Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 533(3): 376-382, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32962862

RESUMO

Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) resemble fetal cardiomyocytes and electrical stimulation (ES) has been explored to mature the differentiated cells. Here, we hypothesize that ES applied at the beginning of the differentiation process, triggers both differentiation of the hiPSC-CMs into a specialized conduction system (CS) phenotype and cell maturation. We applied ES for 15 days starting on day 0 of the differentiation process and found an increased expression of transcription factors and proteins associated with the development and function of CS including Irx3, Nkx2.5 and contactin 2, Hcn4 and Scn5a, respectively. We also found activation of intercalated disc proteins (Nrap and ß-catenin). We detected ES-induced CM maturation as indicated by increased Tnni1 and Tnni3 expression. Confocal micrographs showed a shift towards expression of the gap junction protein connexin 40 in ES hiPSC-CM compared to the more dominant expression of connexin 43 in controls. Finally, analysis of functional parameters revealed that ES hiPSC-CMs exhibited faster action potential (AP) depolarization, longer intracellular Ca2+ transients, and slower AP duration at 90% of repolarization, resembling fast conducting fibers. Altogether, we provided evidence that ES during the differentiation of hiPSC to cardiomyocytes lead to development of cardiac conduction-like cells with more mature cytoarchitecture. Thus, hiPSC-CMs exposed to ES during differentiation can be instrumental to develop CS cells for cardiac disease modelling, screening individual drugs on a precison medicine type platform and support the development of novel therapeutics for arrhythmias.


Assuntos
Potenciais de Ação/fisiologia , Cálcio/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/fisiologia , Biomarcadores/metabolismo , Diferenciação Celular , Terapia Baseada em Transplante de Células e Tecidos/métodos , Conexinas/genética , Conexinas/metabolismo , Contactina 2/genética , Contactina 2/metabolismo , Estimulação Elétrica , Expressão Gênica , Sistema de Condução Cardíaco/citologia , Sistema de Condução Cardíaco/fisiologia , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miócitos Cardíacos/citologia , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Canais de Potássio/genética , Canais de Potássio/metabolismo , Cultura Primária de Células , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Troponina I/genética , Troponina I/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Proteína alfa-5 de Junções Comunicantes
2.
Brain Res Bull ; 155: 112-118, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31816405

RESUMO

Focal cortical dysplasia (FCD) is a malformation of cortical development which is strongly associated with drug-refractory epilepsy. Certain studies have demonstrated an increase in mTOR signaling in patients with FCD on the basis of observation of phosphorylated molecules. The aim of the present study was to verify the differences in genes involved in cell proliferation, adhesion, and control of apoptosis during embryonic neurogenesis in iPSCs derived from the Focal Cortical Dysplasia. Fibroblasts were obtained from the skin biopsies of patients with FCD (n = 2) and controls (n = 2). iPSCs were generated by exposing the fibroblasts to viral vectors that contained the Yamanaka factors (OCT4, SOX2, KLF4, and c-MYC genes) responsible for promoving cell reprogramation. The fibroblasts and iPSCs were tested during different phases of neurodifferentiation for migration capacity and expression of the genes involved in the PI3K pathway. Fibroblasts of patients with FCD migrated with greater intensity during the first two time points of analyses. iPSCs did not exhibit any difference in cell migration between the groups. Fibroblasts, brain tissue, and iPSCs of the patients with FCD exhibited a significant reduction in the relative expression values of 4EBP-1. During neurodevelopment, the iPSCs from patients with FCD exhibited a reduction in the expression of cIAP-1, cIAP-2, PI3K, ß-Catenin and 4EBP-1 gene. We suggest that the differences observed in the migration potential of adult cells and in the gene expression related to the fundamental processes involved in normal brain development during the neurodifferentiation process might be associated with cortical alteration in the patients with FCD.


