Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.250
Filtrar
1.
Front Immunol ; 15: 1354992, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736891

RESUMO

CD44 is a ubiquitous leukocyte adhesion molecule involved in cell-cell interaction, cell adhesion, migration, homing and differentiation. CD44 can mediate the interaction between leukemic stem cells and the surrounding extracellular matrix, thereby inducing a cascade of signaling pathways to regulate their various behaviors. In this review, we focus on the impact of CD44s/CD44v as biomarkers in leukemia development and discuss the current research and prospects for CD44-related interventions in clinical application.


Assuntos
Biomarcadores Tumorais , Receptores de Hialuronatos , Leucemia , Células-Tronco Neoplásicas , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/imunologia , Receptores de Hialuronatos/metabolismo , Leucemia/metabolismo , Leucemia/terapia , Leucemia/imunologia , Biomarcadores Tumorais/metabolismo , Animais , Transdução de Sinais , Terapia de Alvo Molecular
2.
Front Immunol ; 15: 1244392, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694506

RESUMO

Objective: Significant advancements have been made in hepatocellular carcinoma (HCC) therapeutics, such as immunotherapy for treating patients with HCC. However, there is a lack of reliable biomarkers for predicting the response of patients to therapy, which continues to be challenging. Cancer stem cells (CSCs) are involved in the oncogenesis, drug resistance, and invasion, as well as metastasis of HCC cells. Therefore, in this study, we aimed to create an mRNA expression-based stemness index (mRNAsi) model to predict the response of patients with HCC to immunotherapy. Methods: We retrieved gene expression and clinical data of patients with HCC from the GSE14520 dataset and the Cancer Genome Atlas (TCGA) database. Next, we used the "one-class logistic regression (OCLR)" algorithm to obtain the mRNAsi of patients with HCC. We performed "unsupervised consensus clustering" to classify patients with HCC based on the mRNAsi scores and stemness subtypes. The relationships between the mRNAsi model, clinicopathological features, and genetic profiles of patients were compared using various bioinformatic methods. We screened for differentially expressed genes to establish a stemness-based classifier for predicting the patient's prognosis. Next, we determined the effect of risk scores on the tumor immune microenvironment (TIME) and the response of patients to immune checkpoint blockade (ICB). Finally, we used qRT-PCR to investigate gene expression in patients with HCC. Results: We screened CSC-related genes using various bioinformatics tools in patients from the TCGA-LIHC cohort. We constructed a stemness classifier based on a nine-gene (PPARGC1A, FTCD, CFHR3, MAGEA6, CXCL8, CABYR, EPO, HMMR, and UCK2) signature for predicting the patient's prognosis and response to ICBs. Further, the model was validated in an independent GSE14520 dataset and performed well. Our model could predict the status of TIME, immunogenomic expressions, congenic pathway, and response to chemotherapy drugs. Furthermore, a significant increase in the proportion of infiltrating macrophages, Treg cells, and immune checkpoints was observed in patients in the high-risk group. In addition, tumor cells in patients with high mRNAsi scores could escape immune surveillance. Finally, we observed that the constructed model had a good expression in the clinical samples. The HCC tumor size and UCK2 genes expression were significantly alleviated and decreased, respectively, by treatments of anti-PD1 antibody. We also found knockdown UCK2 changed expressions of immune genes in HCC cell lines. Conclusion: The novel stemness-related model could predict the prognosis of patients and aid in creating personalized immuno- and targeted therapy for patients in HCC.


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Biologia Computacional , Imunoterapia , Neoplasias Hepáticas , Aprendizado de Máquina , Células-Tronco Neoplásicas , Microambiente Tumoral , Humanos , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Biologia Computacional/métodos , Prognóstico , Biomarcadores Tumorais/genética , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Imunoterapia/métodos , Masculino , Regulação Neoplásica da Expressão Gênica , Feminino , Perfilação da Expressão Gênica , Pessoa de Meia-Idade , Valor Preditivo dos Testes
3.
Anticancer Res ; 44(5): 1877-1883, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677758

