28860091

RESUMO

Around a quarter of neurons in laminae I-II of the dorsal horn are inhibitory interneurons. These play an important role in modulating somatosensory information, including that perceived as pain or itch. Previous studies in rat identified four largely non-overlapping neurochemical populations among these cells, defined by expression of galanin, neuropeptide Y (NPY), neuronal nitric oxide synthase (nNOS) or parvalbumin. The galanin cells were subsequently shown to coexpress dynorphin. Several recent studies have used genetically modified mice to investigate the function of different interneuron populations, and it is therefore important to determine whether the same pattern applies in mouse, and to estimate the relative sizes of these populations. We show that the neurochemical organization of inhibitory interneurons in mouse superficial dorsal horn is similar to that in the rat, although a larger proportion of these neurons (33%) express NPY. Between them, these four populations account for ∼75% of inhibitory cells in laminae I-II. Since ∼25% of inhibitory interneurons in this region belong to a novel calretinin-expressing type, our results suggest that virtually all inhibitory interneurons in superficial dorsal horn can be assigned to one of these five neurochemical populations. Although our main focus was inhibitory neurons, we also identified a population of excitatory dynorphin-expressing cells in laminae I-II that are largely restricted to the medial part of the mid-lumbar dorsal horn, corresponding to glabrous skin territory. These findings are important for interpretation of studies using molecular-genetic techniques to manipulate the functions of interneuron populations to investigate their roles in somatosensory processing.


Assuntos
Interneurônios/citologia , Células do Corno Posterior/citologia , Corno Dorsal da Medula Espinal/citologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
14.
Mol Pain ; 13: 1744806917710041, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28565998

RESUMO

Presynaptic GABAB receptors (GABABRs) are highly expressed in dorsal root ganglion neurons and spinal cord dorsal horn. GABABRs located in superficial dorsal horn play an important antinociceptive role, by acting at both pre- and postsynaptic sites. GABABRs expressed in deep dorsal horn could be involved in the processing of touch sensation and possibly in the generation of tactile allodynia in chronic pain. The objective of this study was to characterize the morphological and functional properties of GABABRs expressed on Aß fibers projecting to lamina III/IV and to understand their role in modulating excitatory synaptic transmission. We performed high-resolution electron microscopic analysis, showing that GABAB2 subunit is expressed on 71.9% of terminals in rat lamina III-IV. These terminals were engaged in axodendritic synapses and, for the 46%, also expressed glutamate immunoreactivity. Monosynaptic excitatory postsynaptic currents, evoked by Aß fiber stimulation and recorded from lamina III/IV neurons in spinal cord slices, were strongly depressed by application of baclofen (0.1-2.5 µM), acting as a presynaptic modulator. Application of the GABABR antagonist CGP 55845 caused, in a subpopulation of neurons, the potentiation of the first of two excitatory postsynaptic currents recorded with the paired-pulse protocol, showing that GABABRs are endogenously activated. A decrease in the paired-pulse ratio accompanied the effect of CGP 55845, implying the involvement of presynaptic GABABRs. CGP 55845 facilitated only the first excitatory postsynaptic current also during a train of four consecutive stimuli applied to Aß fibers. These results suggest that GABABRs tonically inhibit glutamate release from Aß fibers at a subset of synapses in deep dorsal horn. This modulation specifically affects only the early phase of synaptic excitation in lamina III-IV neurons.


Assuntos
Ácido Glutâmico/metabolismo , Receptores de GABA-B/metabolismo , Corno Dorsal da Medula Espinal/citologia , Corno Dorsal da Medula Espinal/metabolismo , Potenciais de Ação/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores , Antagonistas de Receptores de GABA-B/farmacologia , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Ácidos Fosfínicos/farmacologia , Células do Corno Posterior/citologia , Células do Corno Posterior/metabolismo , Propanolaminas/farmacologia , Ratos , Sinapses/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
15.
Neuroscience ; 343: 459-471, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28039040

RESUMO

In the spinal cord, glycine and γ-amino butyric acid (GABA) are inhibitory neurotransmitters. However, the ontogeny of the glycinergic network remains unclear. To address this point, we examined the developmental formation of glycinergic terminals by immunohistochemistry for glycine transporter 2 (GlyT2), a marker of glycinergic terminals, in developing mouse cervical spinal cord. Furthermore, the developmental localization of GlyT2 was compared with that of glutamic acid decarboxylase (GAD), a marker of GABAergic terminals, and vesicular GABA transporter (VGAT), a marker of inhibitory terminals, by single and double immunolabeling. GlyT2-positive dots (glycinergic terminals) were first detected in the marginal zone on embryonic day 14 (E14). In the ventral horn, they were detected at E16 and increased in observed density during postnatal development. Until postnatal day 7 (P7), GAD-positive dots (GABAergic terminals) were dominant and GlyT2 immunolabeling was localized at GAD-positive dots. During the second postnatal week, GABAergic terminals markedly decreased and glycinergic terminals became dominant. In the dorsal horn, glycinergic terminals were detected at P0 in lamina IV and P7 in lamina III and developmentally increased. GlyT2 was also localized at GAD-positive dots, and colocalizing dots were dominant at P21. VGAT-positive dots (inhibitory terminals) continued to increase until P21. These results suggest that GABAergic terminals first appear during embryonic development and may often change to colocalizing terminals throughout the gray matter during development. The colocalizing terminals may remain in the dorsal horn, whereas in the ventral horn, colocalizing terminals may give rise to glycinergic terminals.


Assuntos
Células do Corno Anterior/metabolismo , Medula Cervical/crescimento & desenvolvimento , Medula Cervical/metabolismo , Glicina/metabolismo , Células do Corno Posterior/metabolismo , Sinapses/metabolismo , Animais , Animais Recém-Nascidos , Células do Corno Anterior/citologia , Medula Cervical/citologia , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Imuno-Histoquímica , Masculino , Microscopia Eletrônica , Células do Corno Posterior/citologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Ácido gama-Aminobutírico/metabolismo
16.
Nat Commun ; 7: 11450, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-27121084

RESUMO

Sensory information from mechanoreceptors and nociceptors in the skin plays key roles in adaptive and protective motor behaviours. To date, very little is known about how this information is encoded by spinal cord cell types and their activity patterns, particularly under freely behaving conditions. To enable stable measurement of neuronal and glial cell activity in behaving mice, we have developed fluorescence imaging approaches based on two- and miniaturized one-photon microscopy. We show that distinct cutaneous stimuli activate overlapping ensembles of dorsal horn neurons, and that stimulus type and intensity is encoded at the single-cell level. In contrast, astrocytes show large-scale coordinated calcium responses to intense but not weak sensory inputs. Sensory-evoked activity is potently suppressed by anaesthesia. By revealing the cellular and computational logic of spinal cord networks under behaving conditions, our approach holds promise for better understanding of healthy and aberrant spinal cord processes.


Assuntos
Mecanorreceptores/fisiologia , Neurônios/fisiologia , Nociceptores/fisiologia , Medula Espinal/fisiologia , Animais , Astrócitos/metabolismo , Astrócitos/fisiologia , Cálcio/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Atividade Motora/fisiologia , Neurônios/metabolismo , Células do Corno Posterior/citologia , Células do Corno Posterior/metabolismo , Células do Corno Posterior/fisiologia , Medula Espinal/citologia , Medula Espinal/metabolismo
17.
Mol Pain ; 122016.
Artigo em Inglês | MEDLINE | ID: mdl-27094552

