Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 947
Filtrar
1.
Methods Mol Biol ; 2607: 215-256, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36449166

RESUMO

During their proliferation and the host's concomitant attempts to suppress it, LINE-1 (L1) retrotransposons give rise to a collection of heterogeneous ribonucleoproteins (RNPs); their protein and RNA compositions remain poorly defined. The constituents of L1-associated macromolecules can differ depending on numerous factors, including, for example, position within the L1 life cycle, whether the macromolecule is productive or under suppression, and the cell type within which the proliferation is occurring. This chapter describes techniques that aid the capture and characterization of protein and RNA components of L1 macromolecules from tissues that natively express them. The protocols described have been applied to embryonal carcinoma cell lines that are popular model systems for L1 molecular biology (e.g., N2102Ep, NTERA-2, and PA-1 cells), as well as colorectal cancer tissues. N2102Ep cells are given as the use case for this chapter; the protocols should be applicable to essentially any tissue exhibiting endogenous L1 expression with minor modifications.


Assuntos
Elementos Nucleotídeos Longos e Dispersos , Retroelementos , Substâncias Macromoleculares , Células-Tronco de Carcinoma Embrionário , RNA
2.
Biochem Biophys Res Commun ; 613: 187-192, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35598374

RESUMO

Histone lysine crotonylation (Kcr) is a novel hydrophobic histone acylation modification, and we recently report its crucial roles in neural differentiation. However, it is still unclear how histone Kcr involve in early neural commitment. Here, we systematically investigate the H3K9cr landscapes during neuroectodermal differentiation of pluripotent P19 embryonal carcinoma cells (ECCs). We reveal that the genome-wide changes in H3K9cr favor neural fate specification, and identify potential co-factors binding H3K9cr. We also uncover that H3K9cr collaborates with H3K9ac to regulate gene expression changes. Our results provide novel insights into the epigenetic mechanisms underlying neural commitment.


Assuntos
Histonas , Lisina , Diferenciação Celular , Células-Tronco de Carcinoma Embrionário/metabolismo , Epigênese Genética , Histonas/metabolismo , Lisina/metabolismo , Processamento de Proteína Pós-Traducional
3.
Toxicology ; 470: 153138, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35219798

RESUMO

Bisphenol A (2,2-bis(4'-hydroxyphenyl) propane, BPA) is a well-known endocrine-disrupting compound that is widely used in various daily products and exhibits embryonic development toxicity and genotoxicity. However, the affected signaling pathways involved in embryonic development especially the interactions of involved proteins remain unclear. In our previous study (Ge et al., 2021), BPA induces DNA damage and apoptosis in Xenopus embryos, resulting in multiple malformations of larvae. However, the signaling pathways induced for apoptosis response to DNA damage are still not well elucidated. Here, we systematically elucidated the enriched pathways affected by BPA and illustrated the interactions of involved proteins. Results indicated that BPA affected multiple embryonic development pathways including Hippo, TGF-ß, Wnt, and Notch pathways. Furthermore, the protein-protein interaction network suggested that the c-Abl/YAPY357/p73 pathway may play a key role in apoptosis induction in response to DNA damage. P19 embryonal carcinoma stem cells, as a developmental toxicity model, were treated with different BPA concentrations to establish an in vitro model to verify the role of the c-Abl/YAPY357/p73 pathway in apoptosis. BPA triggered DNA damage and significantly upregulated the expression levels of c-Abl, phosphorylated YAPY357, phosphorylated p73Y99, and cleaved caspase-3 protein (p < 0.05), thus decreasing cell viability and transcriptionally activating the p73 target genes Bax and Puma. These data suggested that BPA activated the c-Abl/YAPY357/p73 pathway in response to DNA damage. Imatinib, an inhibitor of tyrosine kinase c-Abl, significantly downregulated the elevated expression levels of p-YAPY357, p-p73Y99 and cleaved caspase-3 (p < 0.05) caused by BPA and then ameliorated the cell index of P19 cells in the BPA-treated group. Therefore, this substance restrained the phosphokinase activity of c-Abl and suppressed the c-Abl/YAPY357/p73 pathway. Results showed that the c-Abl/YAPY357/p73 pathway served as a mechanism for caspase-3 activation that induced the apoptosis response to DNA damage stress.


Assuntos
Proteínas de Ligação a DNA , Proteínas Nucleares , Apoptose/genética , Compostos Benzidrílicos , Caspase 3/genética , Dano ao DNA , Proteínas de Ligação a DNA/genética , Células-Tronco de Carcinoma Embrionário/metabolismo , Proteínas Nucleares/genética , Fenóis , Proteína Tumoral p73/genética , Proteínas Supressoras de Tumor/metabolismo
4.
Cells ; 10(11)2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34831070

RESUMO

Embryonic cancer stem cells (CSCs) can differentiate into any cancer type. Targeting CSC using natural compounds is a good approach as it suppresses cancer recurrence with fewer adverse effects, and methylsulfonylmethane (MSM) is a sulfur-containing compound with well-known anticancer activities. This study determined the mechanistic aspects of the anticancer activity of MSM. We used Western blotting and real-time qPCR for molecular signaling studies and conducted flow cytometry for analyzing the processes in cells. Our results suggested an inhibition in the expression of CSC markers and Wnt/ß-catenin signaling. MSM induced TRAIL-mediated extrinsic apoptosis in NCCIT and NTERA-2 cells rather than an intrinsic pathway. Inhibition of iron metabolism-dependent reactive oxygen species (ROS) generation takes part in TRAIL-mediated apoptosis induction by MSM. Suppressing iron metabolism by MSM also regulated p38/p53/ERK signaling and microRNA expressions, such as upregulating miR-130a and downregulating miR-221 and miR-222, which resulted in TRAIL induction and thereby extrinsic pathway of apoptosis. Hence, MSM could be a good candidate for neoadjuvant therapy by targeting CSCs by inhibiting iron metabolism.


Assuntos
Apoptose , Dimetil Sulfóxido/farmacologia , Células-Tronco de Carcinoma Embrionário/patologia , Ferro/metabolismo , Sulfonas/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Dano ao DNA , Células-Tronco de Carcinoma Embrionário/efeitos dos fármacos , Células-Tronco de Carcinoma Embrionário/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
Sci Rep ; 11(1): 20075, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625606

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that leads to dementia and behavioral changes. Extracellular deposition of amyloid plaques (Aß) and intracellular deposition of neurofibrillary tangles in neurons are the major pathogenicities of AD. However, drugs targeting these therapeutic targets are not effective. Therefore, novel targets for the treatment of AD urgently need to be identified. Expression of the mesoderm-specific transcript (Mest) is regulated by genomic imprinting, where only the paternal allele is active for transcription. We identified hypermethylation on the Mest promoter, which led to a reduction in Mest mRNA levels and activation of Wnt signaling in brain tissues of AD patients. Mest knockout (KO) using the CRIPSR/Cas9 system in mouse embryonic stem cells and P19 embryonic carcinoma cells leads to neuronal differentiation arrest. Depletion of Mest in primary hippocampal neurons via lentivirus expressing shMest or inducible KO system causes neurodegeneration. Notably, depletion of Mest in primary cortical neurons of rats leads to tau phosphorylation at the S199 and T231 sites. Overall, our data suggest that hypermethylation of the Mest promoter may cause or facilitate the progression of AD.


Assuntos
Doença de Alzheimer/patologia , Metilação de DNA , Células-Tronco Embrionárias/patologia , Neurônios/patologia , Regiões Promotoras Genéticas , Proteínas/genética , Via de Sinalização Wnt , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Células-Tronco de Carcinoma Embrionário/metabolismo , Células-Tronco de Carcinoma Embrionário/patologia , Células-Tronco Embrionárias/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Camundongos , Neurônios/metabolismo , Fosforilação , Proteínas/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
6.
Elife ; 102021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34379055

RESUMO

Fluctuation ('noise') in gene expression is critical for mammalian cellular processes. Numerous mechanisms contribute to its origins, yet the mechanisms behind large fluctuations that are induced by single transcriptional activators remain elusive. Here, we probed putative mechanisms by studying the dynamic regulation of transcriptional activator binding, histone regulator inhibitors, chromatin accessibility, and levels of mRNAs and proteins in single cells. Using a light-induced expression system, we showed that the transcriptional activator could form an interplay with dual functional co-activator/histone acetyltransferases CBP/p300. This interplay resulted in substantial heterogeneity in H3K27ac, chromatin accessibility, and transcription. Simultaneous attenuation of CBP/p300 and HDAC4/5 reduced heterogeneity in the expression of endogenous genes, suggesting that this mechanism is universal. We further found that the noise was reduced by pulse-wide modulation of transcriptional activator binding possibly as a result of alternating the epigenetic states. Our findings suggest a mechanism for the modulation of noise in synthetic and endogenous gene expression systems.


Assuntos
Regulação Neoplásica da Expressão Gênica , Histonas/genética , Animais , Células-Tronco de Carcinoma Embrionário , Células HeLa , Histonas/metabolismo , Humanos , Camundongos
7.
Biochem Biophys Res Commun ; 570: 169-174, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34284143

RESUMO

Glycosaminoglycan polysaccharides are components of animal extracellular matrices and regulate cell functions based on their various sulfation and epimerization pattern structures. The present study aimed to find glycosaminoglycan structures to promote neural differentiation. We investigated the effect of exogenous glycosaminoglycans with well-defined structures on the all-trans-retinoic acid-induced neural differentiation of P19 embryonal carcinoma cells, which is an ideal model culture system for studying neural differentiation. We found that chondroitin sulfate E and heparin, but not any other glycosaminoglycans, upregulated the expressions of neural specific markers but not a grail specific marker. Chondroitin sulfate E was suggested to function during spheroid formation, however, equimolar concentration of its oligosaccharide did not show promotive effect on the neural differentiation. Another finding was that hyaluronan oligosaccharide mixture markedly downregulated the expressions of a myelin specific marker. These findings suggested that the specific sulfation pattern and/or chain length of exogenous added glycosaminoglycan is important to regulate neural differentiation and myelination.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco de Carcinoma Embrionário/patologia , Glicosaminoglicanos/química , Glicosaminoglicanos/farmacologia , Neurônios/patologia , Tretinoína/farmacologia , Animais , Biomarcadores/metabolismo , Bovinos , Camundongos , Neurônios/efeitos dos fármacos , Oligossacarídeos/metabolismo , Suínos
8.
Development ; 148(9)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33912935

RESUMO

In response to signals from the embryonic testis, the germ cell intrinsic factor NANOS2 coordinates a transcriptional program necessary for the differentiation of pluripotent-like primordial germ cells toward a unipotent spermatogonial stem cell fate. Emerging evidence indicates that genetic risk factors contribute to testicular germ cell tumor initiation by disrupting sex-specific differentiation. Here, using the 129.MOLF-Chr19 mouse model of testicular teratomas and a NANOS2 reporter allele, we report that the developmental phenotypes required for tumorigenesis, including failure to enter mitotic arrest, retention of pluripotency and delayed sex-specific differentiation, were exclusive to a subpopulation of germ cells failing to express NANOS2. Single-cell RNA sequencing revealed that embryonic day 15.5 NANOS2-deficient germ cells and embryonal carcinoma cells developed a transcriptional profile enriched for MYC signaling, NODAL signaling and primed pluripotency. Moreover, lineage-tracing experiments demonstrated that embryonal carcinoma cells arose exclusively from germ cells failing to express NANOS2. Our results indicate that NANOS2 is the nexus through which several genetic risk factors influence tumor susceptibility. We propose that, in the absence of sex specification, signals native to the developing testis drive germ cell transformation.


Assuntos
Diferenciação Celular , Neoplasias Embrionárias de Células Germinativas , Diferenciação Sexual , Neoplasias Testiculares , Animais , Diferenciação Celular/genética , Proliferação de Células , Células-Tronco de Carcinoma Embrionário/metabolismo , Células Germinativas Embrionárias , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Proteínas de Ligação a RNA , Transdução de Sinais , Espermatogônias/metabolismo , Teratoma
9.
Int J Mol Sci ; 22(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668324

RESUMO

FOXC1, a transcription factor involved in cell differentiation and embryogenesis, is demonstrated to be a negative regulator of Nanog in this study. FOXC1 is up-regulated in retinoic acid-induced differentiation of F9 Embryonal Carcinoma (EC) cells; furthermore, FOXC1 specifically inhibits the core pluripotency factor Nanog by binding to the proximal promoter. Overexpression of FOXC1 in F9 or knockdown in 3T3 results in the down-regulation or up-regulation of Nanog mRNA and proteins, respectively. In order to explain the mechanism by which FOXC1 inhibits Nanog expression, we identified the co-repressor HDAC2 from the FOXC1 interactome. FOXC1 recruits HDAC2 to Nanog promoter to decrease H3K27ac enrichment, resulting in transcription inhibition of Nanog. To the best of our knowledge, this is the first report that FOXC1 is involved in the epigenetic regulation of gene expression.


Assuntos
Células-Tronco de Carcinoma Embrionário/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histona Desacetilase 2/metabolismo , Proteína Homeobox Nanog/genética , Regiões Promotoras Genéticas , Tretinoína/farmacologia , Animais , Antineoplásicos/farmacologia , Células-Tronco de Carcinoma Embrionário/efeitos dos fármacos , Células-Tronco de Carcinoma Embrionário/patologia , Epigênese Genética , Fatores de Transcrição Forkhead/genética , Células HEK293 , Histona Desacetilase 2/genética , Humanos , Camundongos , Células NIH 3T3 , Proteína Homeobox Nanog/metabolismo
10.
Int J Mol Sci ; 23(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35008480

RESUMO

The pluripotent transcription factor NANOG is essential for maintaining embryonic stem cells and driving tumorigenesis. We previously showed that PKC activity is involved in the regulation of NANOG expression. To explore the possible involvement of microRNAs in regulating the expression of key pluripotency factors, we performed a genome-wide analysis of microRNA expression in the embryonal carcinoma cell line NT2/D1 in the presence of the PKC activator, PMA. We found that MIR630 was significantly upregulated in PMA-treated cells. Experimentally, we showed that transfection of MIR630 mimic into embryonal carcinoma cell lines directly targeted the 3'UTR of OCT4, SOX2, and NANOG and markedly suppressed their expression. RNAhybrid and RNA22 algorithms were used to predict miRNA target sites in the NANOG 3'UTR, four possible target sites of MIR630 were identified. To examine the functional interaction between MIR630 and NANOG mRNA, the predicted MIR630 target sites in the NANOG 3'UTR were deleted and the activity of the reporters were compared. After targeted mutation of the predicted MIR630 target sites, the MIR630 mimic inhibited NANOG significantly less than the wild-type reporters. It is worth noting that mutation of a single putative binding site in the 3'UTR of NANOG did not completely abolish MIR630-mediated suppression, suggesting that MIR630 in the NANOG 3'UTR may have multiple binding sites and act together to maximally repress NANOG expression. Interestingly, MIR630 mimics significantly downregulated NANOG gene transcription. Exogenous expression of OCT4, SOX2, and NANOG lacking the 3'UTR almost completely rescued the reduced transcriptional activity of MIR630. MIR630 mediated the expression of differentiation markers in NT2/D1 cells, suggesting that MIR630 leads to the differentiation of NT2/D1 cell. Our findings show that MIR630 represses NANOG through transcriptional and post-transcriptional regulation, suggesting a direct link between core pluripotency factors and MIR630.


Assuntos
Carcinoma Embrionário/genética , Células-Tronco de Carcinoma Embrionário/fisiologia , MicroRNAs/genética , Proteína Homeobox Nanog/genética , Interferência de RNA/fisiologia , Transcrição Gênica/genética , Regiões 3' não Traduzidas/genética , Sítios de Ligação/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Células-Tronco Embrionárias/fisiologia , Humanos , Mutação/genética , Regulação para Cima/genética
11.
Nutr Cancer ; 73(9): 1780-1791, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32875900

RESUMO

Curcumin, the yellow pigment derived from turmeric rhizomes, exhibits antioxidant, anti-inflammatory, antimicrobial, and anticancer properties. We have previously reported in a study that curcumin could induce differentiation in embryonal carcinoma cell (EC). EC cells are the primary constituents of teratocarcinoma tumors, and hence differentiating them to a non-proliferative cell type may be useful in anticancer therapies. Here, we conducted a detailed study using various molecular approaches to characterize this differentiation at the cellular and molecular levels. The cells were treated with 20 µM curcumin, which was the optimal concentration to produce the highest amount of differentiated cells. Changes in protein and RNA expression, membrane dynamics, and migration of these cells after treatment with curcumin were then studied in a time-dependent manner. The differentiated cells were morphologically distinct from the precursor cells, and gene expression profiles were altered in curcumin-treated cells. Curcumin promoted cell motility and cell adhesion. Curcumin also induced changes in membrane fluidity and the lateral mobility of lipids in the plasma membrane. The findings of this study suggest that curcumin might have therapeutic potential in differentiation therapy for the treatment of teratocarcinomas or germ cell tumors (GCTs) such as testicular and ovarian GCTs.


Assuntos
Carcinoma Embrionário , Curcumina , Diferenciação Celular , Curcuma , Curcumina/farmacologia , Células-Tronco de Carcinoma Embrionário , Humanos
12.
Mol Med Rep ; 22(6): 4675-4684, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33173954

RESUMO

As a single cardiac malformation, ventricular septal defect (VSD) is the most common form of congenital heart disease. However, the precise molecular mechanisms underlying VSD are not completely understood. Numerous microRNAs (miRs/miRNAs) are associated with ventricular septal defects. miR-29c inhibits the proliferation and promotes the apoptosis and differentiation of P19 embryonal carcinoma cells, possibly via suppressing Wnt4 signaling. However, to the best of our knowledge, no in vivo studies have been published to determine whether overexpression of miR-29c leads to developmental abnormalities. The present study was designed to observe the effect of miRNA-29c on cardiac development and its possible mechanism in vivo. Zebrafish embryos were microinjected with different doses (1, 1.6 and 2 µmol) miR-29c mimics or negative controls, and hatchability, mortality and cardiac malformation were subsequently observed. The results showed that in zebrafish embryos, miR-29c overexpression attenuated heart development in a dose-dependent manner, manifested by heart rate slowdown, pericardial edema and heart looping disorder. Further experiments showed that overexpression of miR-29c was associated with the Wnt4/β-catenin signaling pathway to regulate zebrafish embryonic heart development. In conclusion, the present results demonstrated that miR-29c regulated the lateral development and cardiac circulation of zebrafish embryo by targeting Wnt4.


Assuntos
Comunicação Interventricular/metabolismo , MicroRNAs/metabolismo , Proteína Wnt4/metabolismo , Animais , Apoptose/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Células-Tronco de Carcinoma Embrionário/metabolismo , Coração/embriologia , Comunicação Interventricular/genética , MicroRNAs/genética , Transdução de Sinais/genética , Proteína Wnt4/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
13.
Andrology ; 8(6): 1844-1858, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32741077

RESUMO

BACKGROUND: Testicular germ cell tumors (TGCTs) are the most common malignant cancer in young men. Although TGCTs are generally responsive to platinum-based chemotherapy particularly cisplatin, acquired resistance in patients with metastasis still occurs resulting in poor prognosis. Specifically, differentiation of embryonal carcinoma (EC) cells, the stem cells of TGCTs, can lead to the reduction of cisplatin responsiveness. Therefore, novel therapeutic strategies for TGCTs are needed. System L amino acid transporters have been reported to be up-regulated and to play an important role in tumorigenesis. However, expression and role of system L amino acid transporters in TGCTs remain elusive. MATERIALS AND METHODS: Expression of system L amino acid transporters was analyzed in TGCT samples from The Cancer Genome Atlas (TCGA). Expression of LAT1, LAT2, and 4F2hc was examined in human embryonal carcinoma cell line NTERA2. Roles of system L amino acid transporters on NTERA2 cell survival, cell proliferation, pluripotency, and cisplatin sensitivity were evaluated. RESULTS: Based upon TCGA datasets, we found that two isoforms of system L (LAT1 and LAT2) and their chaperone protein 4F2hc are highly expressed in EC samples compared with other groups. Treatment with the system L inhibitor BCH significantly suppressed leucine uptake into the pluripotent EC cell line NTERA2. The malignant phenotypes including cell viability, cell proliferation, and clonal ability were decreased following BCH treatment. Nonetheless, system L inhibition did not alter expression of stemness genes in NTERA2 cells. After NTERA2 differentiation, expressions of LAT1 and LAT2 were decreased. Finally, co-administration of BCH enhanced cisplatin sensitivity in both undifferentiated and differentiated cells. These effects were associated with the reduction in p70S6K phosphorylation. CONCLUSION: Taken together, these results shed light on the roles of system L amino acid transporters in TGCTs. Therefore, system L amino acid transporters could provide novel therapeutic targets for treatment against TGCTs.


Assuntos
Sistema L de Transporte de Aminoácidos/biossíntese , Sistema L de Transporte de Aminoácidos/metabolismo , Carcinoma Embrionário/patologia , Células-Tronco de Carcinoma Embrionário/metabolismo , Neoplasias Testiculares/patologia , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Antineoplásicos/farmacologia , Carcinogênese/patologia , Carcinoma Embrionário/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Cadeia Pesada da Proteína-1 Reguladora de Fusão/biossíntese , Humanos , Transportador 1 de Aminoácidos Neutros Grandes/biossíntese , Masculino , Neoplasias Testiculares/tratamento farmacológico
14.
RNA Biol ; 17(11): 1613-1624, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32372724

RESUMO

PIWI homologs constitute a subclass of the Argonaute family. Traditionally, they have been shown to associate with a specific class of small RNAs, piRNAs, to suppress transposable elements and protect genomic integrity in germ cells. Recent studies imply that PIWI proteins may also exert important biological functions in somatic contexts, including the brain. However, their exact role in neural development remains unknown. Hence we investigated whether PIWI proteins are involved in neuronal differentiation. By using an established cell model for studying neurogenesis, NTera2/D1 (NT2) cells, we found that a particular PIWI homolog, PIWIL4 was increasingly upregulated throughout the course of all-trans retinoic acid (RA)-mediated neuronal differentiation. During this process, PIWIL4 knockdown led to partial recovery of embryonic stem cell markers, while suppressing RA-induced expression of neuronal markers. Consistently, PIWIL4 overexpression further elevated their expression levels. Furthermore, co-immunoprecipitation revealed an RA-induced interaction between PIWIL4 and the H3K27me3 demethylase UTX. Chromatin immunoprecipitation showed that this interaction could be essential for the removal of H3K27me3 from the promoters of RA-inducible genes. By a similar mechanism, PIWIL4 knockdown also suppressed the expression of PTN and NLGN3, two important neuronal factors secreted to regulate glioma activity. We further noted that the conditioned medium collected from PIWIL4-silenced NT2 cells significantly reduced the proliferation of glioma cells. Thus, our data suggest a novel somatic role of PIWIL4 in modulating the expression of neuronal genes that can be further characterized to promote neuronal differentiation and to modulate the activity of glioma cells.


Assuntos
Diferenciação Celular/genética , Células-Tronco de Carcinoma Embrionário/metabolismo , Células-Tronco de Carcinoma Embrionário/patologia , Neurônios/metabolismo , Proteínas de Ligação a RNA/genética , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Histona Desmetilases/metabolismo , Histonas/metabolismo , Humanos , Neurônios/citologia , Ligação Proteica , Proteínas de Ligação a RNA/metabolismo , Transcriptoma
15.
J Mol Biol ; 432(7): 2271-2288, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32105733

RESUMO

R-loops are a prevalent class of non-B DNA structures that have been associated with both positive and negative cellular outcomes. DNA:RNA immunoprecipitation (DRIP) approaches based on the anti-DNA:RNA hybrid S9.6 antibody revealed that R-loops form dynamically over conserved genic hotspots. We have developed an orthogonal approach that queries R-loops via the presence of long stretches of single-stranded DNA on their looped-out strand. Nondenaturing sodium bisulfite treatment catalyzes the conversion of unpaired cytosines to uracils, creating permanent genetic tags for the position of an R-loop. Long-read, single-molecule PacBio sequencing allows the identification of R-loop 'footprints' at near nucleotide resolution in a strand-specific manner on long single DNA molecules and at ultra-deep coverage. Single-molecule R-loop footprinting coupled with PacBio sequencing (SMRF-seq) revealed a strong agreement between S9.6-based and bisulfite-based R-loop mapping and confirmed that R-loops form over genic hotspots, including gene bodies and terminal gene regions. Based on the largest single-molecule R-loop dataset to date, we show that individual R-loops form nonrandomly, defining discrete sets of overlapping molecular clusters that pileup through larger R-loop zones. R-loops most often map to intronic regions and their individual start and stop positions do not match with intron-exon boundaries, reinforcing the model that they form cotranscriptionally from unspliced transcripts. SMRF-seq further established that R-loop distribution patterns are not simply driven by intrinsic DNA sequence features but most likely also reflect DNA topological constraints. Overall, DRIP-based and SMRF-based approaches independently provide a complementary and congruent view of R-loop distribution, consolidating our understanding of the principles underlying R-loop formation.


Assuntos
DNA/química , Células-Tronco de Carcinoma Embrionário/metabolismo , Estruturas R-Loop , RNA/química , Análise de Célula Única/métodos , Transcrição Gênica , Células-Tronco de Carcinoma Embrionário/citologia , Humanos
16.
J Ethnopharmacol ; 246: 112214, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31491437

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Medicinal herb Cichorium intybus L. (chicory) has been used traditionally for the treatment of various diseases, including diabetes. One of the promising therapeutic options to treat diabetes is replacing the degenerative pancreatic ß cells by stem cell-derived IPCs (insulin-producing cells). AIM OF THE STUDY: By the combination of cell therapy as a modern approach and traditional medicine, the current study was designed to evaluate the effects of chicory leaf extract (LE) on the differentiation potential of P19 EC cells (an embryonal carcinoma stem cell line) into IPCs. MATERIALS AND METHODS: The plant (voucher no. 4567) were collected and deposited in the herbarium of Shahrekord University. In vitro experiments were designed to compare the effects of various concentrations of LE on the differentiation potential of P19 EC cells. RESULTS: The differentiated cells showed morphological characteristics of pancreatic ß cells. They could also synthesized and secreted insulin when exposed to glucose. Moreover, the cells expressed specific proteins and genes of mature pancreatic ß cells. CONCLUSIONS: In conclusion, LE as a natural herbal extract was efficiently able to induce the differentiation of P19 EC cells into the clusters similar to pancreatic islets with the molecular, cellular and functional characteristics of mature ß cells.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Cichorium intybus , Células-Tronco de Carcinoma Embrionário/efeitos dos fármacos , Insulina/metabolismo , Extratos Vegetais/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células-Tronco de Carcinoma Embrionário/fisiologia , Células Secretoras de Insulina/metabolismo , Camundongos , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Folhas de Planta
17.
Sci Rep ; 9(1): 11928, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31417131

RESUMO

Human embryonal carcinoma (EC) cells comprise the pluripotent stem cells of malignant non-seminomatous germ cell tumors (GCTs) and represent the malignant counterpart of embryonic stem cells (ESCs). WNT/ß-catenin signaling has been implicated in regulating adult and embryonic stem cells although its role in EC cells is less investigated. Here, we studied WNT signaling in a panel of representative pluripotent and nullipotent human EC cell lines. We found that EC cell lines show distinct levels of intrinsic WNT signaling and respond differently to ectopic WNT activation. Short-term activation of WNT signaling induced a differentiation-response in the pluripotent EC cells (NT2 and NCCIT) whereas the nullipotent EC cells (TERA1 and 2102Ep) were refractory and maintained high levels of OCT4 and SSEA4 expression. Long-term activation of WNT signaling in NCCIT and, to a lesser extent, TERA1 cells led to (re)gain of OCT4 expression and a switch from SSEA4 to SSEA1 surface antigens ultimately resulting in OCT4+/SSEA4-/SSEA1+ profile. Cisplatin treatment indicated that the OCT4+/SSEA4-/SSEA1+ NCCIT cells became more resistant to chemotherapy treatment. Our findings are of particular interest for the GCT and ES cell biology and shed light on the role of WNT signaling in human EC cells.


Assuntos
Técnicas de Cultura de Células , Células-Tronco de Carcinoma Embrionário/metabolismo , Células-Tronco de Carcinoma Embrionário/patologia , Via de Sinalização Wnt , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Antígenos Embrionários Estágio-Específicos/metabolismo , Fatores de Tempo , Via de Sinalização Wnt/efeitos dos fármacos
18.
Dev Neurobiol ; 79(6): 559-577, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31177638

RESUMO

A large number of studies have focused on the generation of dopaminergic neurons from pluripotent cells. Differentiation of stem cells into distinct cell types is influenced by tissue-specific microenvironment. Since, central nervous system undergoes further development during postnatal life, in the present study neonatal rat brain tissue extract (NRBE) was applied to direct the differentiation of embryonal carcinoma stem cell line, P19 into dopaminergic (DA) phenotypes. Additionally, a neuroprotective drug, deprenyl was used alone or in combination with the extract. Results from morphological, immunofluorescence, and qPCR analyses showed that during a period of one to three weeks, a large percentage of stem cells were differentiated into neural cells. The results also indicated the greater effect of NRBE on the differentiation of the cells into tyrosine hydroxylase-expressing cells. MS analysis of NRBE showed the enrichment of gene ontology terms related to cell differentiation and neurogenesis. Network analysis of the studied genes and some DA markers resulted in the suggestion of potential regulatory candidates such as AVP, ACHE, LHFPL5, and DLK1 genes. In conclusion, NRBE as a natural native inducer was apparently able to simulate the brain microenvironment and support neural differentiation of P19 cells.


Assuntos
Células-Tronco de Carcinoma Embrionário/efeitos dos fármacos , Células-Tronco de Carcinoma Embrionário/enzimologia , Regulação Enzimológica da Expressão Gênica , Selegilina/farmacologia , Tirosina 3-Mono-Oxigenase/biossíntese , Animais , Animais Recém-Nascidos , Células Cultivadas , Inibidores da Monoaminoxidase/farmacologia , Ratos , Ratos Wistar , Tirosina 3-Mono-Oxigenase/genética
19.
Int J Mol Sci ; 20(9)2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31035455

RESUMO

Retinoic acid (RA) plays a key role in pluripotent cell differentiation. In F9 embryonic carcinoma cells, RA can induce differentiation towards somatic lineages via the Ras-extracellular signal-regulated kinase (Ras/Erk) pathway, but the mechanism through which it induces the Erk1/2 phosphorylation is unclear. Here, we show that miR-485 is a positive regulator that targets α/ß-hydrolase domain-containing protein 2 (Abhd2), which can result in Erk1/2 phosphorylation and triggers differentiation. RA up-regulates miR-485 and concurrently down-regulates Abhd2. We verified that Abhd2 is targeted by miR-485 and they both can influence the phosphorylation of Erk1/2. In summary, RA can mediate cell differentiation by phosphorylating Erk1/2 via miR-485 and Abhd2.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hidrolases/genética , MicroRNAs/genética , Interferência de RNA , Tretinoína/farmacologia , Animais , Biomarcadores , Células-Tronco de Carcinoma Embrionário , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Fosforilação
20.
J Vis Exp ; (146)2019 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-31081818

RESUMO

The P19 cell line derived from a mouse embryo-derived teratocarcinoma has the ability to differentiate into the three germ layers. In the presence of retinoic acid (RA), the suspension cultured P19 cell line is induced to differentiate into neurons. This phenomenon is extensively investigated as a neurogenesis model in vitro. Therefore, the P19 cell line is very useful for molecular and cellular studies associated with neurogenesis. However, protocols for neuronal differentiation of P19 cell line described in the literature are very complex. The method developed in this study are simple and will play a part in elucidating the molecular mechanisms in neurodevelopmental abnormalities and neurodegenerative diseases.


Assuntos
Células-Tronco de Carcinoma Embrionário/patologia , Neurogênese , Animais , Diferenciação Celular/efeitos dos fármacos , Células-Tronco de Carcinoma Embrionário/metabolismo , Processamento de Imagem Assistida por Computador , Camundongos , Neurogênese/efeitos dos fármacos , Tretinoína/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...