Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.224
Filtrar
1.
PLoS Negl Trop Dis ; 15(12): e0010027, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34879059

RESUMO

BACKGROUND: The metacestode larval stage of the fox-tapeworm Echinococcus multilocularis causes alveolar echinococcosis by tumour-like growth within the liver of the intermediate host. Metacestode growth and development is stimulated by host-derived cytokines such as insulin, fibroblast growth factor, and epidermal growth factor via activation of cognate receptor tyrosine kinases expressed by the parasite. Little is known, however, concerning signal transmission to the parasite nucleus and cross-reaction with other parasite signalling systems. METHODOLOGY/PRINCIPAL FINDINGS: Using bioinformatic approaches, cloning, and yeast two-hybrid analyses we identified a novel mitogen-activated kinase (MAPK) cascade module that consists of E. multilocularis orthologs of the tyrosine kinase receptor interactor Growth factor receptor-bound 2, EmGrb2, the MAPK kinase kinase EmMEKK1, a novel MAPK kinase, EmMKK3, and a close homolog to c-Jun N-terminal kinase (JNK), EmMPK3. Whole mount in situ hybridization analyses indicated that EmMEKK1 and EmMPK3 are both expressed in E. multilocularis germinative (stem) cells but also in differentiated or differentiating cells. Treatment with the known JNK inhibitor SP600125 led to a significantly reduced formation of metacestode vesicles from stem cells and to a specific reduction of proliferating stem cells in mature metacestode vesicles. CONCLUSIONS/SIGNIFICANCE: We provide evidence for the expression of a MEKK1-JNK MAPK cascade module which, in mammals, is crucially involved in stress responses, cytoskeletal rearrangements, and apoptosis, in E. multilocularis stem cells. Inhibitor studies indicate an important role of JNK signalling in E. multilocularis stem cell survival and/or maintenance. Our data are relevant for molecular and cellular studies into crosstalk signalling mechanisms that govern Echinococcus stem cell function and introduce the JNK signalling cascade as a possible target of chemotherapeutics against echinococcosis.


Assuntos
Echinococcus multilocularis/enzimologia , Proteínas de Helminto/metabolismo , MAP Quinase Quinase 4/metabolismo , MAP Quinase Quinase Quinase 1/metabolismo , Células-Tronco/enzimologia , Animais , Proliferação de Células , Echinococcus multilocularis/genética , Echinococcus multilocularis/crescimento & desenvolvimento , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Proteínas de Helminto/genética , MAP Quinase Quinase 4/genética , MAP Quinase Quinase Quinase 1/genética , MAP Quinase Quinase Quinase 3/genética , MAP Quinase Quinase Quinase 3/metabolismo , Sistema de Sinalização das MAP Quinases , Células-Tronco/citologia
2.
Cells ; 10(11)2021 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-34831474

RESUMO

Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSC) provide a powerful model system to uncover fundamental mechanisms that control cellular identity during mammalian development. Histone methylation governs gene expression programs that play a key role in the regulation of the balance between self-renewal and differentiation of ESCs. Lysine-specific demethylase 1 (LSD1, also known as KDM1A), the first identified histone lysine demethylase, demethylates H3K4me1/2 and H3K9me1/2 at target loci in a context-dependent manner. Moreover, it has also been shown to demethylate non-histone substrates playing a central role in the regulation of numerous cellular processes. In this review, we summarize current knowledge about LSD1 and the molecular mechanism by which LSD1 influences the stem cells state, including the regulatory circuitry underlying self-renewal and pluripotency.


Assuntos
Diferenciação Celular , Histona Desmetilases/metabolismo , Células-Tronco/citologia , Células-Tronco/enzimologia , Animais , Autorrenovação Celular , Reprogramação Celular , Metilação de DNA/genética , Histona Desmetilases/química , Humanos
3.
Science ; 373(6551): 231-236, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244417

RESUMO

In mammals, early resistance to viruses relies on interferons, which protect differentiated cells but not stem cells from viral replication. Many other organisms rely instead on RNA interference (RNAi) mediated by a specialized Dicer protein that cleaves viral double-stranded RNA. Whether RNAi also contributes to mammalian antiviral immunity remains controversial. We identified an isoform of Dicer, named antiviral Dicer (aviD), that protects tissue stem cells from RNA viruses-including Zika virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-by dicing viral double-stranded RNA to orchestrate antiviral RNAi. Our work sheds light on the molecular regulation of antiviral RNAi in mammalian innate immunity, in which different cell-intrinsic antiviral pathways can be tailored to the differentiation status of cells.