RESUMO

BACKGROUND: Glia-neuron interactions play an important role in the development of neuropathic pain. Expression of the pro-inflammatory cytokne →cytokine Interferon-gamma (IFNγ) is upregulated in the dorsal horn after peripheral nerve injury, and intrathecal IFNγ administration induces mechanical allodynia in rats. A growing body of evidence suggests that IFNγ might be involved in the mechanisms of neuropathic pain, but its effects on the spinal dorsal horn are unclear. We performed blind whole-cell patch-clamp recording to investigate the effect of IFNγ on postsynaptic glutamate-induced currents in the substantia gelatinosa neurons of spinal cord slices from adult male rats. RESULTS: IFNγ perfusion significantly enhanced the amplitude of NMDA-induced inward currents in substantia gelatinosa neurons, but did not affect AMPA-induced currents. The facilitation of NMDA-induced current by IFNγ was inhibited by bath application of an IFNγ receptor-selective antagonist. Adding the Janus activated kinase inhibitor tofacitinib to the pipette solution did not affect the IFNγ-induced facilitation of NMDA-induced currents. However, the facilitatory effect of IFNγ on NMDA-induced currents was inhibited by perfusion of the microglial inhibitor minocycline. These results suggest that IFNγ binds the microglial IFNγ receptor and enhances NMDA receptor activity in substantia gelatinosa neurons. Next, to identify the effector of signal transmission from microglia to dorsal horn neurons, we added an inhibitor of G proteins, GDP-ß-S, to the pipette solution. In a GDP-ß-S-containing pipette solution, IFNγ-induced potentiation of the NMDA current was significantly suppressed after 30 min. In addition, IFNγ-induced potentiation of NMDA currents was blocked by application of a selective antagonist of CCR2, and its ligand CCL2 increased NMDA-induced currents. CONCLUSION: Our findings suggest that IFNγ enhance the amplitude of NMDA-induced inward currents in substantia gelatinosa neurons via microglial IFNγ receptors and CCL2/CCR2 signaling. This mechanism might be partially responsible for the development of persistent neuropathic pain.


Assuntos
Comunicação Celular/efeitos dos fármacos , Interferon gama/farmacologia , Microglia/citologia , Microglia/metabolismo , Células do Corno Posterior/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Quimiocina CCL2/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Microglia/efeitos dos fármacos , Modelos Biológicos , N-Metilaspartato/farmacologia , Células do Corno Posterior/citologia , Células do Corno Posterior/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores CCR2/metabolismo , Receptores de Interferon/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia , Receptor de Interferon gama
18.
Neuroscience ; 326: 10-21, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27045594

RESUMO

The dorsal horn (DH) of the spinal cord contains a heterogenous population of neurons that process incoming sensory signals before information ascends to the brain. We have recently characterized calretinin-expressing (CR+) neurons in the DH and shown that they can be divided into excitatory and inhibitory subpopulations. The excitatory population receives high-frequency excitatory synaptic input and expresses delayed firing action potential discharge, whereas the inhibitory population receives weak excitatory drive and exhibits tonic or initial bursting discharge. Here, we characterize inhibitory synaptic input and neuromodulation in the two CR+ populations, in order to determine how each is regulated. We show that excitatory CR+ neurons receive mixed inhibition from GABAergic and glycinergic sources, whereas inhibitory CR+ neurons receive inhibition, which is dominated by glycine. Noradrenaline and serotonin produced robust outward currents in excitatory CR+ neurons, predicting an inhibitory action on these neurons, but neither neuromodulator produced a response in CR+ inhibitory neurons. In contrast, enkephalin (along with selective mu and delta opioid receptor agonists) produced outward currents in inhibitory CR+ neurons, consistent with an inhibitory action but did not affect the excitatory CR+ population. Our findings show that the pharmacology of inhibitory inputs and neuromodulator actions on CR+ cells, along with their excitatory inputs can define these two subpopulations further, and this could be exploited to modulate discrete aspects of sensory processing selectively in the DH.


Assuntos
Calbindina 2/metabolismo , Potenciais Pós-Sinápticos Inibidores , Células do Corno Posterior/fisiologia , Transmissão Sináptica , Animais , Encefalinas/administração & dosagem , Encefalinas/fisiologia , Feminino , Antagonistas de Receptores de GABA-A/administração & dosagem , Glicina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Potenciais Pós-Sinápticos em Miniatura , Norepinefrina/administração & dosagem , Norepinefrina/fisiologia , Células do Corno Posterior/citologia , Células do Corno Posterior/efeitos dos fármacos , Células do Corno Posterior/metabolismo , Receptores de GABA-A/fisiologia , Serotonina/administração & dosagem , Serotonina/fisiologia , Ácido gama-Aminobutírico/fisiologia
19.
Brain Struct Funct ; 221(4): 2343-60, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-25912439