RESUMO

BACKGROUND/AIM: Human gastric cancer stem-like cells (CSCs)/cancer-initiating cells can be identified as aldehyde dehydrogenase-high (ALDHhigh) cells. Cancer immunotherapy employing immune checkpoint blockade has been approved for advanced gastric cancer cases. However, the effectiveness of cancer immunotherapy against gastric CSCs/CICs remains unclear. This study aimed to investigate the susceptibility of gastric CSCs/CICs to immunotherapy. MATERIALS AND METHODS: Gastric CSCs/CICs were isolated as ALDHhigh cells using the human gastric cancer cell line, MKN-45. ALDHhigh clone cells and ALDHlow clone cells were isolated using the ALDEFLUOR assay. ALDH1A1 expression was assessed via qRT-PCR. Sphere-forming ability was evaluated to confirm the presence of CSCs/CICs. A model neoantigen, AP2S1, was over-expressed in ALDHhigh clone cells and ALDHlow clone cells, and susceptibility to AP2S1-specific TCR-T cells was assessed using IFNγ ELISPOT assay. RESULTS: Three ALDHhigh clone cells were isolated from MKN-45 cells. ALDHhigh clone cells exhibited a stable phenotype in in vitro culture for more than 2 months. The High-36 clone cells demonstrated the highest sphere-forming ability, whereas the Low-8 cells showed the lowest sphere-forming ability. High-36 cells exhibited lower expression of HLA-A24 compared to Low-8 cells. TCR-T cells specific for AP2S1 showed lower reactivity to High-36 cells compared to Low-8 cells. CONCLUSION: High-36 cells and Low-8 cells represent novel gastric CSCs/CICs and non-CSCs/CICs, respectively. ALDHhigh CSCs/CICs evade T cells due to lower expression of HLA class 1.


Assuntos
Família Aldeído Desidrogenase 1 , Células-Tronco Neoplásicas , Neoplasias Gástricas , Linfócitos T Citotóxicos , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/patologia , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Família Aldeído Desidrogenase 1/metabolismo , Família Aldeído Desidrogenase 1/genética , Linhagem Celular Tumoral , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Retinal Desidrogenase/metabolismo , Evasão Tumoral/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia
4.
Biomolecules ; 14(4)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38672519

RESUMO

Cancer remains one of the global leading causes of death and various vaccines have been developed over the years against it, including cell-based, nucleic acid-based, and viral-based cancer vaccines. Although many vaccines have been effective in in vivo and clinical studies and some have been FDA-approved, there are major limitations to overcome: (1) developing one universal vaccine for a specific cancer is difficult, as tumors with different antigens are different for different individuals, (2) the tumor antigens may be similar to the body's own antigens, and (3) there is the possibility of cancer recurrence. Therefore, developing personalized cancer vaccines with the ability to distinguish between the tumor and the body's antigens is indispensable. This paper provides a comprehensive review of different types of cancer vaccines and highlights important factors necessary for developing efficient cancer vaccines. Moreover, the application of other technologies in cancer therapy is discussed. Finally, several insights and conclusions are presented, such as the possibility of using cold plasma and cancer stem cells in developing future cancer vaccines, to tackle the major limitations in the cancer vaccine developmental process.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Neoplasias/imunologia , Neoplasias/terapia , Animais , Antígenos de Neoplasias/imunologia , Células-Tronco Neoplásicas/imunologia
5.
FEBS Open Bio ; 14(5): 855-866, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38494433

RESUMO

Gastric cancer has a high rate of recurrence, and as such, immunotherapy strategies are being investigated as a potential therapeutic strategy. Although the involvement of immune checkpoints in immunotherapy is well studied, biomechanical cues, such as target cell stiffness, have not yet been subject to the same level of investigation. Changes in the cholesterol content of the cell membrane directly influence tumor cell stiffness. Here, we investigated the effect of cholesterol on NK cell-mediated killing of gastric cancer stem-like cells. We report that surviving tumor cells with stem-like properties elevated cholesterol metabolism to evade NK cell cytotoxicity. Inhibition of cholesterol metabolism enhances NK cell-mediated killing of gastric cancer stem-like cells, highlighting a potential avenue for improving immunotherapy efficacy. This study suggests a possible effect of cancer cell stiffness on immune evasion and offers insights into enhancing immunotherapeutic strategies against tumors.


Assuntos
Colesterol , Células Matadoras Naturais , Células-Tronco Neoplásicas , Neoplasias Gástricas , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/imunologia , Colesterol/metabolismo , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Imunoterapia/métodos , Evasão Tumoral/imunologia
6.
Cancer Lett ; 590: 216801, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38479552

RESUMO

The mesenchymal subtype of glioblastoma (GBM) cells characterized by aggressive invasion and therapeutic resistance is thought to be dependent on cell-intrinsic alteration and extrinsic cellular crosstalk. Tumor-associated macrophages (TAMs) are pivotal in tumor progression, chemo-resistance, angiogenesis, and stemness maintenance. However, the impact of TAMs on the shifts in glioma stem cells (GSCs) states remains largely uncovered. Herein, we showed that the triggering receptor expressed on myeloid cells-1 (TREM1) preferentially expressed by M2-like TAMs and induced GSCs into mesenchymal-like states by modulating the secretion of TGFß2, which activated the TGFßR/SMAD2/3 signaling in GSCs. Furthermore, we demonstrated that TREM1 was transcriptionally regulated by HIF1a under the hypoxic environment and thus promoted an immunosuppressive type of TAMs via activating the TLR2/AKT/mTOR/c-MYC axis. Collectively, this study reveals that cellular communication between TAMs and GSCs through the TREM1-mediated TGFß2/TGFßR axis is involved in the mesenchymal-like transitions of GSCs. Our study provides valuable insights into the regulatory mechanisms between the tumor immune microenvironment and the malignant characteristics of GBM, which can lead to potential novel strategies targeting TAMs for tumor control.