Assuntos
RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Interferência de RNA , Vírus de RNA/fisiologia , RNA Viral/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Células-Tronco/enzimologia , Células-Tronco/virologia , Processamento Alternativo , Animais , Encéfalo/enzimologia , Encéfalo/virologia , Linhagem Celular , RNA Helicases DEAD-box/química , Humanos , Imunidade Inata , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Organoides/enzimologia , Organoides/virologia , Infecções por Vírus de RNA/enzimologia , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/virologia , Vírus de RNA/genética , Vírus de RNA/imunologia , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/metabolismo , Ribonuclease III/química , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Replicação Viral , Zika virus/genética , Zika virus/imunologia , Zika virus/fisiologia , Infecção por Zika virus/enzimologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia
4.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074794

RESUMO

The DNA-sensing enzyme cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) regulates inflammation and immune defense against pathogens and malignant cells. Although cGAS has been shown to exert antitumor effects in several mouse models harboring transplanted tumor cell lines, its role in tumors arising from endogenous tissues remains unknown. Here, we show that deletion of cGAS in mice exacerbated chemical-induced colitis and colitis-associated colon cancer (CAC). Interestingly, mice lacking cGAS were more susceptible to CAC than those lacking stimulator of interferon genes (STING) or type I interferon receptor under the same conditions. cGAS but not STING is highly expressed in intestinal stem cells. cGAS deficiency led to intestinal stem cell loss and compromised intestinal barrier integrity upon dextran sodium sulfate-induced acute injury. Loss of cGAS exacerbated inflammation, led to activation of STAT3, and accelerated proliferation of intestinal epithelial cells during CAC development. Mice lacking cGAS also accumulated myeloid-derived suppressive cells within the tumor, displayed enhanced Th17 differentiation, but reduced interleukin (IL)-10 production. These results indicate that cGAS plays an important role in controlling CAC development by defending the integrity of the intestinal mucosa.


Assuntos
Neoplasias do Colo/enzimologia , Mucosa Intestinal/enzimologia , Proteínas de Neoplasias/metabolismo , Nucleotidiltransferases/metabolismo , Animais , Neoplasias do Colo/genética , Camundongos , Camundongos Knockout , Células Supressoras Mieloides/enzimologia , Proteínas de Neoplasias/genética , Nucleotidiltransferases/genética , Células-Tronco/enzimologia , Células Th17/enzimologia
5.
Am J Pathol ; 191(9): 1511-1519, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34102107

RESUMO

Chemosensory changes are well-reported symptoms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The virus targets cells for entry by binding of its spike protein to cell-surface angiotensin-converting enzyme 2 (ACE2). It is not known whether ACE2 is expressed on taste receptor cells (TRCs), or whether TRCs are infected directly. in situ hybridization probe and an antibody specific to ACE2 indicated presence of ACE2 on a subpopulation of TRCs (namely, type II cells in taste buds in taste papillae). Fungiform papillae of a SARS-CoV-2+ patient exhibiting symptoms of coronavirus disease 2019 (COVID-19), including taste changes, were biopsied. Presence of replicating SARS-CoV-2 in type II cells was verified by in situ hybridization. Therefore, taste type II cells provide a potential portal for viral entry that predicts vulnerabilities to SARS-CoV-2 in the oral cavity. The continuity and cell turnover of a patient's fungiform papillae taste stem cell layer were disrupted during infection and had not completely recovered 6 weeks after symptom onset. Another patient experiencing post-COVID-19 taste disturbances also had disrupted stem cells. These results demonstrate the possibility that novel and sudden taste changes, frequently reported in COVID-19, may be the result of direct infection of taste papillae by SARS-CoV-2. This may result in impaired taste receptor stem cell activity and suggest that further work is needed to understand the acute and postacute dynamics of viral kinetics in the human taste bud.


Assuntos
Enzima de Conversão de Angiotensina 2/biossíntese , COVID-19 , Regulação Enzimológica da Expressão Gênica , SARS-CoV-2/metabolismo , Células-Tronco , Papilas Gustativas , COVID-19/enzimologia , COVID-19/patologia , COVID-19/virologia , Feminino , Humanos , Masculino , Células-Tronco/enzimologia , Células-Tronco/patologia , Células-Tronco/virologia , Papilas Gustativas/enzimologia , Papilas Gustativas/patologia , Papilas Gustativas/virologia
6.
Arterioscler Thromb Vasc Biol ; 41(6): 1915-1927, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33853347
7.
Cell Rep ; 34(13): 108905, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33789105