RESUMO

The role of spinal dorsal horn propriospinal connections in nociceptive processing is not yet established. Recently described, rostrocaudally oriented axon collaterals of lamina I projection and local-circuit neurons (PNs and LCNs) running in the dorsolateral funiculus (DLF) may serve as the anatomical substrate for intersegmental processing. Putative targets of these axons include lateral dendrites of superficial dorsal horn neurons, including PNs, and also neurons in the lateral spinal nucleus (LSN) that are thought to be important integrator units receiving, among others, visceral sensory information. Here we used an intact spinal cord preparation to study intersegmental connections within the lateral part of the superficial dorsal horn. We detected brief monosynaptic and prolonged polysynaptic excitation of lamina I and LSN neurons when stimulating individual dorsal horn neurons located caudally, even in neighboring spinal cord segments. These connections, however, were infrequent. We also revealed that some projection neurons outside the dorsal grey matter and in the LSN have distinct, previously undescribed course of their projection axon. Our findings indicate that axon collaterals of lamina I PNs and LCNs in the DLF rarely form functional connections with other lamina I and LSN neurons and that the majority of their targets are on other elements of the dorsal horn. The unique axon trajectories of neurons in the dorsolateral aspect of the spinal cord, including the LSN do not fit our present understanding of midline axon guidance and suggest that their function and development differ from the neurons inside lamina I. These findings emphasize the importance of understanding the connectivity matrix of the superficial dorsal horn in order to decipher spinal sensory information processing.


Assuntos
Axônios , Células do Corno Posterior/citologia , Células do Corno Posterior/fisiologia , Medula Espinal/citologia , Medula Espinal/fisiologia , Potenciais de Ação , Animais , Dendritos , Potenciais Pós-Sinápticos Excitadores , Vias Neurais/citologia , Vias Neurais/fisiologia , Ratos , Ratos Wistar
20.
Fiziol Zh (1994) ; 61(4): 48-55, 2015.
Artigo em Ucraniano | MEDLINE | ID: mdl-26552305

RESUMO

The influence of long-term culturing (12 days in vitro) of dorsal root ganglion (DRG) and dorsal horn (DH) neurons with peptide Semax on the level of synaptic activity at co-cultures, as well as short-term plasticity in sensory synapses were studied. It has been shown that neuronal culturing with peptide at concentrations of 10 and 100 µM led to increasing the frequency of spontaneous glutamatergic postsynaptic currents in DH neurons to 71.7 ± 1.8% and 93.9 ± 3.1% (n = 6; P < 0.001); Semax has a not significant effect on the amplitude and frequency of miniature glutamatergic currents, but causes an increase of the amplitudes of spontaneous postsynaptic currents, as well as elevates the quantum content. The data show the increase of multivesicular glutamate release efficiency in neural networks of co-cultures following incubation with the peptide. Also Semax (10 and 100 µM) induces changes of the basic parameters of short-term plasticity in sensory synapses: (1) increasing the paired-pulse ratio from 0.53 ± 0.028 (n = 8) to 0.91 ± 0.072 (n = 6, P < 0.01) and 0.95 ± 0.026 (n = 7; P < 0.001); (2) reducing the ratio of the coefficients of variation (CV2/ CV1) from 1.49 ± 0.11 (n = 8) to 1.02 ± 0.09 (n = 6; P < 0.05) and 1.11 ± 0.13 (n = 7; P < 0.0) respectively. The results indicate a stimulating effect of Semax on the activity of glutamatergic synapses in neural networks of co-cultures, as well as the ability of the peptide to effectively modulate the short-term plasticity in sensory synapses.


Assuntos
Hormônio Adrenocorticotrópico/análogos & derivados , Gânglios Espinais/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/farmacologia , Células do Corno Posterior/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Hormônio Adrenocorticotrópico/farmacologia , Animais , Técnicas de Cocultura , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Ácido Glutâmico/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Células do Corno Posterior/citologia , Células do Corno Posterior/metabolismo , Cultura Primária de Células , Ratos , Ratos Wistar , Sinapses/fisiologia , Potenciais Sinápticos/efeitos dos fármacos , Potenciais Sinápticos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...