Assuntos
Células-Tronco Neoplásicas , Receptor Gatilho 1 Expresso em Células Mieloides , Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/imunologia , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides/genética , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Animais , Linhagem Celular Tumoral , Transdução de Sinais , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/imunologia , Glioma/patologia , Glioma/genética , Glioma/metabolismo , Glioma/imunologia , Camundongos , Glioblastoma/patologia , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/imunologia , Fator de Crescimento Transformador beta2/metabolismo , Fator de Crescimento Transformador beta2/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Regulação Neoplásica da Expressão Gênica , Proteína Smad2/metabolismo , Proteína Smad2/genética
7.
Nat Cancer ; 5(4): 601-624, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38413714

RESUMO

Current anticancer therapies cannot eliminate all cancer cells, which hijack normal arginine methylation as a means to promote their maintenance via unknown mechanisms. Here we show that targeting protein arginine N-methyltransferase 9 (PRMT9), whose activities are elevated in blasts and leukemia stem cells (LSCs) from patients with acute myeloid leukemia (AML), eliminates disease via cancer-intrinsic mechanisms and cancer-extrinsic type I interferon (IFN)-associated immunity. PRMT9 ablation in AML cells decreased the arginine methylation of regulators of RNA translation and the DNA damage response, suppressing cell survival. Notably, PRMT9 inhibition promoted DNA damage and activated cyclic GMP-AMP synthase, which underlies the type I IFN response. Genetically activating cyclic GMP-AMP synthase in AML cells blocked leukemogenesis. We also report synergy of a PRMT9 inhibitor with anti-programmed cell death protein 1 in eradicating AML. Overall, we conclude that PRMT9 functions in survival and immune evasion of both LSCs and non-LSCs; targeting PRMT9 may represent a potential anticancer strategy.


Assuntos
Arginina , Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , Nucleotidiltransferases , Proteína-Arginina N-Metiltransferases , Proteína-Arginina N-Metiltransferases/metabolismo , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Nucleotidiltransferases/metabolismo , Arginina/metabolismo , Metilação/efeitos dos fármacos , Animais , Camundongos , Interferon Tipo I/metabolismo , Dano ao DNA , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos
8.
Allergol. immunopatol ; 52(1): 72-78, 01 jan. 2024. graf
Artigo em Inglês | IBECS | ID: ibc-229177

RESUMO

Background: Melanoma is the most aggressive form of skin cancer. Melanoma stem cells (MSCs) are one of the driving forces of melanoma invasion and metastasis. Therefore, it is of great significance to explore the mechanisms that maintain the stemness of MSCs. In this study, CD147-positive (CD147+) MSCs derived from A375 cell line were characterized. Methods: Side population (SP) and non-SP cells were sorted from A375 cells. Quantitative real-time polymerase chain reaction and Western blot analysis were conducted to determine the expression of CD147 in SP and non-SP cells. Subsequently, CD147+ and CD147-negative (CD147-) cells were isolated from SP cells. Stem cell characteristics and metastatic potential of CD147+/- antigen-presenting cells were identified by sphere-forming, wound-healing, and transwell assays. Western blot analysis was performed to evaluate the protein levels of transforming growth factor-beta1 (TGFβ1) and neurogenic locus notch homolog protein 1 (Notch1) signaling pathway. Xenograft tumor experiments were conducted to investigate the tumorigenic capacity of CD147+ cells in vivo. Results: CD147 was highly expressed in SP cells of A375 cell line. CD147+ cells have stronger abilities for sphere forming, migration, and invasion in vitro. The protein levels of TGFβ1, notch1, jagged1, and Hes1 were higher in CD147+ cells than in CD147- cells. Moreover, the CD147+ cells showed stronger tumorigenic and metastatic potential in vivo. Conclusion: SP cells of A375 cell line expressed high levels of CD147, and CD147+ SP cells possessed much stronger stem-like characteristics and motility, which is linked to the activation of TGFβ and notch pathways (AU)


Assuntos
Humanos , Células-Tronco Neoplásicas/imunologia , Melanoma/imunologia , Basigina/imunologia , Transdução de Sinais , Movimento Celular
9.
J Integr Neurosci ; 22(5): 135, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37735118