Assuntos
Apoptose/genética , Adesão Celular/genética , Proliferação de Células/genética , Células-Tronco Pluripotentes Induzidas/fisiologia , Malformações do Desenvolvimento Cortical/genética , Neurogênese/genética , Adulto , Células Cultivadas , Feminino , Fibroblastos/fisiologia , Humanos , Fator 4 Semelhante a Kruppel , Masculino , Pessoa de Meia-Idade
3.
Front Endocrinol (Lausanne) ; 11: 614999, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33542708

RESUMO

The anterior pituitary gland is comprised of specialized cell-types that produce and secrete polypeptide hormones in response to hypothalamic input and feedback from target organs. These specialized cells arise during embryonic development, from stem cells that express SOX2 and the pituitary transcription factor PROP1, which is necessary to establish the stem cell pool and promote an epithelial to mesenchymal-like transition, releasing progenitors from the niche. Human and mouse embryonic stem cells can differentiate into all major hormone-producing cell types of the anterior lobe in a highly plastic and dynamic manner. More recently human induced pluripotent stem cells (iPSCs) emerged as a viable alternative due to their plasticity and high proliferative capacity. This mini-review gives an overview of the major advances that have been achieved to develop protocols to generate pituitary hormone-producing cell types from stem cells and how these mechanisms are regulated. We also discuss their application in pituitary diseases, such as pituitary hormone deficiencies.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Pluripotentes Induzidas/transplante , Hipófise/fisiologia , Hipófise/transplante , Medicina Regenerativa/métodos , Animais , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Doenças da Hipófise/patologia , Doenças da Hipófise/terapia , Hipófise/citologia , Medicina Regenerativa/tendências
4.
Sci Rep ; 9(1): 19203, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31844156

RESUMO

Patient-specific cardiomyocytes obtained from induced pluripotent stem cells (CM-iPSC) offer unprecedented mechanistic insights in the study of inherited cardiac diseases. The objective of this work was to study a type 2 long QT syndrome (LQTS2)-associated mutation (c.1600C > T in KCNH2, p.R534C in hERG) in CM-iPSC. Peripheral blood mononuclear cells were isolated from two patients with the R534C mutation and iPSCs were generated. In addition, the same mutation was inserted in a control iPSC line by genome editing using CRISPR/Cas9. Cells expressed pluripotency markers and showed spontaneous differentiation into the three embryonic germ layers. Electrophysiology demonstrated that action potential duration (APD) of LQTS2 CM-iPSC was significantly longer than that of the control line, as well as the triangulation of the action potentials (AP), implying a longer duration of phase 3. Treatment with the IKr inhibitor E4031 only caused APD prolongation in the control line. Patch clamp showed a reduction of IKr on LQTS2 CM-iPSC compared to control, but channel activation was not significantly affected. Immunofluorescence for hERG demonstrated perinuclear staining in LQTS2 CM-iPSC. In conclusion, CM-iPSC recapitulated the LQTS2 phenotype and our findings suggest that the R534C mutation in KCNH2 leads to a channel trafficking defect to the plasma membrane.


Assuntos
Canal de Potássio ERG1/genética , Células-Tronco Pluripotentes Induzidas/fisiologia , Síndrome do QT Longo/genética , Mutação/genética , Miócitos Cardíacos/fisiologia , Transporte Proteico/genética , Potenciais de Ação/genética , Adolescente , Adulto , Membrana Celular/genética , Feminino , Edição de Genes/métodos , Humanos , Leucócitos Mononucleares/fisiologia , Masculino , Fenótipo , Adulto Jovem
5.
Transl Psychiatry ; 8(1): 48, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29467462

RESUMO

Schizophrenia is a neurodevelopmental disease characterized by cerebral connectivity impairment and loss of gray matter. It was described in adult schizophrenia patients (SZP) that concentration of VEGFA, a master angiogenic factor, is decreased. Recent evidence suggests cerebral hypoperfusion related to a dysfunctional Blood Brain Barrier (BBB) in SZP. Since neurogenesis and blood-vessel formation occur in a coincident and coordinated fashion, a defect in neurovascular development could result in increased vascular permeability and, therefore, in poor functionality of the SZP's neurons. Here, we characterized the conditioned media (CM) of human induced Pluripotent Stem Cells (hiPSC)-derived Neural Stem Cells of SZP (SZP NSC) versus healthy subjects (Ctrl NSC), and its impact on angiogenesis. Our results reveal that SZP NSC have an imbalance in the secretion and expression of several angiogenic factors, among them non-canonical neuro-angiogenic guidance factors. SZP NSC migrated less and their CM was less effective in inducing migration and angiogenesis both in vitro and in vivo. Since SZP originates during embryonic brain development, our findings suggest a defective crosstalk between NSC and endothelial cells (EC) during the formation of the neuro-angiogenic niche.


Assuntos
Indutores da Angiogênese/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/fisiopatologia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatologia , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Células-Tronco Neurais/metabolismo
6.
Cell Tissue Res ; 371(1): 153-160, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28918504

RESUMO

Autism spectrum disorders (ASD) represent a variety of disorders characterized as complex lifelong neurodevelopment disabilities, which may affect the ability of communication and socialization, including typical comportments like repetitive and stereotyped behavior. Other comorbidities are usually present, such as echolalia, hypotonia, intellectual disability and difficulties in processing figured speech. Furthermore, some ASD individuals may present certain abilities, such as eidetic memory, outstanding musical or painting talents and special mathematical skills, among others. Considering the variability of the clinical symptoms, one autistic individual can be severely affected in communication while others can speak perfectly, sometimes having a vocabulary above average in early childhood. The same variability can be seen in other clinical symptoms, thus the "spectrum" can vary from severe to mild. Induced pluripotent stem cell technology has been used to model several neurological diseases, including syndromic and non-syndromic autism. We discuss how modeling the central nervous system cells in a dish may help to reach a better understanding of ASD pathology and variability, as well as personalize their treatment.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Animais , Técnicas de Cultura , Humanos , Camundongos
7.
Biol Psychiatry ; 83(7): 569-578, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29129319

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental disorder with unclear etiology and imprecise genetic causes. The main goal of this work was to investigate neuronal connectivity and the interplay between neurons and astrocytes from individuals with nonsyndromic ASD using induced pluripotent stem cells. METHODS: Induced pluripotent stem cells were derived from a clinically well-characterized cohort of three individuals with nonsyndromic ASD sharing common behaviors and three control subjects, two clones each. We generated mixed neural cultures analyzing synaptogenesis and neuronal activity using a multielectrode array platform. Furthermore, using an enriched astrocyte population, we investigated their role in neuronal maintenance. RESULTS: ASD-derived neurons had a significant decrease in synaptic gene expression and protein levels, glutamate neurotransmitter release, and, consequently, reduced spontaneous firing rate. Based on co-culture experiments, we observed that ASD-derived astrocytes interfered with proper neuronal development. In contrast, control-derived astrocytes rescued the morphological neuronal phenotype and synaptogenesis defects from ASD neuronal co-cultures. Furthermore, after identifying interleukin-6 secretion from astrocytes in individuals with ASD as a possible culprit for neural defects, we were able to increase synaptogenesis by blocking interleukin-6 levels. CONCLUSIONS: Our findings reveal the contribution of astrocytes to neuronal phenotype and confirm previous studies linking interleukin-6 and autism, suggesting potential novel therapeutic pathways for a subtype of individuals with ASD. This is the first report demonstrating that glial dysfunctions could contribute to nonsyndromic autism pathophysiology using induced pluripotent stem cells modeling disease technology.


Assuntos
Astrócitos/fisiologia , Transtorno do Espectro Autista , Expressão Gênica , Células-Tronco Pluripotentes Induzidas/fisiologia , Interleucina-6/metabolismo , Neurônios/fisiologia , Sinapses/fisiologia , Astrócitos/metabolismo , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/fisiopatologia , Técnicas de Cultura de Células , Criança , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Modelos Neurológicos , Neurônios/metabolismo , Sinapses/metabolismo
8.
Ageing Res Rev ; 40: 168-181, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28903069

RESUMO

Aging is associated with a progressive increase in the incidence of neurodegenerative diseases, with Alzheimer's (AD) and Parkinson's (PD) disease being the most conspicuous examples. Within this context, the absence of efficacious therapies for most age-related brain pathologies has increased the interest in regenerative medicine. In particular, cell reprogramming technologies have ushered in the era of personalized therapies that not only show a significant potential for the treatment of neurodegenerative diseases but also promise to make biological rejuvenation feasible. We will first review recent evidence supporting the emerging view that aging is a reversible epigenetic phenomenon. Next, we will describe novel reprogramming approaches that overcome some of the intrinsic limitations of conventional induced-pluripotent-stem-cell technology. One of the alternative approaches, lineage reprogramming, consists of the direct conversion of one adult cell type into another by transgenic expression of multiple lineage-specific transcription factors (TF). Another strategy, termed pluripotency factor-mediated direct reprogramming, uses universal TF to generate epigenetically unstable intermediates able to differentiate into somatic cell types in response to specific differentiation factors. In the third part we will review studies showing the potential relevance of the above approaches for the treatment of AD and PD.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Reprogramação Celular/fisiologia , Medicina Regenerativa/métodos , Rejuvenescimento/fisiologia , Envelhecimento/patologia , Animais , Encéfalo/patologia , Diferenciação Celular/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Pluripotentes Induzidas/transplante , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Medicina Regenerativa/tendências , Fatores de Transcrição/metabolismo
10.
Adv Exp Med Biol ; 951: 111-121, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27837558

RESUMO

Accumulating evidence has demonstrated that menstrual blood stands as a viable source of stem cells. Menstrual blood-derived stem cells (MenSCs) are morphologically and functionally similar to cells directly extracted from the endometrium, and present dual expression of mesenchymal and embryonic cell markers, thus becoming interesting tools for regenerative medicine. Functional reports show higher proliferative and self-renewal capacities than bone marrow-derived stem cells, as well as successful differentiation into hepatocyte-like cells, glial-like cells, endometrial stroma-like cells, among others. Moreover, menstrual blood stem cells may be used with increased efficiency in reprogramming techniques for induced Pluripotent Stem cell (iPS) generation. Experimental studies have shown successful treatment of stroke, colitis, limb ischemia, coronary disease, Duchenne's muscular atrophy and streptozotocin-induced type 1 diabetes animal models with MenSCs. As we envision an off-the-shelf product for cell therapy, cryopreserved MenSCs appear as a feasible clinical product. Clinical applications, although still very limited, have great potential and ongoing studies should be disclosed in the near future.


Assuntos
Colite/terapia , Criopreservação/métodos , Endométrio/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Distrofia Muscular de Duchenne/terapia , Acidente Vascular Cerebral/terapia , Animais , Diferenciação Celular , Proliferação de Células , Separação Celular/métodos , Ensaios Clínicos como Assunto , Colite/patologia , Criopreservação/ética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/terapia , Modelos Animais de Doenças , Endométrio/fisiologia , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Menstruação/fisiologia , Camundongos , Distrofia Muscular de Duchenne/patologia , Acidente Vascular Cerebral/patologia
11.
PLoS One ; 10(12): e0144336, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26642061

RESUMO

Pluripotent stem cells possess complex systems that protect them from oxidative stress and ensure genomic stability, vital for their role in development. Even though it has been reported that antioxidant activity diminishes along stem cell differentiation, little is known about the transcriptional regulation of the involved genes. The reported modulation of some of these genes led us to hypothesize that some of them could be regulated by the transcription factors critical for self-renewal and pluripotency in embryonic stem cells (ESCs) and in induced pluripotent stem cells (iPSCs). In this work, we studied the expression profile of multiple genes involved in antioxidant defense systems in both ESCs and iPSCs. We found that Manganese superoxide dismutase gene (Mn-Sod/Sod2) was repressed during diverse differentiation protocols showing an expression pattern similar to Nanog gene. Moreover, Sod2 promoter activity was induced by Oct4 and Nanog when we performed a transactivation assay using two different reporter constructions. Finally, we studied Sod2 gene regulation by modulating the expression of Oct4 and Nanog in ESCs by shRNAs and found that downregulation of any of them reduced Sod2 expression. Our results indicate that pluripotency transcription factors positively modulate Sod2 gene transcription.


Assuntos
Proteínas de Homeodomínio/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Fator 3 de Transcrição de Octâmero/metabolismo , Superóxido Dismutase/genética , Animais , Diferenciação Celular , Linhagem Celular , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Proteínas de Homeodomínio/genética , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/genética , Regiões Promotoras Genéticas , RNA Interferente Pequeno , Superóxido Dismutase/metabolismo
12.
Genet Mol Res ; 14(4): 14093-104, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26535724

RESUMO

Large number of cellular changes and diseases are related to mutations in the mitochondrial DNA copy number. Cell culture in the presence of ethidium bromide is a known way of depleting mitochondrial DNA and is a useful model for studying such conditions. Interestingly, the morphology of these depleted cells resembles that of pluripotent cells, as they present larger and fragmented mitochondria with poorly developed cristae. Herein, we aimed to study the mechanisms responsible for the control of mitochondrial DNA replication during mitochondrial DNA depletion mediated by ethidium bromide and during the in vitro induction of cellular pluripotency with exogenous transcription factor expression in a bovine model. This article reports the generation of a bovine Rho0 mesenchymal cell line and describes the analysis of mitochondrial DNA copy number in a time-dependent manner. The expression of apoptosis and mitochondrial-related genes in the cells during mitochondrial DNA repletion were also analyzed. The dynamics of mitochondrial DNA during both the depletion process and in vitro reprogramming are discussed. It was possible to obtain bovine mesenchymal cells almost completely depleted of their mitochondrial DNA content (over 90%). However, the production of induced pluripotent stem cells from the transduction of both control and Rho0 bovine mesenchymal cells with human reprograming factors was not successful.


Assuntos
DNA Mitocondrial/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Animais , Bovinos , Técnicas de Cultura de Células/métodos , Linhagem Celular , Técnicas de Reprogramação Celular/métodos , Variações do Número de Cópias de DNA , Replicação do DNA/fisiologia , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Etídio/farmacologia , Feminino , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Modelos Biológicos , Fatores de Transcrição
13.
Neuroscience ; 288: 187-99, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25559931

RESUMO

Monge's disease, also known as chronic mountain sickness (CMS), is a disease that potentially threatens more than 140 million highlanders during extended time living at high altitudes (over 2500m). The prevalence of CMS in Andeans is about 15-20%, suggesting that the majority of highlanders (non-CMS) are rather healthy at high altitudes; however, CMS subjects experience severe hypoxemia, erythrocytosis and many neurologic manifestations including migraine, headache, mental fatigue, confusion, and memory loss. The underlying mechanisms of CMS neuropathology are not well understood and no ideal treatment is available to prevent or cure CMS, except for phlebotomy. In the current study, we reprogrammed fibroblast cells from both CMS and non-CMS subjects' skin biopsies into the induced pluripotent stem cells (iPSCs), then differentiated into neurons and compared their neuronal properties. We discovered that CMS neurons were much less excitable (higher rheobase) than non-CMS neurons. This decreased excitability was not caused by differences in passive neuronal properties, but instead by a significantly lowered Na(+) channel current density and by a shift of the voltage-conductance curve in the depolarization direction. Our findings provide, for the first time, evidence of a neuronal abnormality in CMS subjects as compared to non-CMS subjects, hoping that such studies can pave the way to a better understanding of the neuropathology in CMS.


Assuntos
Doença da Altitude/fisiopatologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Neurônios/fisiologia , Canais de Sódio/metabolismo , Potenciais de Ação/fisiologia , Adulto , Técnicas de Cultura de Células , Células Cultivadas , Doença Crônica , Fibroblastos/citologia , Fibroblastos/fisiologia , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Neurônios/citologia , Técnicas de Patch-Clamp , Peru , Adulto Jovem
14.
Pirassununga; s.n; 22/03/2013. 133 p. ilus.
Tese em Português | VETINDEX | ID: biblio-1505298

RESUMO

Estratégias como a transferência nuclear e a reprogramação induzida vêm sendo empregadas com o objetivo de induzir células somáticas a um estado pluripotente similar ao embrionário. O processo de reprogramação nuclear e extremamente desejável e possui importantes contribuições tanto no estudo da ciência básica como aplicada, como por exemplo, no aumento da eficiência das biotécnicas de produção animal ou na medicina, com a possibilidade de terapia celular autóloga. Uma série de estudos, porem, ainda são necessários para que tais aplicações sejam viáveis, uma vez que os mecanismos fundamentais das técnicas empregadas ainda não estão totalmente elucidados. Esta proposta teve como objetivo gerar células bovinas pluripotentes através da reprogramação direta e utilizá-las na transferência de núcleo para a produção animal visando o aumento da eficiência da reprogramação celular. Para tal, foi analisada a capacidade de indução e manutenção da pluripotência em células somáticas bovinas comparando-as com células humanas e equinas (células pluripotentes induzidas - iPSC), assim como a capacidade de desenvolvimento de embriões produzidos através da combinação das técnicas em bovinos. As células iPS derivadas neste estudo foram produzidas mediante transdução lentiviral de fatores de transcrição (OSKM) murinos, caracterizadas e utilizadas como doadoras de núcleo na clonagem. Resumidamente, oócitos bovinos obtidos de ovários provenientes de abatedouros foram maturados in vitro por 18h, enucleados e reconstruídos com células iPS (n=203 ou fibroblastos fetais bovinos (bFF, n=153), em cinco repetições. [...] O conhecimento da contribuição de cada fator utilizado na reprogramação induzida, aliado a estudos de comparação com a capacidade de desenvolvimento in vitro de organismos derivados de células reprogramadas deverá contribuir para o aumento da eficiência da clonagem e produção animal in vitro como para a medicina regenerativa.


Nuclear transfer and induced reprogramming are technologies usually used for the induction of somatic cells into an embryonic-like pluripotent status. The knowledgment of nuclear reprogramming process is highly desirable, leading to important contributions for both basic and applied sciences; for example, resulting in the increase in the efficiency of several animal biotechnologies, or else enabling autologous cellular therapy for medical purposes. However, basic studies are still needed in order to enable such applications, once the mechanisms controlling in vitro reprogramming are yet to be unraveled. This study aims to generate induced pluripotent bovine stem cells through direct reprogramming and its use in nuclear transfer in order to enhance the cellular reprogramming efficiency, For that, the potential of pluripotency induction and maintenance was analyzed in bovine somatic cells, comparing those with human and equine cells, as well as the potential of embryonic development after combining direct and nuclear reprogramming. iPS cells derived in this study were produced trought lentivirus transduction of mouse transcription factors (OSKM), further characterized and used as nuclei donors for cloning. In summary, bovine oocytes were obtained from slaughterhouse ovaries, in vitro matured for 18h, enucleated and reconstructed with iPS cells (n=203) or fetal fibroblasts (bFF, n=153), in five replicates. Embryos were reconstructed, chemically activated with ionomycin and 6-DMAP and cultured in vitro until blastocyst stage. [...] The knowledge of each reprogramming factor influence on in vitro reprogramming, together with comparison studies on in vitro developmental potential of organisms derived from reprogrammed cells should help enhancing not only the cloning efficiency and in vitro animal production, but also the regenerative medicine.


Assuntos
Animais , Bovinos , Células-Tronco Pluripotentes Induzidas/fisiologia , Reprogramação Celular/fisiologia , Técnicas de Transferência Nuclear/veterinária
15.
Cell Transplant ; 21(10): 2215-24, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22776164

RESUMO

Induced pluripotent stem cells (iPSCs) were originally generated by forced ectopic expression of four transcription factors genes-OCT4, KLF4, SOX2, and c-MYC-in fibroblasts. However, the efficiency of iPSCs obtention is extremely low, and reprogramming takes about 20 days. We reasoned that adult cells showing basal expression of core embryonic stem (ES) cell regulator genes could be a better cell source for reprogramming. Menstrual blood-derived mesenchymal cells (MBMCs) are multipotent cells that show detectable levels of some of the core ES cells regulators. The aim of this study was to determine whether reprogramming efficiency could be increased by using MBMCs as a cell source to generate iPSCs. MBMCs were transduced with recombinant retroviruses expressing the coding regions of OCT4, SOX2, and KLF4 genes. Cells with high nucleus/cytoplasm ratio can be detected about 5 days of posttransduction, and colonies of typical ES-like cells begun to appear after 7 days. At day 15, colonies were picked up and expanded for characterization. Most of the clones were morphologically identical to ES cells and positive at the mRNA and protein levels for all pluripotency markers tested. The clones are capable of forming embryoid bodies and to differentiate in vitro into cells of the three germ cell layers. Our results show that the reprogramming was faster and with efficiency around 2-5%, even in the absence of ectopic expression of c-MYC. To date, this is the first study showing MBMCs as a cell source for nuclear reprogramming.


Assuntos
Células Sanguíneas/fisiologia , Reprogramação Celular/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Menstruação/sangue , Células-Tronco Mesenquimais/fisiologia , Células Sanguíneas/citologia , Células Sanguíneas/metabolismo , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Feminino , Expressão Gênica , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo
16.
Arch Med Res ; 43(1): 1-10, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22293229

RESUMO

Degeneration of motor neurons (MN) caused by disease or injury leads to paralysis and is fatal in some conditions. To date, there are no effective treatments for MN disorders; therefore, cell therapy is a promising strategy to replace lost MN. Embryonic stem (ES) cells isolated from the inner cell mass of mammalian blastocysts self-renew and are pluripotent because they differentiate into cell types of the three germinal layers. Reprogramming of adult cells to a state similar to ES cells, termed induced pluripotent stem (iPS) cells, has been recently reported. It is well established that pluripotent cell types can give rise to specialized phenotypes, including neurons. Mouse, monkey and human MN can be differentiated from ES and iPS cells using procedures generally involving embryoid bodies formation and stimulation with retinoic acid and Sonic hedgehog. Differentiated MN express characteristic molecular markers such as Islet1, HB9 and Choline acetyltransferase, exhibit electrophysiological maturity and are able to form synaptic contacts similar to neuromuscular junctions in vitro. Furthermore, transplanted MN promote functional recovery in animal models of neurodegenerative diseases and MN injury. The potential clinical applications of stem cell-derived MN was enhanced after iPS cell derivation, which makes possible the generation of patient-specific pluripotent cells for autologous cell replacement therapies and may be used for drug development and disease modeling. This review summarizes MN differentiation protocols from ES and iPS cells in regard to neuronal differentiation efficiency, expression of MN markers and functional properties in vitro, as well as their therapeutic effects after grafting.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Neurônios Motores/transplante , Doenças Neurodegenerativas/terapia , Animais , Técnicas de Cultura de Células , Humanos , Medicina Regenerativa , Doenças da Medula Espinal/terapia , Fatores de Transcrição/farmacologia , Fatores de Transcrição/fisiologia
17.
Genet Mol Res ; 11(4): 4179-86, 2012 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-23315802

RESUMO

Typically, production of induced pluripotent stem cells requires direct contact with feeder cells. However, once the stem cells have reached the appropriate maturation point, it is difficult to separate them from feeder cells, which must be irradiated with γ-rays or treated with the antibiotic mitomycin-C. We used a microporous poly-membrane-based indirect contact co-culture system with mouse embryonic fibroblasts to induce mouse pluripotent stem cells without radiation or antibiotics. We found that induced pluripotent stem cells induced by this co-culture method had a reprogramming efficiency and time similar to those induced using traditional methods. Furthermore, strongly expressed pluripotent markers showed a normal karyotype and formation and contained all three germ layers in a teratoma.


Assuntos
Células-Tronco Embrionárias/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Animais , Antígenos de Diferenciação/metabolismo , Diferenciação Celular , Técnicas de Cocultura/instrumentação , Técnicas de Cocultura/métodos , Células Alimentadoras , Fibroblastos/fisiologia , Proteínas de Homeodomínio/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Cariótipo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Proteína Homeobox Nanog , Teratoma/patologia , Fatores de Transcrição/metabolismo
18.
Reprod Domest Anim ; 47 Suppl 6: 84-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23279472

RESUMO

The aim of this study was to further clarify the mechanisms involved in inducing pluripotency using canine foetal fibroblast cells. The two pluripotency-related transcription factors, OCT4 and SOX2, coupled to a fluorescent reporter gene were transduced, individually or in combination, using a lentiviral system. Stable transgenic cell lineages were obtained and canine cells showed to be highly responsive to the integration and expression of human SOX2 and OCT4, also depending on the amount of virus used for incubation. Such positive results are essential for the establishment of pluripotency induction through the incorporation of known transcription factors into the genome of somatic cells.


Assuntos
Cães/fisiologia , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Animais , Técnicas de Cultura de Células , Citometria de Fluxo , Regulação da Expressão Gênica/fisiologia , Humanos , Microscopia Confocal , Fator 3 de Transcrição de Octâmero/genética , Fatores de Transcrição SOXB1/genética , Especificidade da Espécie
19.
Biochem Biophys Res Commun ; 410(2): 252-7, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21651896

RESUMO

Induced pluripotent stem cells (iPSCs) are a promising type of stem cells, comparable to embryonic stem cells (ESCs) in terms of self-renew and pluripotency, generated by reprogramming somatic cells. These cells are an attractive approach to supply patient-specific pluripotent cells, for producing in vitro models of disease, drug discovery, toxicology and potentially treating degenerative disease circumventing immune rejection. In spite of the great advance since iPSCs' establishment, their obtention and propagation is an increasing area of great interest. In a recent work, we have shown that the conditioned medium from a bovine granulosa cell line (BGC-CM) is able to preserve the basic properties of mESCs. Therefore, based on our previous results and the reported resemblance between iPSCs and ESCs, we hypothesized that BGC-CM could provide a favorable context to culturing iPSCs. In this work, we have reprogrammed mouse embryonic fibroblasts obtaining iPSC lines, and showed that they can be propagated in BGC-CM while maintaining self-renewal and pluripotency, evidenced by expression of specific gene markers and capability of in vitro and in vivo differentiation to cell types from the three germ layers. We believe that these findings may provide a novel context to propagate iPSCs to study the molecular mechanisms involved in self-renewal and pluripotency.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/fisiologia , Regeneração , Animais , Bovinos , Técnicas de Cultura de Células , Linhagem Celular , Meios de Cultivo Condicionados/metabolismo , Feminino , Células da Granulosa/metabolismo , Células da Granulosa/fisiologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Fator 3 de Transcrição de Octâmero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA