Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSphere ; 5(6)2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177212

RESUMO

Pluripotent stem-cell-derived human intestinal organoids (HIOs) are three-dimensional, multicellular structures that model a naive intestinal epithelium in an in vitro system. Several published reports have investigated the use of HIOs to study host-microbe interactions. We recently demonstrated that microinjection of the nonpathogenic Escherichia coli strain ECOR2 into HIOs induced morphological and functional maturation of the HIO epithelium, including increased secretion of mucins and cationic antimicrobial peptides. In the current work, we use ECOR2 as a biological probe to further characterize the environment present in the HIO lumen. We generated an isogenic mutant in the general stress response sigma factor RpoS and employed this mutant to compare challenges faced by a bacterium during colonization of the HIO lumen relative to the germ-free mouse intestine. We demonstrate that the loss of RpoS significantly decreases the ability of ECOR2 to colonize HIOs, although it does not prevent colonization of germ-free mice. These results indicate that the HIO lumen is a more restrictive environment to E. coli than the germ-free mouse intestine, thus increasing our understanding of the HIO model system as it pertains to studying the establishment of intestinal host-microbe symbioses.IMPORTANCE Technological advancements have driven and will continue to drive the adoption of organotypic systems for investigating host-microbe interactions within the human intestinal ecosystem. Using E. coli deficient in the RpoS-mediated general stress response, we demonstrate that the type or severity of microbial stressors within the HIO lumen is more restrictive than those of the in vivo environment of the germ-free mouse gut. This study provides important insight into the nature of the HIO microenvironment from a microbiological standpoint.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Mucosa Intestinal/citologia , Intestinos/citologia , Organoides/citologia , Células-Tronco Pluripotentes/citologia , Animais , Proteínas de Bactérias/genética , Diferenciação Celular , Células Cultivadas , Escherichia coli/genética , Feminino , Humanos , Técnicas In Vitro , Mucosa Intestinal/microbiologia , Intestinos/microbiologia , Masculino , Camundongos , Organoides/microbiologia , Células-Tronco Pluripotentes/microbiologia , Fator sigma/genética
2.
FASEB J ; 34(8): 9899-9910, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32602623

RESUMO

Lactobacilli, which are probiotic commensal bacteria that mainly reside in the human small intestine, have attracted attention for their ability to exert health-promoting effects and beneficially modulate host immunity. However, host epithelial-commensal bacterial interactions are still largely unexplored because of limited access to human small intestinal tissues. Recently, we described an in vitro maturation technique for generating adult-like, mature human intestinal organoids (hIOs) from human pluripotent stem cells (hPSCs) that closely resemble the in vivo tissue structure and cellular diversity. Here, we established an in vitro human model to study the response to colonization by commensal bacteria using luminal microinjection into mature hIOs, allowing for the direct examination of epithelial-bacterial interactions. Lactobacillus reuteri and Lactobacillus plantarum were more likely to survive and colonize when microinjected into the lumen of mature hIOs than when injected into immature hIOs, as determined by scanning electron microscopy, colony formation assay, immunofluorescence, and real-time imaging with L plantarum expressing red fluorescent protein. The improved mature hIO-based host epithelium system resulted from enhanced intestinal epithelial integrity via upregulation of mucus secretion and tight junction proteins. Our study indicates that mature hIOs are a physiologically relevant in vitro model system for studying commensal microorganisms.