RESUMO

BACKGROUND: Glioma is the most common intracranial malignancy. Immune-infiltration and tumour stemness are associated with the prognosis of glioma. Although pleckstrin homology containing family A, number 4 (PLEKHA4) is widely expressed in various human cancers, its role in glioma remains unclear. METHODS: We examined the features and clinical significance of PLEKHA4 in gliomas by analysing relevant data from the Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) databases. Gene set enrichment analysis (GSEA) was performed to determine the possible functions and pathways involving PLEKHA4 in glioma. The relationship between PLEKHA4 expression and the degree of oncogenic dedifferentiation was analysed using stemness scores (ss) calculated from epigenetic and transcriptomic features. We also explored the relationship between PLEKHA4 expression and immune cell infiltration in gliomas using the CIBERSORT databases. Furthermore, drug sensitivity analysis was performed using datasets from the GDSC and GTRP databases. In addition, we performed relevant in vitro experimental studies. RESULTS: PLEKHA4 DNA hypomethylation status was associated with its high expression in glioma tissues as well as poor prognoses. Univariate and multivariate Cox analyses indicated that PLEKHA4 expression may be considered as an independent prognostic factor in patients with glioma. GSEA indicated that high PLEKHA4 expression was associated with Janus kinase (JAK)/signal transducer and activator of transcription (STAT), Wingless-Type MMTV Integration Site Family (Wnt), JUN N-terminal kinase (JNK) signalling pathways and involved in apoptotic, cytoskeletal, and cell adhesion biological processes (BPs). In addition, increased PLEKHA4 expression was associated with higher glioma stemness scores than lower PLEKHA4 expression levels. Furthermore, the expression of PLEKHA4 was shown to be associated with glioma infiltration by CD4+ T cells, B cells, neutrophils, macrophages, and dendritic cells. Drug sensitivity analysis also showed that PLEKHA4 expression was negatively correlated with the sensitivity of several small molecule kinase inhibitors. Furthermore, in vitro experiments confirmed that PLEKHA4 knockdown inhibited the proliferation of glioma cells. CONCLUSIONS: PLEKHA4 is highly expressed in glioma tissues and correlated with tumour stemness, immune cell infiltration and proliferation, suggesting its potential as a novel prognostic biomarker and therapeutic target in glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Povo Asiático , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Proliferação de Células/genética , Glioma/genética , Glioma/imunologia , Células-Tronco Neoplásicas/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
10.
Nat Commun ; 14(1): 2350, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169737

RESUMO

The p140Cap adaptor protein is a tumor suppressor in breast cancer associated with a favorable prognosis. Here we highlight a function of p140Cap in orchestrating local and systemic tumor-extrinsic events that eventually result in inhibition of the polymorphonuclear myeloid-derived suppressor cell function in creating an immunosuppressive tumor-promoting environment in the primary tumor, and premetastatic niches at distant sites. Integrative transcriptomic and preclinical studies unravel that p140Cap controls an epistatic axis where, through the upstream inhibition of ß-Catenin, it restricts tumorigenicity and self-renewal of tumor-initiating cells limiting the release of the inflammatory cytokine G-CSF, required for polymorphonuclear myeloid-derived suppressor cells to exert their local and systemic tumor conducive function. Mechanistically, p140Cap inhibition of ß-Catenin depends on its ability to localize in and stabilize the ß-Catenin destruction complex, promoting enhanced ß-Catenin inactivation. Clinical studies in women show that low p140Cap expression correlates with reduced presence of tumor-infiltrating lymphocytes and more aggressive tumor types in a large cohort of real-life female breast cancer patients, highlighting the potential of p140Cap as a biomarker for therapeutic intervention targeting the ß-Catenin/ Tumor-initiating cells /G-CSF/ polymorphonuclear myeloid-derived suppressor cell axis to restore an efficient anti-tumor immune response.


Assuntos
Neoplasias da Mama , Feminino , Humanos , beta Catenina/metabolismo , Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Imunidade , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo
11.
Dis Markers ; 2022: 4033583, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35320950

RESUMO

Objective: Clear cell renal cell carcinoma (ccRCC) carries significant morbidity and mortality globally and is often resistant to conventional radiotherapy and chemotherapy. Immune checkpoint blockade (ICB) has received attention in ccRCC patients as a promising anticancer treatment. Furthermore, competitive endogenous RNA (ceRNA) networks are crucial for the occurrence and progression of various tumors. This study was aimed at identifying reliable prognostic signatures and exploring potential mechanisms between ceRNA regulation and immune cell infiltration in ccRCC patients. Methods and Results: Gene expression profiling and clinical information of ccRCC samples were obtained from The Cancer Genome Atlas (TCGA) database. Through comprehensive bioinformatic analyses, differentially expressed mRNAs (DEmRNAs; n = 131), lncRNAs (DElncRNAs; n = 12), and miRNAs (DEmiRNAs; n = 25) were identified to establish ceRNA networks. The CIBERSORT algorithm was applied to calculate the proportion of 22 types of tumor-infiltrating immune cells (TIICs) in ccRCC tissues. Subsequently, univariate Cox, Lasso, and multivariate Cox regression analyses were employed to construct ceRNA-related and TIIC-related prognostic signatures. In addition, we explored the relationship between the crucial genes and TIICs via coexpression analysis, which revealed that the interactions between MALAT1, miR-1271-5p, KIAA1324, and follicular helper T cells might be closely correlated with the progression of ccRCC. Ultimately, we preliminarily validated that the potential MALAT1/miR-1271-5p/KIAA1324 axis was consistent with the ceRNA theory by qRT-PCR in the ccRCC cell lines. Conclusion: On the basis of the ceRNA networks and TIICs, we constructed two prognostic signatures with excellent predictive value and explored possible molecular regulatory mechanisms, which might contribute to the improvement of prognosis and individualized treatment for ccRCC patients.


Assuntos
Biomarcadores Tumorais/análise , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/imunologia , RNA/análise , Progressão da Doença , Perfilação da Expressão Gênica , Humanos , Proteínas de Membrana/análise , MicroRNAs/análise , Proteínas de Neoplasias/análise , Células-Tronco Neoplásicas/imunologia , Prognóstico , RNA Longo não Codificante/análise , RNA Mensageiro/análise , Análise de Sobrevida , Células T Auxiliares Foliculares/imunologia
12.
Cancer Immunol Immunother ; 71(2): 445-459, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34228218

RESUMO

Small cell lung cancer (SCLC) is an aggressive tumor type with early dissemination and distant metastasis capacity. Even though optimal chemotherapy responses are observed initially in many patients, therapy resistance is almost inevitable. Accordingly, SCLC has been regarded as an archetype for cancer stem cell (CSC) dynamics. To determine the immune-modulatory influence of CSC in SCLC, this study focused on the characterization of CD44+CD90+ CSC-like subpopulations in SCLC. These cells displayed mesenchymal properties, differentiated into different lineages and further contributed to CD8+ cytotoxic T lymphocytes (CTL) responses. The interaction between CD44+CD90+ CSC-like cells and T cells led to the upregulation of checkpoint molecules PD-1, CTLA-4, TIM-3, and LAG3. In the patient-derived lymph nodes, CD44+ SCLC metastases were also observed with T cells expressing PD-1, TIM-3, or LAG3. Proliferation and IFN-γ expression capacity of TIM-3 and LAG3 co-expressing CTLs are adversely affected over long-time co-culture with CD44+CD90+ CSC-like cells. Moreover, especially through IFN-γ secreted by the T cells, the CSC-like SCLC cells highly expressed PD-L1 and PD-L2. Upon a second encounter with immune-experienced, IFN-γ-stimulated CSC-like SCLC cells, both cytotoxic and proliferation capacities of T cells were hampered. In conclusion, our data provide evidence for the superior potential of the SCLC cells with stem-like and mesenchymal properties to gain immune regulatory capacities and cope with cytotoxic T cell responses. With their high metastatic and immune-modulatory assets, the CSC subpopulation in SCLC may serve as a preferential target for checkpoint blockade immunotherapy .


Assuntos
Antígeno B7-H1/metabolismo , Neoplasias Pulmonares/patologia , Células-Tronco Mesenquimais/patologia , Células-Tronco Neoplásicas/patologia , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Linfócitos T Citotóxicos/imunologia , Apoptose , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Humanos , Receptores de Hialuronatos/metabolismo , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Carcinoma de Pequenas Células do Pulmão/imunologia , Carcinoma de Pequenas Células do Pulmão/metabolismo , Células Tumorais Cultivadas
13.
Lab Invest ; 102(2): 172-184, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34782726

RESUMO

The phenotype of glioma-initiating cells (GIC) is modulated by cell-intrinsic and cell-extrinsic factors. Phenotypic heterogeneity and plasticity of GIC is an important limitation to therapeutic approaches targeting cancer stem cells. Plasticity also presents a challenge to the identification, isolation, and propagation of purified cancer stem cells. Here we use a barcode labelling approach of GIC to generate clonal populations over a number of passages, in combination with phenotyping using the established stem cell markers CD133, CD15, CD44, and A2B5. Using two cell lines derived from isocitrate dehydrogenase (IDH)-wildtype glioblastoma, we identify a remarkable heterogeneity of the phenotypes between the cell lines. During passaging, clonal expansion manifests as the emergence of a limited number of barcoded clones and a decrease in the overall number of clones. Dual-labelled GIC are capable of forming traceable clonal populations which emerge after as few as two passages from mixed cultures and through analyses of similarity of relative proportions of 16 surface markers we were able to pinpoint the fate of such populations. By generating tumour organoids we observed a remarkable persistence of dominant clones but also a significant plasticity of stemness marker expression. Our study presents an experimental approach to simultaneously barcode and phenotype glioma-initiating cells to assess their functional properties, for example to screen newly established GIC for tumour-specific therapeutic vulnerabilities.


Assuntos
Antígenos CD/imunologia , Neoplasias Encefálicas/imunologia , Glioma/imunologia , Células-Tronco Neoplásicas/imunologia , Microambiente Tumoral/imunologia , Antígeno AC133/imunologia , Antígeno AC133/metabolismo , Antígenos CD/metabolismo , Biomarcadores Tumorais/imunologia , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Células Cultivadas , Células Clonais/imunologia , Células Clonais/metabolismo , Citometria de Fluxo , Glioma/metabolismo , Glioma/patologia , Humanos , Receptores de Hialuronatos/imunologia , Receptores de Hialuronatos/metabolismo , Imunofenotipagem , Antígenos CD15/imunologia , Antígenos CD15/metabolismo , Microscopia Confocal , Células-Tronco Neoplásicas/classificação , Células-Tronco Neoplásicas/metabolismo
14.
J Immunother Cancer ; 9(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34903555

RESUMO

BACKGROUND: Programmed death (ligand) 1 (PD-(L)1) blockade and OX40/4-1BB costimulation have been separately evaluated in the clinic to elicit potent antitumor T cell responses. The precise mechanisms underlying single agent activity are incompletely understood. It also remains unclear if combining individual therapies leads to synergism, elicits novel immune mechanisms, or invokes additive effects. METHODS: We performed high-dimensional flow cytometry and single-cell RNA sequencing-based immunoprofiling of murine tumor-infiltrating lymphocytes (TILs) isolated from hosts bearing B16 or MC38 syngeneic tumors. This baseline infiltrate was compared to TILs after treatment with either anti-PD-(L)1, anti-OX40, or anti-4-1BB as single agents or as double and triple combinatorial therapies. Fingolimod treatment and CXCR3 blockade were used to evaluate the contribution of intratumoral versus peripheral CD8+ T cells to therapeutic efficacy. RESULTS: We identified CD8+ T cell subtypes with distinct functional and migratory signatures highly predictive of tumor rejection upon treatment with single agent versus combination therapies. Rather than reinvigorating terminally exhausted CD8+ T cells, OX40/4-1BB agonism expanded a stem-like PD-1loKLRG-1+Ki-67+CD8+ T cell subpopulation, which PD-(L)1 blockade alone did not. However, PD-(L)1 blockade synergized with OX40/4-1BB costimulation by dramatically enhancing stem-like TIL presence via a CXCR3-dependent mechanism. CONCLUSIONS: Our findings provide new mechanistic insights into the interplay between components of combinatorial immunotherapy, where agonism of select costimulatory pathways seeds a pool of stem-like CD8+ T cells more responsive to immune checkpoint blockade (ICB).


Assuntos
Linfócitos T CD8-Positivos/imunologia , Neoplasias Colorretais/terapia , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Melanoma Experimental/terapia , Células-Tronco Neoplásicas/imunologia , Receptores CXCR3/metabolismo , Animais , Movimento Celular , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas/patologia , Receptores CXCR3/genética , Análise de Célula Única
15.
Nat Commun ; 12(1): 7300, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911937

RESUMO

Cancer stem cells (CSCs) play an important role during metastasis, but the dynamic behavior and induction mechanisms of CSCs are not well understood. Here, we employ high-resolution intravital microscopy using a CSC biosensor to directly observe CSCs in live mice with mammary tumors. CSCs display the slow-migratory, invadopod-rich phenotype that is the hallmark of disseminating tumor cells. CSCs are enriched near macrophages, particularly near macrophage-containing intravasation sites called Tumor Microenvironment of Metastasis (TMEM) doorways. Substantial enrichment of CSCs occurs on association with TMEM doorways, contributing to the finding that CSCs represent >60% of circulating tumor cells. Mechanistically, stemness is induced in non-stem cancer cells upon their direct contact with macrophages via Notch-Jagged signaling. In breast cancers from patients, the density of TMEM doorways correlates with the proportion of cancer cells expressing stem cell markers, indicating that in human breast cancer TMEM doorways are not only cancer cell intravasation portals but also CSC programming sites.


Assuntos
Neoplasias da Mama/imunologia , Macrófagos/imunologia , Células-Tronco Neoplásicas/citologia , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Microscopia Intravital , Camundongos , Camundongos SCID , Metástase Neoplásica , Células Neoplásicas Circulantes/imunologia , Células-Tronco Neoplásicas/imunologia , Receptores Notch/genética , Receptores Notch/imunologia , Transdução de Sinais , Microambiente Tumoral/imunologia
16.
Front Endocrinol (Lausanne) ; 12: 763846, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803925

RESUMO

The skeleton is a common site for cancer metastases with the bone microenvironment providing the appropriate conditions for cancer cell colonization. Once in bone, cancer cells effectively manipulate their microenvironment to support their growth and survival. Despite previous efforts to improve treatment modalities, skeletal metastases remain with poor prognoses. This warrants an improved understanding of the mechanisms leading to bone metastasis that will aid development of effective treatments. Macrophages in the tumor microenvironment are termed tumor associated macrophages (TAMs) and their crosstalk with cancer cells is critical in regulating tumorigenicity in multiple cancers. In bone metastases, this crosstalk is also being increasingly implicated but the specific signaling pathways remain incompletely understood. Here, we summarize the reported functions, interactions, and signaling of macrophages with cancer cells during the metastatic cascade to bone. Specifically, we review and discuss how these specific interactions impact macrophages and their profiles to promote tumor development. We also discuss the potential of targeting this crosstalk to inhibit disease progression. Finally, we identify the remaining knowledge gaps that will need to be addressed in order to fully consider therapeutic targeting to improve clinical outcomes in cancer patients.


Assuntos
Neoplasias Ósseas/metabolismo , Macrófagos/metabolismo , Células-Tronco Neoplásicas/metabolismo , Microambiente Tumoral/fisiologia , Animais , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/patologia , Humanos , Macrófagos/imunologia , Macrófagos/patologia , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/patologia
17.
Dis Markers ; 2021: 1571421, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34840626

RESUMO

OBJECTIVE: Cancer stem cells (CSCs) with self-renewal and plasticity contribute to tumor initiation and progression. This study developed an mRNA expression-based stemness index- (mRNAsi-) associated signature and validated biological functions of stem cell-related genes in oral squamous cell carcinoma (OSCC). METHODS: Here, mRNAsi was measured for OSCC samples from TCGA cohort, and prognosis and tumor microenvironment (stromal/immune scores, tumor purity) in high- and low-mRNAsi samples were evaluated with survival analyses and ESTIMATE algorithm. Based on prognostic mRNAsi-related genes, a risk score model was constructed by the LASSO method. The predictive accuracy was evaluated by uni- and multivariate Cox analyses and ROC curves. Among the genes in the model, the functions of H2AFZ on proliferation, apoptosis, invasion, and EMT were investigated in OSCC cells. RESULTS: High mRNAsi was distinctly associated with undesirable prognosis, increased stromal and immune scores, and lowered tumor purity. The mRNAsi-associated signature containing 11 genes was developed, and high-risk score was distinctly related to poor survival outcomes. Moreover, this signature was an independent and robust risk factor. H2AFZ upregulation significantly enhanced proliferative and invasive capacities and facilitated EMT as well as lowered apoptotic levels in Cal-27 and HSC-3 cells. CONCLUSION: Our study characterized cancer stem cell characteristics that were closely related to tumor microenvironment and developed a stemness index cell-related signature that could assist prognosis prediction and risk stratification for OSCC. H2AFZ could become a potential therapeutic target against OSCC.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/patologia , Histonas/genética , Neoplasias Bucais/patologia , Células-Tronco Neoplásicas/patologia , RNA Mensageiro/genética , Microambiente Tumoral , Idoso , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/metabolismo , Feminino , Seguimentos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Neoplasias Bucais/genética , Neoplasias Bucais/imunologia , Neoplasias Bucais/metabolismo , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Prognóstico , Taxa de Sobrevida , Transcriptoma , Células Tumorais Cultivadas
18.
Cells ; 10(11)2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34831048

RESUMO

Cancer stem cells (CSCs) refer to a certain subpopulation within the tumor entity that is characterized by restricted cellular proliferation and multipotent differentiation potency. The existence of CSCs has been proven to contribute to the heterogeneity of malignancies, accounting for intensified tumorigenesis, treatment resistance, and metastatic spread. Dormancy was proposed as a reversible state of cancer cells that are temporarily arrested in the cell cycle, possessing several hallmarks that facilitate their survival within a devastating niche. This transient period is evoked to enter an actively proliferating state by multiple regulatory alterations, and one of the most significant and complex factors comes from local and systemic inflammatory reactions and immune components. Although CSCs and dormant cancer cells share several similarities, the clear relationship between these two concepts remains unclear. Thus, the detailed mechanism of immune cells interacting with CSCs and dormant cancer cells also warrants elucidation for prevention of cancer relapse and metastasis. In this review, we summarize recent findings and prospective studies on CSCs and cancer dormancy to conclude the relationship between these two concepts. Furthermore, we aim to outline the mechanism of immune components in interfering with CSCs and dormant cancer cells to provide a theoretical basis for the prevention of relapse and metastasis.


Assuntos
Imunomodulação , Células-Tronco Neoplásicas/imunologia , Animais , Biomarcadores Tumorais/metabolismo , Humanos , Modelos Biológicos , Microambiente Tumoral/imunologia
19.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34638609

RESUMO

Immune escape is one of the hallmarks of cancer. While metabolic reprogramming provides survival advantage to tumor cancer cells, accumulating data also suggest such metabolic rewiring directly affects the activation, differentiation and function of immune cells, particularly in the tumor microenvironment. Understanding how metabolic reprogramming affects both tumor and immune cells, as well as their interplay, is therefore critical to better modulate tumor immune microenvironment in the era of cancer immunotherapy. In this review, we discuss alterations in several essential metabolic pathways in both tumor and key immune cells, provide evidence on their dynamic interaction, and propose innovative strategies to improve cancer immunotherapy via the modulation of metabolic pathways.


Assuntos
Imunoterapia/métodos , Neoplasias/terapia , Animais , Reprogramação Celular/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Progressão da Doença , Humanos , Imunoterapia/tendências , Macrófagos/imunologia , Macrófagos/metabolismo , Redes e Vias Metabólicas , Neoplasias/imunologia , Neoplasias/metabolismo , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Microambiente Tumoral/imunologia
20.
J Immunother Cancer ; 9(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34663639

RESUMO

BACKGROUND: Breast cancer (BC) progression to metastatic disease is the leading cause of death in women worldwide. Metastasis is driven by cancer stem cells (CSCs) and signals from their microenvironment. Interleukin (IL) 30 promotes BC progression, and its expression correlates with disease recurrence and mortality. Whether it acts by regulating BCSCs is unknown and could have significant therapeutic implications. METHODS: Human (h) and murine (m) BCSCs were tested for their production of and response to IL30 by using flow cytometry, confocal microscopy, proliferation and sphere-formation assays, and PCR array. Immunocompetent mice were used to investigate the role of BCSC-derived IL30 on tumor development and host outcome. TCGA PanCancer and Oncomine databases provided gene expression data from 1084 and 75 hBC samples, respectively, and immunostaining unveiled the BCSC microenvironment. RESULTS: hBCSCs constitutively expressed IL30 as a membrane-anchored glycoprotein. Blocking IL30 hindered their proliferation and self-renewal efficiency, which were boosted by IL30 overexpression. IL30 regulation of immunity gene expression in human and murine BCSCs shared a significant induction of IL23 and CXCL10. Both immunoregulatory mediators stimulated BCSC proliferation and self-renewal, while their selective blockade dramatically hindered IL30-dependent BCSC proliferation and mammosphere formation. Orthotopic implantation of IL30-overexpressing mBCSCs, in syngeneic mice, gave rise to poorly differentiated and highly proliferating MYC+KLF4+LAG3+ tumors, which expressed CXCL10 and IL23, and were infiltrated by myeloid-derived cells, Foxp3+ T regulatory cells and NKp46+RORγt+ type 3 innate lymphoid cells, resulting in increased metastasis and reduced survival. In tumor tissues from patients with BC, expression of IL30 overlapped with that of CXCL10 and IL23, and ranked beyond the 95th percentile in a Triple-Negative enriched BC collection from the Oncomine Platform. CIBERSORTx highlighted a defective dendritic cell, CD4+ T and γδ T lymphocyte content and a prominent LAG3 expression in IL30highversus IL30low human BC samples from the TCGA PanCancer collection. CONCLUSIONS: Constitutive expression of membrane-bound IL30 regulates BCSC viability by juxtacrine signals and via second-level mediators, mainly CXCL10 and IL23. Their autocrine loops mediate much of the CSC growth factor activity of IL30, while their paracrine effect contributes to IL30 shaping of immune contexture. IL30-related immune subversion, which also emerged from computational analyses, strongly suggests that targeting IL30 can restrain the BCSC compartment and counteract BC progression.


Assuntos
Quimiocina CXCL10/imunologia , Interleucina-23/imunologia , Interleucinas/imunologia , Neoplasias de Mama Triplo Negativas/imunologia , Animais , Comunicação Autócrina , Linhagem Celular Tumoral , Feminino , Humanos , Interleucinas/biossíntese , Camundongos , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/patologia , Neoplasias de Mama Triplo Negativas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...