RESUMO

Ogt catalyzed O-linked N-acetylglucosamine (O-GlcNAcylation, O-GlcNAc) plays an important function in diverse biological processes and diseases. However, the roles of Ogt in regulating neurogenesis remain largely unknown. Here, we show that Ogt deficiency or depletion in adult neural stem/progenitor cells (aNSPCs) leads to the diminishment of the aNSPC pool and aberrant neurogenesis and consequently impairs cognitive function in adult mice. RNA sequencing reveals that Ogt deficiency alters the transcription of genes relating to cell cycle, neurogenesis, and neuronal development. Mechanistic studies show that Ogt directly interacts with Notch1 and catalyzes the O-GlcNAc modification of Notch TM/ICD fragment. Decreased O-GlcNAc modification of TM/ICD increases the binding of E3 ubiquitin ligase Itch to TM/ICD and promotes its degradation. Itch knockdown rescues neurogenic defects induced by Ogt deficiency in vitro and in vivo. Our findings reveal the essential roles and mechanisms of Ogt and O-GlcNAc modification in regulating mammalian neurogenesis and cognition.


Assuntos
Envelhecimento/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Neurogênese , Receptores Notch/metabolismo , Transdução de Sinais , Células-Tronco/enzimologia , Acetilglucosamina/metabolismo , Animais , Biocatálise , Diferenciação Celular , Proliferação de Células , Deleção de Genes , Glicosilação , Células HEK293 , Humanos , Memória , Camundongos Transgênicos , N-Acetilglucosaminiltransferases/deficiência , Proteólise , Receptores Notch/química , Células-Tronco/citologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
8.
J Cell Biol ; 220(4)2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33604655

RESUMO

Epigenetic histone trimethylation on lysine 9 (H3K9me3) represents a major molecular signal for genome stability and gene silencing conserved from worms to man. However, the functional role of the H3K9 trimethylases SUV39H1/2 in mammalian tissue homeostasis remains largely unknown. Here, we use a spontaneous dog model with monogenic inheritance of a recessive SUV39H2 loss-of-function variant and impaired differentiation in the epidermis, a self-renewing tissue fueled by stem and progenitor cell proliferation and differentiation. Our results demonstrate that SUV39H2 maintains the stem and progenitor cell pool by restricting fate conversion through H3K9me3 repressive marks on gene promoters encoding components of the Wnt/p63/adhesion axis. When SUV39H2 function is lost, repression is relieved, and enhanced Wnt activity causes progenitor cells to prematurely exit the cell cycle, a process mimicked by pharmacological Wnt activation in primary canine, human, and mouse keratinocytes. As a consequence, the stem cell growth potential of cultured SUV39H2-deficient canine keratinocytes is exhausted while epidermal differentiation and genome stability are compromised. Collectively, our data identify SUV39H2 and potentially also SUV39H1 as major gatekeepers in the delicate balance of progenitor fate conversion through H3K9me3 rate-limiting road blocks in basal layer keratinocytes.


Assuntos
Diferenciação Celular , Proliferação de Células , Epiderme/enzimologia , Regulação Enzimológica da Expressão Gênica , Inativação Gênica , Histona-Lisina N-Metiltransferase/biossíntese , Células-Tronco/enzimologia , Via de Sinalização Wnt , Animais , Cães , Feminino , Humanos , Queratinócitos/metabolismo , Mutação com Perda de Função , Masculino , Camundongos
9.
J Invest Dermatol ; 141(4S): 1031-1040, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33509633

RESUMO

In this review, we propose that telomere length dynamics play an important but underinvestigated role in the biology of the hair follicle (HF), a prototypic, cyclically remodeled miniorgan that shows an intriguing aging pattern in humans. Whereas the HF pigmentary unit ages quickly, its epithelial stem cell (ESC) component and regenerative capacity are surprisingly aging resistant. Telomerase-deficient mice with short telomeres display an aging phenotype of hair graying and hair loss that is attributed to impaired HF ESC mobilization. Yet, it remains unclear whether the function of telomerase and telomeres in murine HF biology translate to the human system. Therefore, we propose new directions for future telomere research of the human HF. Such research may guide the development of novel treatments for selected disorders of human hair growth or pigmentation (e.g., chemotherapy-induced alopecia, telogen effluvium, androgenetic alopecia, cicatricial alopecia, graying). It might also increase the understanding of the global role of telomeres in aging-related human disease.


Assuntos
Envelhecimento/genética , Folículo Piloso/patologia , Células-Tronco/patologia , Telomerase/metabolismo , Encurtamento do Telômero/genética , Envelhecimento/efeitos dos fármacos , Envelhecimento/patologia , Animais , Doenças do Cabelo/tratamento farmacológico , Doenças do Cabelo/genética , Doenças do Cabelo/patologia , Folículo Piloso/citologia , Folículo Piloso/enzimologia , Humanos , Camundongos , Camundongos Transgênicos , Transtornos da Pigmentação/tratamento farmacológico , Transtornos da Pigmentação/genética , Transtornos da Pigmentação/patologia , Células-Tronco/enzimologia , Telomerase/antagonistas & inibidores , Telomerase/genética , Encurtamento do Telômero/efeitos dos fármacos
10.
Int J Mol Sci ; 23(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35008612

RESUMO

The aim of this study was to evaluate the effect of a time-dependent magnetic field on the biological performance of periodontal ligament stem cells (PDLSCs). A Western blot analysis and Alamar Blue assay were performed to investigate the proliferative capacity of magnetically stimulated PDLSCs (PDLSCs MAG) through the study of the MAPK cascade (p-ERK1/2). The observation of ALP levels allowed the evaluation of the effect of the magnetic field on osteogenic differentiation. Metabolomics data, such as oxygen consumption rate (OCR), extracellular acidification rate (ECAR) and ATP production provided an overview of the PDLSCs MAG metabolic state. Moreover, the mitochondrial state was investigated through confocal laser scanning microscopy. Results showed a good viability for PDLSCs MAG. Magnetic stimulation can activate the ERK phosphorylation more than the FGF factor alone by promoting a better cell proliferation. Osteogenic differentiation was more effectively induced by magnetic stimulation. The metabolic panel indicated significant changes in the mitochondrial cellular respiration of PDLSCs MAG. The results suggested that periodontal ligament stem cells (PDLSCs) can respond to biophysical stimuli such as a time-dependent magnetic field, which is able to induce changes in cell proliferation and differentiation. Moreover, the magnetic stimulation also produced an effect on the cell metabolic profile. Therefore, the current study demonstrated that a time-dependent magnetic stimulation may improve the regenerative properties of PDLSCs.


Assuntos
Campos Magnéticos , Ligamento Periodontal/citologia , Células-Tronco/citologia , Trifosfato de Adenosina/metabolismo , Adulto , Fosfatase Alcalina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/enzimologia , Adulto Jovem
11.
J Orthop Res ; 39(7): 1452-1462, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32970360

RESUMO

Rotator cuff (RC) muscle fatty infiltration (FI) is an important factor that determines the clinical outcome of patients with RC repair. There is no effective treatment for RC muscle FI at this time. The goal of this study is to define the role Trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor in regulating muscle fibro/adipogenic progenitors (FAPs) adipogenesis and treating muscle fatty degeneration after massive RC tears in a mouse model. We hypothesize that TSA reduces muscle FI after massive RC tears. HDAC activity was measured in FAPs in RC muscle after tendon/nerve transection or sham surgery. FAPs were treated with TSA for 2 weeks and FAP adipogenesis was evaluated with perilipin and Oil Red O staining, as well as reverse transcript-polymerase chain reaction for adipogenesis-related genes. About 0.5 mg/kg TSA or dimethyl sulfoxide was administered to C57B/L6 mice with massive rotator cuff tears through daily intraperitoneal injection for 6 weeks. Supraspinatus muscles were harvested for biochemical and histology analysis. We found that FAPs showed significantly higher HDAC activity after RC tendon/nerve transection. TSA treatment significantly reduced HDAC activity and inhibited adipogenesis of FAPs. TSA also abolished the role of bone morphogenetic protein-7 in inducing FAP adipogenesis and promoted FAP brown/beige adipose tissue (BAT) differentiation. TSA injection significantly increased histone H3 acetylation and reduced FI of rotator cuff muscles after massive tendon tears. Results from this study showed that TSA can regulate FAP adipogenesis and promote FAP BAT differentiation epigenetically. HDAC inhibition may be a new treatment strategy to reduce muscle FI after RC tears and repair.


Assuntos
Adipogenia/efeitos dos fármacos , Inibidores de Histona Desacetilases/uso terapêutico , Ácidos Hidroxâmicos/uso terapêutico , Complicações Pós-Operatórias/prevenção & controle , Lesões do Manguito Rotador/complicações , Animais , Proteína Morfogenética Óssea 7 , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Feminino , Fibrose , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Camundongos Endogâmicos C57BL , Complicações Pós-Operatórias/etiologia , Lesões do Manguito Rotador/enzimologia , Lesões do Manguito Rotador/patologia , Lesões do Manguito Rotador/cirurgia , Células-Tronco/efeitos dos fármacos , Células-Tronco/enzimologia
12.
FASEB J ; 35(1): e21225, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33337568

RESUMO

Studies of neuroglial interaction largely depend on cell-specific gene knockout (KO) experiments using Cre recombinase. However, genes known as glial-specific genes have recently been reported to be expressed in neuroglial stem cells, leading to the possibility that a glia-specific Cre driver results in unwanted gene deletion in neurons, which may affect sound interpretation. 2',3'-Cyclic nucleotide 3'-phosphodiesterase (CNP) is generally considered to be an oligodendrocyte (OL) marker. Accordingly, Cnp promoter-controlled Cre recombinase has been used to create OL-specific gene targeting mice. However, in this study, using Rosa26-tdTomato-reporter/Cnp-Cre mice, we found that many forebrain neurons and cerebellar Purkinje neurons belong to the lineages of Cnp-expressing neuroglial stem cells. To answer whether gene targeting by Cnp-Cre can induce neuron-autonomous defects, we conditionally deleted an essential autophagy gene, Atg7, in Cnp-Cre mice. The Cnp-Cre-mediated Atg7 KO mice showed extensive p62 inclusion in neurons, including cerebellar Purkinje neurons with extensive neurodegeneration. Furthermore, neuronal areas showing p62 inclusion in Cnp-Cre-mediated Atg7 KO mice overlapped with the neuronal lineage of Cnp-expressing neuroglial stem cells. Moreover, Cnp-Cre-mediated Atg7-KO mice did not develop critical defects in myelination. Our results demonstrate that a large population of central neurons are derived from Cnp-expressing neuroglial stem cells; thus, conditional gene targeting using the Cnp promoter, which is known to be OL-specific, can induce neuron-autonomous phenotypes.


Assuntos
2',3'-Nucleotídeo Cíclico 3'-Fosfodiesterase/deficiência , Doenças Neurodegenerativas/enzimologia , Neuroglia/enzimologia , Células de Purkinje/enzimologia , Células-Tronco/enzimologia , 2',3'-Nucleotídeo Cíclico 3'-Fosfodiesterase/metabolismo , Animais , Proteína 7 Relacionada à Autofagia/genética , Integrases/genética , Integrases/metabolismo , Camundongos , Camundongos Knockout , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Neuroglia/patologia , Células de Purkinje/patologia , Células-Tronco/patologia
13.
Mech Ageing Dev ; 194: 111414, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33338499

RESUMO

Hydra vulgaris (Hv) has a high regenerative potential and negligible senescence, as its stem cell populations divide continuously. In contrast, the cold-sensitive H. oligactis (Ho_CS) rapidly develop an aging phenotype under stress, with epithelial stem cells deficient for autophagy, unable to maintain their self-renewal. Here we tested in aging, non-aging and regenerating Hydra the activity and regulation of the ULK1 kinase involved in autophagosome formation. In vitro kinase assays show that human ULK1 activity is activated by Hv extracts but repressed by Ho_CS extracts, reflecting the ability or inability of their respective epithelial cells to initiate autophagosome formation. The factors that keep ULK1 inactive in Ho_CS remain uncharacterized. Hv_Basel1 animals exposed to the ULK1 inhibitor SBI-0206965 no longer regenerate their head, indicating that the sustained autophagy flux recorded in regenerating Hv_AEP2 transgenic animals expressing the DsRed-GFP-LC3A autophagy tandem sensor is necessary. The SBI-0206965 treatment also alters the contractility of intact Hv_Basel1 animals, and leads to a progressive reduction of animal size in Hv_AEP2, similarly to what is observed in ULK1(RNAi) animals. We conclude that the evolutionarily-conserved role of ULK1 in autophagy initiation is crucial to maintain a dynamic homeostasis in Hydra, which supports regeneration efficiency and prevents aging.


Assuntos
Autofagossomos/enzimologia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proliferação de Células , Autorrenovação Celular , Senescência Celular , Células Epiteliais/enzimologia , Hydra/enzimologia , Células-Tronco/enzimologia , Animais , Animais Geneticamente Modificados , Autofagossomos/efeitos dos fármacos , Autofagossomos/genética , Autofagia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/antagonistas & inibidores , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Beclina-1/metabolismo , Proliferação de Células/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Feminino , Técnicas de Silenciamento de Genes , Hydra/efeitos dos fármacos , Hydra/genética , Masculino , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , Transdução de Sinais , Células-Tronco/efeitos dos fármacos
14.
Drug Metab Dispos ; 49(3): 245-253, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33355212

RESUMO

Induction of cytochrome P450 can cause drug-drug interactions and efficacy failure. Induction risk in liver and gut is typically inferred from experiments with plated hepatocytes. Organoids are physiologically relevant, multicellular structures originating from stem cells. Intestinal stem cell-derived organoids retain traits of normal gut physiology, such as an epithelial barrier and cellular diversity. Matched human enteroid and colonoid lines, generated from ileal and colon biopsies from two donors, were cultured in extracellular matrix for 3 days, followed by a single 48-hour treatment with rifampin, omeprazole, CITCO, and phenytoin at concentrations that induce target genes in hepatocytes. After treatment, mRNA was analyzed for induction of target genes. Rifampin induced CYP3A4; estimated EC50 and maximal fold induction were 3.75 µM and 8.96-fold, respectively, for ileal organoids and 1.40 µM and 11.3-fold, respectively, for colon organoids. Ileal, but not colon, organoids exhibited nifedipine oxidase activity, which was induced by rifampin up to 14-fold. The test compounds did not increase mRNA expression of CYP1A2, CYP2B6, multidrug resistance transporter 1 (P-glycoprotein), breast cancer resistance protein, and UDP-glucuronosyltransferase 1A1 in ileal organoids. Whereas omeprazole induced CYP3A4 (up to 5.3-fold, geometric mean, n = 4 experiments), constitutive androstane receptor activators phenytoin and CITCO did not. Omeprazole failed to induce CYP1A2 mRNA but did induce CYP1A1 mRNA (up to 7.7-fold and 15-fold in ileal and colon organoids, respectively, n = 4 experiments). Despite relatively high intra- and interexperimental variability, data suggest that the model yields induction responses that are distinct from hepatocytes and holds promise to enable evaluation of CYP1A1 and CYP3A4 induction in gut. SIGNIFICANCE STATEMENT: An adult intestinal stem cell-derived organoid model to test P450 induction in gut was evaluated. Testing several prototypical inducers for mRNA induction of P450 isoforms, UDP-glucuronosyltransferase 1A1, P-glycoprotein, and breast cancer resistance protein with both human colon and ileal organoids resulted in a range of responses, often distinct from those found in hepatocytes, indicating the potential for further development of this model as a physiologically relevant gut induction test system.


Assuntos
Indutores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/biossíntese , Intestinos/enzimologia , Organoides/enzimologia , Células-Tronco/enzimologia , Linhagem Celular , Relação Dose-Resposta a Droga , Indução Enzimática/efeitos dos fármacos , Indução Enzimática/fisiologia , Humanos , Intestinos/citologia , Intestinos/efeitos dos fármacos , Organoides/efeitos dos fármacos , Rifampina/farmacologia , Células-Tronco/efeitos dos fármacos
15.
Cells ; 9(12)2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339125

RESUMO

Transplanted mesenchymal stem/stromal cells (MSCs) are a promising and innovative approach in regenerative medicine. Their regenerative potential is partly based upon their immunomodulatory activities. One of the most investigated immunomediators in MSCs, such as in periodontal ligament-derived MSCs (hPDLSCs), is indoleamine-2,3-dioxygenase-1 (IDO-1) which is upregulated by inflammatory stimuli, like cytokines. However, there are no data concerning continuing IDO-1 expression in hPDLSCs after the removal of inflammatory stimuli, such as cytokines and toll-like receptor (TLR) agonist-2 and TLR-3. Hence, primary hPDLSCs were stimulated with interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, TLR-2 agonist Pam3CSK4 or TLR-3 agonist Poly I/C. IDO-1 gene and protein expression and its enzymatic activity were measured up to five days after removing any stimuli. IL-1ß- and TNF-α-induced IDO-1 expression and enzymatic activity decreased in a time-dependent manner after cessation of stimulation. IFN-γ caused a long-lasting effect on IDO-1 up to five days after removing IFN-γ. Both, TLR-2 and TLR-3 agonists induced a significant increase in IDO-1 gene expression, but only TLR-3 agonist induced significantly higher IDO-1 protein expression and enzymatic activity in conditioned media (CM). IDO-1 activity of Poly I/C- and Pam3CSK4-treated hPDLSCs was higher at one day after removal of stimuli than immediately after stimulation and declined to basal levels after five days. Among all tested stimuli, only IFN-γ was able to induce long-lasting IDO-1 expression and activity in hPDLSCs. The high plasticity of IDO-1 expression and its enzymatic activity in hPDLSCs due to the variable cytokine and virulence factor milieu and the temporal-dependent responsiveness of hPDLSCs may cause a highly dynamic potential of hPDLSCs to modulate immune responses in periodontal tissues.


Assuntos
Citocinas/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Ligamento Periodontal/citologia , Células-Tronco/enzimologia , Receptores Toll-Like/agonistas , Células Cultivadas , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Lipopeptídeos/farmacologia , Poli I-C/farmacologia , Células-Tronco/efeitos dos fármacos , Células Estromais/efeitos dos fármacos , Células Estromais/enzimologia , Receptores Toll-Like/metabolismo
16.
Aging (Albany NY) ; 12(21): 21253-21272, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33148869

RESUMO

Transforming growth factor-ß1 (TGF-ß1) regulates wound healing/regeneration and aging processes. Dental pulp stem cells from human exfoliated deciduous teeth (SHED) are cell sources for treatment of age-related disorders. We studied the effect of TGF-ß1 on SHED and related signaling. SHED were treated with TGF-ß1 with/without pretreatment/co-incubation by SB431542, U0126, 5Z-7-oxozeaenol or SB203580. Sircol collagen assay, 3-(4,5-Dimethylthiazol-2-yl)-2,5- diphenyl tetrazolium bromide (MTT) assay, alkaline phosphatase (ALP) assay, RT-PCR, western blotting and PathScan phospho-ELISA were used to measure the effects. We found that SHED expressed ALK1, ALK3, ALK5, TGF-RII, betaglycan and endoglin mRNA. TGF-ß1 stimulated p-Smad2, p-TAK1, p-ERK, p-p38 and cyclooxygenase-2 (COX-2) protein expression. It enhanced proliferation and collagen content of SHED that were attenuated by SB431542, 5Z-7-oxozeaenol and SB203580, but not U0126. TGF-ß1 (0.5-1 ng/ml) stimulated ALP of SHED, whereas 5-10 ng/ml TGF-ß1 suppressed ALP. SB431542 reversed the effects of TGF-ß1. However, 5Z-7-oxozeaenol, SB203580 and U0126 only reversed the stimulatory effect of TGF-ß1 on ALP. Four inhibitors attenuated TGF-ß1-induced COX-2 expression. TGF-ß1-stimulated TIMP-1 and N-cadherin was inhibited by SB431542 and 5Z-7-oxozeaenol. These results indicate that TGF-ß1 affects SHED by differential regulation of ALK5/Smad2/3, TAK1, p38 and MEK/ERK. TGF-ß1 and SHED could potentially be used for tissue engineering/regeneration and treatment of age-related diseases.


Assuntos
Polpa Dentária/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Regeneração/efeitos dos fármacos , Proteína Smad2/metabolismo , Células-Tronco/efeitos dos fármacos , Dente Decíduo/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Polpa Dentária/citologia , Polpa Dentária/enzimologia , Humanos , Fosforilação , Transdução de Sinais , Proteína Smad3/metabolismo , Células-Tronco/enzimologia , Dente Decíduo/citologia , Dente Decíduo/enzimologia
17.
Mol Cancer Res ; 18(11): 1744-1754, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32753475

RESUMO

The ATP6V1G1 subunit (V1G1) of the vacuolar proton ATPase (V-ATPase) pump is crucial for glioma stem cells (GSC) maintenance and in vivo tumorigenicity. Moreover, V-ATPase reprograms the tumor microenvironment through acidification and release of extracellular vesicles (EV). Therefore, we investigated the role of V1G1 in GSC small EVs and their effects on primary brain cultures. To this end, small EVs were isolated from patients-derived GSCs grown as neurospheres (NS) with high (V1G1HIGH-NS) or low (V1G1LOW-NS) V1G1 expression and analyzed for V-ATPase subunits presence, miRNA contents, and cellular responses in recipient cultures. Our results show that NS-derived small EVs stimulate proliferation and motility of recipient cells, with small EV derived from V1G1HIGH-NS showing the most pronounced activity. This involved activation of ERK1/2 signaling, in a response reversed by V-ATPase inhibition in NS-producing small EV. The miRNA profile of V1G1HIGH-NS-derived small EVs differed significantly from that of V1G1LOW-NS, which included miRNAs predicted to target MAPK/ERK signaling. Mechanistically, forced expression of a MAPK-targeting pool of miRNAs in recipient cells suppressed MAPK/ERK pathway activation and blunted the prooncogenic effects of V1G1HIGH small EV. These findings propose that the GSC influences the brain milieu through a V1G1-coordinated EVs release of MAPK/ERK-targeting miRNAs. Interfering with V-ATPase activity could prevent ERK-dependent oncogenic reprogramming of the microenvironment, potentially hampering local GBM infiltration. IMPLICATIONS: Our data identify a novel molecular mechanism of gliomagenesis specific of the GBM stem cell niche, which coordinates a V-ATPase-dependent reprogramming of the brain microenvironment through the release of specialized EVs.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Sistema de Sinalização das MAP Quinases , MicroRNAs/metabolismo , Células-Tronco/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Vesículas Extracelulares/enzimologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Glioblastoma/enzimologia , Glioblastoma/genética , Glioblastoma/patologia , Humanos , MicroRNAs/genética , Células-Tronco/enzimologia , ATPases Vacuolares Próton-Translocadoras/genética
18.
EMBO J ; 39(18): e104365, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32696520

RESUMO

Hair follicle stem cells (HFSCs) are maintained in a quiescent state until activated to grow, but the mechanisms that reactivate the quiescent HFSC reservoir are unclear. Here, we find that loss of Sirt7 in mice impedes hair follicle life-cycle transition from telogen to anagen phase, resulting in delay of hair growth. Conversely, Sirt7 overexpression during telogen phase facilitated HSFC anagen entry and accelerated hair growth. Mechanistically, Sirt7 is upregulated in HFSCs during the telogen-to-anagen transition, and HFSC-specific Sirt7 knockout mice (Sirt7f/f ;K15-Cre) exhibit a similar hair growth delay. At the molecular level, Sirt7 interacts with and deacetylates the transcriptional regulator Nfatc1 at K612, causing PA28γ-dependent proteasomal degradation to terminate Nfatc1-mediated telogen quiescence and boost anagen entry. Cyclosporin A, a potent calcineurin inhibitor, suppresses nuclear retention of Nfatc1, abrogates hair follicle cycle delay, and promotes hair growth in Sirt7-/- mice. Furthermore, Sirt7 is downregulated in aged HFSCs, and exogenous Sirt7 overexpression promotes hair growth in aged animals. These data reveal that Sirt7 activates HFSCs by destabilizing Nfatc1 to ensure hair follicle cycle initiation.


Assuntos
Folículo Piloso/enzimologia , Sirtuínas/metabolismo , Células-Tronco/enzimologia , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Senescência Celular/efeitos dos fármacos , Ciclosporina/farmacologia , Camundongos , Camundongos Knockout , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Sirtuínas/genética
19.
Cell Rep ; 31(12): 107794, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32579921

RESUMO

As a core component of the mitotic checkpoint complex, BubR1 has a modular organization of molecular functions, with KEN box and other motifs at the N terminus inhibiting the anaphase-promoting complex/cyclosome, and a kinase domain at the C terminus, whose function remains unsettled, especially at organismal levels. We generate knock-in BubR1 mutations in the Drosophila genome to separately disrupt the KEN box and the kinase domain. All of the mutants are homozygously viable and fertile and show no defects in mitotic progression. The mutants without kinase activity have an increased lifespan and phenotypic changes associated with attenuated insulin signaling, including reduced InR on the cell membrane, weakened PI3K and AKT activity, and elevated expression of dFoxO targets. The BubR1 kinase-dead mutants have a reduced cap cell number in female germaria, which can be rescued by expressing a constitutively active InR. We conclude that one major physiological role of BubR1 kinase in Drosophila is to modulate insulin signaling.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/enzimologia , Insulina/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/enzimologia , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Embrião não Mamífero/metabolismo , Feminino , Loci Gênicos , Homeostase , Mitose/genética , Mutação Puntual/genética , Somatomedinas/metabolismo
20.
Acta Biochim Biophys Sin (Shanghai) ; 52(7): 736-748, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32445460

RESUMO

The Hippo pathway plays important roles in organ development, tissue regeneration, and human diseases, such as cancer. In the canonical Hippo pathway, the MST1/2-LATS1/2 kinase cascade phosphorylates and inhibits transcription coactivators Yes-associated protein and transcription coactivator with PDZ-binding motif and thus regulates transcription of genes important for cell proliferation and apoptosis. However, recent studies have depicted a much more complicate picture of the Hippo pathway with many new components and regulatory stimuli involving both chemical and mechanical signals. Furthermore, accumulating evidence indicates that the Hippo pathway also plays important roles in the determination of cell fates, such as self-renewal and differentiation. Here, we review regulations of the Hippo pathway and its functions in stemness and differentiation emphasizing recent discoveries.


Assuntos
Apoptose/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco/enzimologia , Animais , Fator de Crescimento de Hepatócito/metabolismo , Via de Sinalização Hippo , Humanos , Fosforilação/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Serina-Treonina Quinase 3 , Células-Tronco/citologia , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...