Assuntos
Diferenciação Celular , Mucosa Intestinal/citologia , Intestinos/citologia , Lactobacillus/crescimento & desenvolvimento , Organoides/citologia , Células-Tronco Pluripotentes/citologia , Células Cultivadas , Humanos , Técnicas In Vitro , Mucosa Intestinal/microbiologia , Intestinos/microbiologia , Organoides/microbiologia , Células-Tronco Pluripotentes/microbiologia
3.
Am J Physiol Gastrointest Liver Physiol ; 308(6): G510-24, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25552581

RESUMO

The majority of antibiotic-induced diarrhea is caused by Clostridium difficile (C. difficile). Hospitalizations for C. difficile infection (CDI) have tripled in the last decade, emphasizing the need to better understand how the organism colonizes the intestine and maintain infection. The mucus provides an interface for bacterial-host interactions and changes in intestinal mucus have been linked host health. To assess mucus production and composition in healthy and CDI patients, the main mucins MUC1 and MUC2 and mucus oligosaccharides were examined. Compared with healthy subjects, CDI patients demonstrated decreased MUC2 with no changes in surface MUC1. Although MUC1 did not change at the level of the epithelia, MUC1 was the primary constituent of secreted mucus in CDI patients. CDI mucus also exhibited decreased N-acetylgalactosamine (GalNAc), increased N-acetylglucosamine (GlcNAc), and increased terminal galactose residues. Increased galactose in CDI specimens is of particular interest since terminal galactose sugars are known as C. difficile toxin A receptor in animals. In vitro, C. difficile is capable of metabolizing fucose, mannose, galactose, GlcNAc, and GalNAc for growth under healthy stool conditions (low Na(+) concentration, pH 6.0). Injection of C. difficile into human intestinal organoids (HIOs) demonstrated that C. difficile alone is sufficient to reduce MUC2 production but is not capable of altering host mucus oligosaccharide composition. We also demonstrate that C. difficile binds preferentially to mucus extracted from CDI patients compared with healthy subjects. Our results provide insight into a mechanism of C. difficile colonization and may provide novel target(s) for the development of alternative therapeutic agents.


Assuntos
Clostridioides difficile/metabolismo , Colo/metabolismo , Colo/microbiologia , Enterocolite Pseudomembranosa/metabolismo , Enterocolite Pseudomembranosa/microbiologia , Muco/metabolismo , Acetilgalactosamina/metabolismo , Acetilglucosamina/metabolismo , Adulto , Idoso , Estudos de Casos e Controles , Células Cultivadas , Clostridioides difficile/crescimento & desenvolvimento , Clostridioides difficile/isolamento & purificação , Fezes/microbiologia , Feminino , Galactose/análogos & derivados , Galactose/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Masculino , Pessoa de Meia-Idade , Mucina-1/metabolismo , Mucina-2/metabolismo , Organoides , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/microbiologia
4.
Am J Physiol Gastrointest Liver Physiol ; 308(6): G497-509, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25552580

RESUMO

Clostridium difficile infection (CDI) is principally responsible for hospital acquired, antibiotic-induced diarrhea and colitis and represents a significant financial burden on our healthcare system. Little is known about C. difficile proliferation requirements, and a better understanding of these parameters is critical for development of new therapeutic targets. In cell lines, C. difficile toxin B has been shown to inhibit Na(+)/H(+) exchanger 3 (NHE3) and loss of NHE3 in mice results in an altered intestinal environment coupled with a transformed gut microbiota composition. However, this has yet to be established in vivo in humans. We hypothesize that C. difficile toxin inhibits NHE3, resulting in alteration of the intestinal environment and gut microbiota. Our results demonstrate that CDI patient biopsy specimens have decreased NHE3 expression and CDI stool has elevated Na(+) and is more alkaline compared with stool from healthy individuals. CDI stool microbiota have increased Bacteroidetes and Proteobacteria and decreased Firmicutes phyla compared with healthy subjects. In vitro, C. difficile grows optimally in the presence of elevated Na(+) and alkaline pH, conditions that correlate to changes observed in CDI patients. To confirm that inhibition of NHE3 was specific to C. difficile, human intestinal organoids (HIOs) were injected with C. difficile or healthy and CDI stool supernatant. Injection of C. difficile and CDI stool decreased NHE3 mRNA and protein expression compared with healthy stool and control HIOs. Together these data demonstrate that C. difficile inhibits NHE3 in vivo, which creates an altered environment favored by C. difficile.


Assuntos
Clostridioides difficile/crescimento & desenvolvimento , Colo/metabolismo , Colo/microbiologia , Enterocolite Pseudomembranosa/metabolismo , Enterocolite Pseudomembranosa/microbiologia , Microbiota , Trocadores de Sódio-Hidrogênio/metabolismo , Adulto , Idoso , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Clostridioides difficile/isolamento & purificação , Clostridioides difficile/metabolismo , Regulação para Baixo , Fezes/microbiologia , Feminino , Interações Hospedeiro-Patógeno , Humanos , Concentração de Íons de Hidrogênio , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Masculino , Pessoa de Meia-Idade , Organoides , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/microbiologia , RNA Mensageiro/metabolismo , Sódio/metabolismo , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/genética
5.
Int J Radiat Biol ; 88(10): 703-8, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22823510

RESUMO

PURPOSE: Exposition of best practice in management and experimental use of human stem cell lines in radiobiological research. This paper outlines the key challenges to be addressed by radiobiologists wishing to use human pluripotent stem cell (hPSC) lines in their research including human embryonic stem cell (hESC) lines and human induced pluirpotency stem (hiPSC) lines. It emphasises the importance of guidance already established for cell culture in general and outlines some further considerations specific to the culture of human pluripotent stem cell lines which may impact on the interpretation of data from radiobiological studies using these cells. Fundamental standards include obtaining cells from bona fide suppliers with suitable quality controls, screening cell lines to ensure absence of mycoplasma and authentication of cell lines by DNA profiling. For hESC and hiPSC lines, it is particularly important to recognise the significance of phenotypic and genetic stability and this paper will address approaches to reduce their impact. Quality assured banking of these two types of stem cell lines will facilitate reliable supply of quality controlled cells that can provide standardisation between laboratories and in the same laboratory over time. CONCLUSIONS: hPSC lines could play an important role in future radiobiological research providing certain fundamental principles of good stem cell culture practice are adopted at the outset of such work.


Assuntos
Técnicas de Cultura de Células/métodos , Linhagem Celular , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos da radiação , Radiobiologia/métodos , Técnicas de Cultura de Células/normas , Humanos , Laboratórios/normas , Células-Tronco Pluripotentes/microbiologia , Controle de Qualidade , Radiobiologia/normas , Padrões de Referência
6.
Curr Protoc Stem Cell Biol ; Chapter 1: Unit1C.3, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18785164

RESUMO

To realize their potentials, embryonic stem (ES) cells must be maintained in optimal culture conditions that preserve their pluripotency and self-renewal capacity. Mouse embryonic fibroblasts (MEFs) are used to prepare a feeder cell layer that supports the growth of ES cells and the quality of feeders is crucial for the maintenance of undifferentiated ES cells in prolonged culture. The protocols provided in this unit describe aspects of isolation and expansion of MEFs and maintenance of established feeder cells. Preparation of mitotically inactivated feeder cell layer (treatment with mitomycin C or gamma-irradiation) is also described. In addition, a method for counting cell numbers and a simple method for detection of mycoplasma contamination by in situ DNA staining are also provided. Methodology described has been tested in a real laboratory environment and provides detailed information regarding resource and time requirements as well as critical parameters and troubleshooting.


Assuntos
Separação Celular/métodos , Técnicas de Cocultura/métodos , Células-Tronco Embrionárias/citologia , Fibroblastos/citologia , Animais , Contagem de Células , Técnicas de Cultura de Células , Criopreservação , Células-Tronco Embrionárias/microbiologia , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/microbiologia , Fibroblastos/efeitos da radiação , Raios gama , Camundongos , Mitomicina/farmacologia , Mitose/efeitos dos fármacos , Mitose/efeitos da radiação , Mycoplasma/isolamento & purificação , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/microbiologia , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA