Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 602
Filtrar
1.
ACS Chem Neurosci ; 14(10): 1896-1904, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37146126

RESUMO

Cochlear calcium (Ca2+) waves are vital regulators of the cochlear development and establishment of hearing function. Inner supporting cells are believed to be the main region generating Ca2+ waves that work as internal stimuli to coordinate the development of hair cells and the mapping of neurons in the cochlea. However, Ca2+ waves in interdental cells (IDCs) that connect to inner supporting cells and spiral ganglion neurons are rarely observed and poorly understood. Herein, we reported the mechanism of IDC Ca2+ wave formation and propagation by developing a single-cell Ca2+ excitation technology, which can easily be accomplished using a two-photon microscope for simultaneous microscopy and femtosecond laser Ca2+ excitation in any target individual cell in fresh cochlear tissues. We demonstrated that the store-operated Ca2+ channels in IDCs are responsible for Ca2+ wave formation in these cells. The specific architecture of the IDCs determines the propagation of Ca2+ waves. Our results provide the mechanism of Ca2+ formation in IDCs and a controllable, precise, and noninvasive technology to excite local Ca2+ waves in the cochlea, with good potential for research on cochlear Ca2+ and hearing functions.


Assuntos
Sinalização do Cálcio , Cóclea , Proteínas Sensoras de Cálcio Intracelular , Análise de Célula Única , Cóclea/citologia , Cóclea/crescimento & desenvolvimento , Proteínas Sensoras de Cálcio Intracelular/fisiologia , Análise de Célula Única/métodos , Microscopia de Fluorescência por Excitação Multifotônica , Animais , Camundongos , Camundongos Endogâmicos C57BL
2.
J Histochem Cytochem ; 70(8): 583-596, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35975307

RESUMO

Herein, we aimed to use double-labeling immunofluorescence to describe the expression pattern of Calbindin-D28K (CaBP28K) in the mouse cochlea from late embryonic (E) stages to the adulthood. CaBP28K was expressed in the inner hair cells (IHCs) and the greater epithelial ridge (GER) at E17. In addition, its expression was observed in the interdental cells. On postnatal day 1 (P1), CaBP28K immunoreactivity was observed in the IHCs and outer hair cells (OHCs) and was also specifically expressed in the nucleus and the cytoplasm of spiral ganglion neurons (SGNs). At P8, CaBP28K labeling disappeared from the interdental cells, and the CaBP28K-positive domain within the GER shifted from the entire cytoplasm to only the apical and basal regions. At P14, CaBP28K immunoreactivity was lost from the GER; however, its expression in the IHCs and OHCs, as well as the SGNs, persisted into adulthood. The identification of CaBP28K in the hair cells (HCs) and cuticular plates, as well as SGNs, was confirmed by its colocalization with several markers for Sox2, Myosin VIIa, Phalloidin, and Tuj1. We also detected colocalization with calmodulin in the cytoplasm of both HCs and SGNs. Western blot revealed an increase in CaBP28K postnatal expression in the mouse cochlea.


Assuntos
Calbindina 1/genética , Cóclea/crescimento & desenvolvimento , Neurônios , Gânglio Espiral da Cóclea , Animais , Calbindina 1/análise , Calbindina 1/metabolismo , Imunofluorescência , Imuno-Histoquímica , Camundongos , Neurônios/metabolismo
3.
Protein Pept Lett ; 29(7): 567-573, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35546749

RESUMO

Protein tyrosine phosphatase receptor-type Q (PTPRQ), a member of the type III tyrosine phosphatase receptor (R3 PTPR) family, is composed of three domains, including 18 extracellular fibronectin type III (FN3) repeats, a transmembrane helix, and a cytoplasmic phosphotyrosine phosphatase (PTP) domain. PTPRQ was initially identified as a transcript upregulated in glomerular mesangial cells in a rat model of glomerulonephritis. Subsequently, studies found that PTPRQ has phosphotyrosine phosphatase and phosphatidylinositol phosphatase activities and can regulate cell proliferation, apoptosis, differentiation, and survival. Further in vivo studies showed that PTPRQ is necessary for the maturation of cochlear hair bundles and is considered a potential gene for deafness. In the recent two decades, 21 mutations in PTPRQ have been linked to autosomal recessive hearing loss (DFNB84) and autosomal dominant hearing loss (DFNA73). Recent mutations, deletions, and amplifications of PTPRQ have been observed in many types of cancers, which indicate that PTPRQ might play an essential role in the development of many cancers. In this review, we briefly describe PTPRQ structure and enzyme activity and focus on the correlation between PTPRQ and human disease. A profound understanding of PTPRQ could be helpful in the identification of new therapeutic targets to treat associated diseases.


Assuntos
Cóclea/metabolismo , Perda Auditiva , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Animais , Cóclea/crescimento & desenvolvimento , Fibronectinas , Perda Auditiva/genética , Humanos , Fosfatidilinositóis , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Ratos , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/química
4.
J Chem Neuroanat ; 118: 102023, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34481914

RESUMO

Spontaneous bursting activity is already generated in the cochlea before hearing onset and represents an important condition of the functional and anatomical organization of auditory brainstem nuclei. In the present study, cochlea ablation induced changes were characterized in auditory brainstem nuclei indirectly innervated by auditory nerve fibers before hearing onset. In Meriones unguiculatus immunohistochemical labeling of calbindin-D28k (CB) and synaptophysin (SYN) were performed. The influence of cochlea-ablation on CB or SYN was analyzed by considering their differential immunoreaction during development. During the normal postnatal development, CB was first detected in somata of the medial nucleus of the trapezoid body (MNTB) at postnatal day (P)4. The immunoreaction increased gradually in parallel to the appearance of CB-immunoreactive terminal fields in distinct superior olivary complex (SOC) nuclei. Cochlear removal at P5 or P9 in animals with 24 and 48 h survival times resulted in an increase in somatic CB-labeling in the lesioned MNTB including terminal fields compared to the non-lesioned MNTB. SYN-immunolabeling was first detected at P0 and began to strongly encircle the MNTB neurons at P4. A further progression was observed with age. Cochlear ablation resulted in a significant reduction of SYN-labeled MNTB areas of P5-cochlea-ablated gerbils after 48 h post-lesion. In P9 cochlea-ablated gerbils, a redistribution of SYN-positive terminals was seen after 24 and 48 h. Taken together, the destruction of cochlea differentially influences CB- and SYN-labeling in the MNTB, which should be considered in association with different critical periods before hearing onset.


Assuntos
Vias Auditivas/crescimento & desenvolvimento , Calbindinas/metabolismo , Cóclea/fisiologia , Audição/fisiologia , Sinaptofisina/metabolismo , Corpo Trapezoide/crescimento & desenvolvimento , Envelhecimento/fisiologia , Animais , Vias Auditivas/efeitos dos fármacos , Cóclea/crescimento & desenvolvimento , Núcleo Coclear , Gerbillinae , Imuno-Histoquímica , Neurônios/fisiologia , Núcleo Olivar/crescimento & desenvolvimento , Terminações Pré-Sinápticas/fisiologia , Corpo Trapezoide/efeitos dos fármacos
5.
Endocrinology ; 162(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34436572

RESUMO

Type 2 deiodinase (Dio2) amplifies levels of 3,5,3'-L-triiodothyronine (T3), the active form of thyroid hormone, and is essential for cochlear maturation and auditory development. However, cellular routes for endocrine signaling in the compartmentalized, anatomically complex cochlea are little understood. Dio2 generates T3 from thyroxine (T4), a more abundant thyroid hormone precursor in the circulation, and is dramatically induced in the cochlea before the onset of hearing. The evidence implies that specific Dio2-expressing cell types critically mediate T3 signaling but these cell types are poorly defined because Dio2 is expressed transiently at low levels. Here, using a Dio2CreERt2 knockin that activates a fluorescent reporter, we define Dio2-expressing cochlear cell types at high resolution in male or female mice. Dio2-positive cells were detected in vascularized supporting tissues but not in avascular internal epithelia, indicating segregation of T3-generating and T3-responding tissues. In the spiral ligament and spiral limbus, Dio2-positive fibrocytes clustered around vascular networks that convey T4 into cochlear tissues. In the otic capsule, Dio2-positive osteoblasts localized at cartilage surfaces as the bony labyrinth matures. We corroborated the identities of Dio2-positive lineages by RNA-sequencing of individual cells. The results suggest a previously unrecognized role for fibrocytes in mediating hormonal signaling. We discuss a model whereby fibrocytes mediate paracrine-like control of T3 signaling to the organ of Corti and epithelial target tissues.


Assuntos
Cóclea/metabolismo , Fibroblastos/metabolismo , Iodeto Peroxidase/genética , Osteoblastos/metabolismo , Animais , Animais Recém-Nascidos , Linhagem da Célula/genética , Rastreamento de Células/métodos , Cóclea/crescimento & desenvolvimento , Feminino , Fibroblastos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Técnicas de Introdução de Genes , Genes Reporter , Integrases/genética , Iodeto Peroxidase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Osteoblastos/fisiologia , Análise de Célula Única , Iodotironina Desiodinase Tipo II
6.
Neural Plast ; 2021: 5511010, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34306061

RESUMO

As a general sensory disorder, hearing loss was a major concern worldwide. Autophagy is a common cellular reaction to stress that degrades cytoplasmic waste through the lysosome pathway. Autophagy not only plays major roles in maintaining intracellular homeostasis but is also involved in the development and pathogenesis of many diseases. In the auditory system, several studies revealed the link between autophagy and hearing protection. In this review, we aimed to establish the correlation between autophagy and hair cells (HCs) from the aspects of ototoxic drugs, aging, and acoustic trauma and discussed whether autophagy could serve as a potential measure in the protection of HCs.


Assuntos
Autofagia , Perda Auditiva Neurossensorial/prevenção & controle , Envelhecimento/genética , Envelhecimento/fisiologia , Animais , Autofagia/efeitos dos fármacos , Cisplatino/toxicidade , Cóclea/irrigação sanguínea , Cóclea/crescimento & desenvolvimento , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patologia , Perda Auditiva Provocada por Ruído , Perda Auditiva Neurossensorial/etiologia , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/fisiologia , Isquemia/fisiopatologia , Camundongos , Camundongos Knockout , MicroRNAs/genética , Estresse Oxidativo , Resveratrol/uso terapêutico , Privação do Sono/complicações
7.
Development ; 148(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34061174

RESUMO

During embryonic development, the otic epithelium and surrounding periotic mesenchymal cells originate from distinct lineages and coordinate to form the mammalian cochlea. Epithelial sensory precursors within the cochlear duct first undergo terminal mitosis before differentiating into sensory and non-sensory cells. In parallel, periotic mesenchymal cells differentiate to shape the lateral wall, modiolus and pericochlear spaces. Previously, Wnt activation was shown to promote proliferation and differentiation of both otic epithelial and mesenchymal cells. Here, we fate-mapped Wnt-responsive epithelial and mesenchymal cells in mice and found that Wnt activation resulted in opposing cell fates. In the post-mitotic cochlear epithelium, Wnt activation via ß-catenin stabilization induced clusters of proliferative cells that dedifferentiated and lost epithelial characteristics. In contrast, Wnt-activated periotic mesenchyme formed ectopic pericochlear spaces and cell clusters showing a loss of mesenchymal and gain of epithelial features. Finally, clonal analyses via multi-colored fate-mapping showed that Wnt-activated epithelial cells proliferated and formed clonal colonies, whereas Wnt-activated mesenchymal cells assembled as aggregates of mitotically quiescent cells. Together, we show that Wnt activation drives transition between epithelial and mesenchymal states in a cell type-dependent manner.


Assuntos
Cóclea/embriologia , Epitélio/metabolismo , Células-Tronco Mesenquimais/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Desdiferenciação Celular , Diferenciação Celular , Proliferação de Células , Cóclea/citologia , Cóclea/crescimento & desenvolvimento , Mesoderma/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Wnt , beta Catenina/metabolismo
8.
Curr Med Sci ; 41(1): 153-157, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33582920

RESUMO

K+ cycling in the cochlea is critical to maintain hearing. Many sodium-potassium pumps are proved to participate in K+ cycling, such as Na/K-ATPase. The α2-Na/K-ATPase is an important isoform of Na/K-ATPase. The expression of α2-Na/K-ATPase in the cochlea is not clear. In this study, we used C57BL/6 mice as a model of presbycusis and implemented immunohistochemistry staining and quantitative real time-PCR, and the α2-Na/K-ATPase expression pattern was confirmed in the inner ear. It was found α2-Na/K-ATPase was expressed widely in cochlea and its mRNA and protein expression was gradually reduced with aging (4-, 14-, 26- and 48-weeks old mice). We suspected that, the down-regulation of α2-Na/K-ATPase expression might be associated with the remodeling of K+ cycling, degeneration of morphological structure and decrease of hearing function in aging C57 mice. In conclusion, we speculated that the reduction of α2-Na/K-ATPase might play an important role in the pathogenesis of age-related hearing loss.


Assuntos
Envelhecimento/metabolismo , Cóclea/metabolismo , Perda Auditiva Neurossensorial/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Envelhecimento/patologia , Animais , Cóclea/crescimento & desenvolvimento , Perda Auditiva Neurossensorial/genética , Camundongos , Camundongos Endogâmicos C57BL , ATPase Trocadora de Sódio-Potássio/metabolismo
9.
FEBS J ; 288(1): 325-353, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32323465

RESUMO

Cochlear development is a complex process with precise spatiotemporal patterns. A detailed understanding of this process is important for studies of congenital hearing loss and regenerative medicine. However, much of our understanding of cochlear development is based on rodent models. Animal models that bridge the gap between humans and rodents are needed. In this study, we investigated the development of hearing organs in a small New World monkey species, the common marmoset (Callithrix jacchus). We describe the general stages of cochlear development in comparison with those of humans and mice. Moreover, we examined more than 25 proteins involved in cochlear development and found that expression patterns were generally conserved between rodents and primates. However, several proteins involved in supporting cell processes and neuronal development exhibited interspecific expression differences. Human fetal samples for studies of primate-specific cochlear development are extremely rare, especially for late developmental stages. Our results support the use of the common marmoset as an effective alternative for analyses of primate cochlear development.


Assuntos
Callithrix/genética , Cóclea/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Modelos Animais , Organogênese/genética , Animais , Aquaporina 4/genética , Aquaporina 4/metabolismo , Calbindina 1/genética , Calbindina 1/metabolismo , Callithrix/embriologia , Callithrix/crescimento & desenvolvimento , Callithrix/metabolismo , Cóclea/anatomia & histologia , Cóclea/citologia , Cóclea/crescimento & desenvolvimento , Sequência Conservada , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Embrião de Mamíferos , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Humanos , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Miosina VIIa/genética , Miosina VIIa/metabolismo , Parvalbuminas/genética , Parvalbuminas/metabolismo , Periferinas/genética , Periferinas/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Especificidade da Espécie , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Fator de Transcrição Brn-3C/genética , Fator de Transcrição Brn-3C/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
10.
J Neurosci ; 41(4): 594-612, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33303678

RESUMO

Spontaneous bursts of electrical activity in the developing auditory system arise within the cochlea before hearing onset and propagate through future sound-processing circuits of the brain to promote maturation of auditory neurons. Studies in isolated cochleae revealed that this intrinsically generated activity is initiated by ATP release from inner supporting cells (ISCs), resulting in activation of purinergic autoreceptors, K+ efflux, and subsequent depolarization of inner hair cells. However, it is unknown when this activity emerges or whether different mechanisms induce activity during distinct stages of development. Here we show that spontaneous electrical activity in mouse cochlea from both sexes emerges within ISCs during the late embryonic period, preceding the onset of spontaneous correlated activity in inner hair cells and spiral ganglion neurons, which begins at birth and follows a base to apex developmental gradient. At all developmental ages, pharmacological inhibition of P2Y1 purinergic receptors dramatically reduced spontaneous activity in these three cell types. Moreover, in vivo imaging within the inferior colliculus revealed that auditory neurons within future isofrequency zones exhibit coordinated neural activity at birth. The frequency of these discrete bursts increased progressively during the postnatal prehearing period yet remained dependent on P2RY1. Analysis of mice with disrupted cholinergic signaling in the cochlea indicate that this efferent input modulates, rather than initiates, spontaneous activity before hearing onset. Thus, the auditory system uses a consistent mechanism involving ATP release from ISCs and activation of P2RY1 autoreceptors to elicit coordinated excitation of neurons that will process similar frequencies of sound.SIGNIFICANCE STATEMENT In developing sensory systems, groups of neurons that will process information from similar sensory space exhibit highly correlated electrical activity that is critical for proper maturation and circuit refinement. Defining the period when this activity is present, the mechanisms responsible and the features of this activity are crucial for understanding how spontaneous activity influences circuit development. We show that, from birth to hearing onset, the auditory system relies on a consistent mechanism to elicit correlate firing of neurons that will process similar frequencies of sound. Targeted disruption of this activity will increase our understanding of how these early circuits mature and may provide insight into processes responsible for developmental disorders of the auditory system.


Assuntos
Vias Auditivas/crescimento & desenvolvimento , Vias Auditivas/fisiologia , Receptores Purinérgicos/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Cóclea/crescimento & desenvolvimento , Cóclea/fisiologia , Feminino , Células Ciliadas Auditivas/fisiologia , Células Ciliadas Auditivas Internas/fisiologia , Colículos Inferiores/fisiologia , Células Labirínticas de Suporte/fisiologia , Masculino , Camundongos , Sistema Nervoso Parassimpático/efeitos dos fármacos , Sistema Nervoso Parassimpático/fisiologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y1/fisiologia , Retina/fisiologia , Gânglio Espiral da Cóclea/fisiologia
11.
J Neurosci Res ; 99(2): 699-728, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33181864

RESUMO

Neuronal diversity in the cochlea is largely determined by ion channels. Among voltage-gated channels, hyperpolarization-activated cyclic nucleotide-gated (HCN) channels open with hyperpolarization and depolarize the cell until the resting membrane potential. The functions for hearing are not well elucidated and knowledge about localization is controversial. We created a detailed map of subcellular location and co-expression of all four HCN subunits across different mammalian species including CBA/J, C57Bl/6N, Ly5.1 mice, guinea pigs, cats, and human subjects. We correlated age-related hearing deterioration in CBA/J and C57Bl/6N with expression levels of HCN1, -2, and -4 in individual auditory neurons from the same cohort. Spatiotemporal expression during murine postnatal development exposed HCN2 and HCN4 involvement in a critical phase of hair cell innervation. The huge diversity of subunit composition, but lack of relevant heteromeric pairing along the perisomatic membrane and axon initial segments, highlighted an active role for auditory neurons. Neuron clusters were found to be the hot spots of HCN1, -2, and -4 immunostaining. HCN channels were also located in afferent and efferent fibers of the sensory epithelium. Age-related changes on HCN subtype expression were not uniform among mice and could not be directly correlated with audiometric data. The oldest mice groups revealed HCN channel up- or downregulation, depending on the mouse strain. The unexpected involvement of HCN channels in outer hair cell function where HCN3 overlaps prestin location emphasized the importance for auditory function. A better understanding may open up new possibilities to tune neuronal responses evoked through electrical stimulation by cochlear implants.


Assuntos
Envelhecimento/metabolismo , Cóclea/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Neurônios/metabolismo , Canais de Potássio/fisiologia , Animais , Gatos , Cóclea/crescimento & desenvolvimento , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Regulação da Expressão Gênica , Cobaias , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/metabolismo , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/biossíntese , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Neurônios/ultraestrutura , Canais de Potássio/biossíntese , Canais de Potássio/genética , Frações Subcelulares/metabolismo
12.
J Neurosci ; 40(49): 9401-9413, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33127852

RESUMO

During cochlear development, the Notch ligand JAGGED 1 (JAG1) plays an important role in the specification of the prosensory region, which gives rise to sound-sensing hair cells and neighboring supporting cells (SCs). While JAG1's expression is maintained in SCs through adulthood, the function of JAG1 in SC development is unknown. Here, we demonstrate that JAG1 is essential for the formation and maintenance of Hensen's cells, a highly specialized SC subtype located at the edge of the auditory epithelium. Using Sox2CreERT2/+::Jag1loxP/loxP mice of both genders, we show that Jag1 deletion at the onset of differentiation, at embryonic day 14.5, disrupted Hensen's cell formation. Similar loss of Hensen's cells was observed when Jag1 was deleted after Hensen's cell formation at postnatal day (P) 0/P1 and fate-mapping analysis revealed that in the absence of Jag1, some Hensen's cells die, but others convert into neighboring Claudius cells. In support of a role for JAG1 in cell survival, genes involved in mitochondrial function and protein synthesis were downregulated in the sensory epithelium of P0 cochlea lacking Jag1 Finally, using Fgfr3-iCreERT2 ::Jag1loxP/loxP mice to delete Jag1 at P0, we observed a similar loss of Hensen's cells and found that adult Jag1 mutant mice have hearing deficits at the low-frequency range.SIGNIFICANCE STATEMENT Hensen's cells play an essential role in the development and homeostasis of the cochlea. Defects in the biophysical or functional properties of Hensen's cells have been linked to auditory dysfunction and hearing loss. Despite their importance, surprisingly little is known about the molecular mechanisms that guide their development. Morphologic and fate-mapping analyses in our study revealed that, in the absence of the Notch ligand JAGGED1, Hensen's cells died or converted into Claudius cells, which are specialized epithelium-like cells outside the sensory epithelium. Confirming a link between JAGGED1 and cell survival, transcriptional profiling showed that JAGGED1 maintains genes critical for mitochondrial function and tissue homeostasis. Finally, auditory phenotyping revealed that JAGGED1's function in supporting cells is necessary for low-frequency hearing.


Assuntos
Cóclea/metabolismo , Proteína Jagged-1/metabolismo , Células Labirínticas de Suporte/fisiologia , Animais , Sobrevivência Celular , Cóclea/citologia , Cóclea/crescimento & desenvolvimento , Regulação para Baixo , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Proteína Jagged-1/genética , Masculino , Camundongos , Camundongos Knockout , Gravidez , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
13.
Development ; 147(12)2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32571852

RESUMO

The cochlea, a coiled structure located in the ventral region of the inner ear, acts as the primary structure for the perception of sound. Along the length of the cochlear spiral is the organ of Corti, a highly derived and rigorously patterned sensory epithelium that acts to convert auditory stimuli into neural impulses. The development of the organ of Corti requires a series of inductive events that specify unique cellular characteristics and axial identities along its three major axes. Here, we review recent studies of the cellular and molecular processes regulating several aspects of cochlear development, such as axial patterning, cochlear outgrowth and cellular differentiation. We highlight how the precise coordination of multiple signaling pathways is required for the successful formation of a complete organ of Corti.


Assuntos
Cóclea/crescimento & desenvolvimento , Animais , Percepção Auditiva , Diferenciação Celular , Cóclea/anatomia & histologia , Cóclea/metabolismo , Células Ciliadas Auditivas/metabolismo , Mitose , Órgão Espiral/anatomia & histologia , Órgão Espiral/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais
14.
Nat Commun ; 11(1): 2389, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404924

RESUMO

Mammalian hearing requires the development of the organ of Corti, a sensory epithelium comprising unique cell types. The limited number of each of these cell types, combined with their close proximity, has prevented characterization of individual cell types and/or their developmental progression. To examine cochlear development more closely, we transcriptionally profile approximately 30,000 isolated mouse cochlear cells collected at four developmental time points. Here we report on the analysis of those cells including the identification of both known and unknown cell types. Trajectory analysis for OHCs indicates four phases of gene expression while fate mapping of progenitor cells suggests that OHCs and their surrounding supporting cells arise from a distinct (lateral) progenitor pool. Tgfßr1 is identified as being expressed in lateral progenitor cells and a Tgfßr1 antagonist inhibits OHC development. These results provide insights regarding cochlear development and demonstrate the potential value and application of this data set.


Assuntos
Cóclea/citologia , Células Ciliadas Auditivas Internas/citologia , Células Ciliadas Auditivas Externas/citologia , Células Ciliadas Auditivas/citologia , Órgão Espiral/citologia , Animais , Células Cultivadas , Cóclea/embriologia , Cóclea/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Camundongos , Órgão Espiral/embriologia , Órgão Espiral/crescimento & desenvolvimento , Análise de Célula Única/métodos , Fatores de Tempo
15.
Int J Mol Sci ; 21(4)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32070057

RESUMO

In mammals Homer1, Homer2 and Homer3 constitute a family of scaffolding proteins with key roles in Ca2+ signaling and Ca2+ transport. In rodents, Homer proteins and mRNAs have been shown to be expressed in various postnatal tissues and to be enriched in brain. However, whether the Homers are expressed in developing tissues is hitherto largely unknown. In this work, we used immunohistochemistry and in situ hybridization to analyze the expression patterns of Homer1, Homer2 and Homer3 in developing cephalic structures. Our study revealed that the three Homer proteins and their encoding genes are expressed in a wide range of developing tissues and organs, including the brain, tooth, eye, cochlea, salivary glands, olfactory and respiratory mucosae, bone and taste buds. We show that although overall the three Homers exhibit overlapping distribution patterns, the proteins localize at distinct subcellular domains in several cell types, that in both undifferentiated and differentiated cells Homer proteins are concentrated in puncta and that the vascular endothelium is enriched with Homer3 mRNA and protein. Our findings suggest that Homer proteins may have differential and overlapping functions and are expected to be of value for future research aiming at deciphering the roles of Homer proteins during embryonic development.


Assuntos
Encéfalo/metabolismo , Proteínas de Arcabouço Homer/genética , Animais , Encéfalo/crescimento & desenvolvimento , Diferenciação Celular/genética , Cóclea/crescimento & desenvolvimento , Cóclea/metabolismo , Olho/crescimento & desenvolvimento , Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos , Glândulas Salivares/crescimento & desenvolvimento , Glândulas Salivares/metabolismo , Transdução de Sinais/genética , Dente/crescimento & desenvolvimento , Dente/metabolismo
16.
J Comp Neurol ; 528(12): 1967-1985, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31994726

RESUMO

During inner ear development, primary auditory neurons named spiral ganglion neurons (SGNs) are surrounded by otic mesenchyme cells, which express the transcription factor Pou3f4. Mutations in Pou3f4 are associated with DFNX2, the most common form of X-linked deafness and typically include developmental malformations of the middle ear and inner ear. It is known that interactions between Pou3f4-expressing mesenchyme cells and SGNs are important for proper axon bundling during development. However, Pou3f4 continues to be expressed through later phases of development, and potential interactions between Pou3f4 and SGNs during this period had not been explored. To address this, we documented Pou3f4 protein expression in the early postnatal mouse cochlea and compared SGNs in Pou3f4 knockout mice and littermate controls. In Pou3f4y/- mice, SGN density begins to decline by the end of the first postnatal week, with approximately 25% of SGNs ultimately lost. This period of SGN loss in Pou3f4y/- cochleae coincides with significant elevations in SGN apoptosis. Interestingly, this period also coincides with the presence of a transient population of Pou3f4-expressing cells around and within the spiral ganglion. To determine if Pou3f4 is normally required for SGN peripheral axon extension into the sensory domain, we used a genetic sparse labeling approach to track SGNs and found no differences compared with controls. We also found that Pou3f4 loss did not lead to changes in the proportions of Type I SGN subtypes. Overall, these data suggest that otic mesenchyme cells may play a role in maintaining SGN populations during the early postnatal period.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Fatores do Domínio POU/metabolismo , Gânglio Espiral da Cóclea/metabolismo , Animais , Sobrevivência Celular , Cóclea/citologia , Cóclea/crescimento & desenvolvimento , Cóclea/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Gânglio Espiral da Cóclea/citologia , Gânglio Espiral da Cóclea/crescimento & desenvolvimento
17.
Yi Chuan ; 41(11): 994-1008, 2019 Nov 20.
Artigo em Chinês | MEDLINE | ID: mdl-31735703

RESUMO

Deafness has become one of the most frequent health problems worldwide, and affects almost every age group. Hair cell damage or absence is the main cause of hearing loss, but there is no successful treatment to heal deafness. MicroRNA (miRNA), as a highly conserved endogenous non-coding small RNA, plays an important role in inner ear cochlea and hair cell development. In this review, we elaborate on the expression and function of miRNAs in cochlear hair cell development, and reveal its indispensable important role. We summarize the molecular mechanism of miRNA in regulating transcription factors involved in cochlear hair cell development, which may provide references and insights for hair cell regeneration in vivo and cellular transplantation therapy of deafness.


Assuntos
Células Ciliadas Auditivas/fisiologia , MicroRNAs/genética , Cóclea/crescimento & desenvolvimento , Orelha Interna/crescimento & desenvolvimento , Humanos , Neurogênese
18.
J Neurosci ; 39(41): 8013-8023, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31462532

RESUMO

Type II spiral ganglion neurons provide afferent innervation to outer hair cells of the cochlea and are proposed to have nociceptive functions important for auditory function and homeostasis. These neurons are anatomically distinct from other classes of spiral ganglion neurons because they extend a peripheral axon beyond the inner hair cells that subsequently makes a distinct 90 degree turn toward the cochlear base. As a result, patterns of outer hair cell innervation are coordinated with the tonotopic organization of the cochlea. Previously, it was shown that peripheral axon turning is directed by a nonautonomous function of the core planar cell polarity (PCP) protein VANGL2. We demonstrate using mice of either sex that Fzd3 and Fzd6 similarly regulate axon turning, are functionally redundant with each other, and that Fzd3 genetically interacts with Vangl2 to guide this process. FZD3 and FZD6 proteins are asymmetrically distributed along the basolateral wall of cochlear-supporting cells, and are required to promote or maintain the asymmetric distribution of VANGL2 and CELSR1. These data indicate that intact PCP complexes formed between cochlear-supporting cells are required for the nonautonomous regulation of axon pathfinding. Consistent with this, in the absence of PCP signaling, peripheral axons turn randomly and often project toward the cochlear apex. Additional analyses of Porcn mutants in which WNT secretion is reduced suggest that noncanonical WNT signaling establishes or maintains PCP signaling in this context. A deeper understanding of these mechanisms is necessary for repairing auditory circuits following acoustic trauma or promoting cochlear reinnervation during regeneration-based deafness therapies.SIGNIFICANCE STATEMENT Planar cell polarity (PCP) signaling has emerged as a complementary mechanism to classical axon guidance in regulating axon track formation, axon outgrowth, and neuronal polarization. The core PCP proteins are also required for auditory circuit assembly, and coordinate hair cell innervation with the tonotopic organization of the cochlea. This is a non-cell-autonomous mechanism that requires the formation of PCP protein complexes between cochlear-supporting cells located along the trajectory of growth cone navigation. These findings are significant because they demonstrate how the fidelity of auditory circuit formation is ensured during development, and provide a mechanism by which PCP proteins may regulate axon outgrowth and guidance in the CNS.


Assuntos
Cóclea/inervação , Receptores Frizzled/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/fisiologia , Gânglio Espiral da Cóclea/citologia , Aciltransferases/genética , Animais , Axônios/fisiologia , Axônios/ultraestrutura , Polaridade Celular , Cóclea/crescimento & desenvolvimento , Feminino , Células Ciliadas Auditivas Internas , Células Ciliadas Auditivas Externas , Masculino , Proteínas de Membrana/genética , Camundongos , Mutação/genética , Órgão Espiral/crescimento & desenvolvimento , Órgão Espiral/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Gânglio Espiral da Cóclea/crescimento & desenvolvimento , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia
19.
Reprod Toxicol ; 89: 21-27, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31238098

RESUMO

Maternal stress may affect the fetal auditory system than direct sound exposure. The objective of this study was to evaluate the role of prenatal stress due to high-decibel (dB) sound exposure on postnatal hearing and cochlear structure. Pregnant rats were exposed to 95 or 65 dB noise or music for 2 h once a day from gestational day 15 until delivery. The serum corticosterone was measured in the pregnant dams and pups. On postnatal day 22, pups underwent auditory brainstem response (ABR) testing. Then, the cochleae were immediately harvested for biochemical and molecular investigations. Prenatal stress impaired reproductive parameters, increased serum corticosterone and ABR thresholds with the decrease in wave I peak amplitude and the number of pre-synaptic ribbon. Thus, prenatal stress induces postnatal hearing loss in young rats, which are related to the reduction of ribbon synapses.


Assuntos
Transtornos da Audição/etiologia , Exposição Materna/efeitos adversos , Ruído/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/etiologia , Estresse Psicológico/etiologia , Sinapses/fisiologia , Estimulação Acústica , Animais , Limiar Auditivo/fisiologia , Cóclea/crescimento & desenvolvimento , Cóclea/fisiopatologia , Corticosterona/sangue , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Feminino , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/sangue , Ratos Sprague-Dawley
20.
J Neurosci ; 39(36): 7037-7048, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31217330

RESUMO

The auditory system in many mammals is immature at birth but precisely organized in adults. Spontaneous activity in the inner ear plays a critical role in guiding this maturation process. This is shaped by an efferent pathway that descends from the brainstem and makes transient direct synaptic contacts with inner hair cells. In this work, we used an α9 cholinergic nicotinic receptor knock-in mouse model (of either sex) with enhanced medial efferent activity (Chrna9L9'T, L9'T) to further understand the role of the olivocochlear system in the correct establishment of auditory circuits. Wave III of auditory brainstem responses (which represents synchronized activity of synapses within the superior olivary complex) was smaller in L9'T mice, suggesting a central dysfunction. The mechanism underlying this functional alteration was analyzed in brain slices containing the medial nucleus of the trapezoid body (MNTB), where neurons are topographically organized along a mediolateral (ML) axis. The topographic organization of MNTB physiological properties observed in wildtype (WT) was abolished in L9'T mice. Additionally, electrophysiological recordings in slices indicated MNTB synaptic alterations. In vivo multielectrode recordings showed that the overall level of MNTB activity was reduced in the L9'T The present results indicate that the transient cochlear efferent innervation to inner hair cells during the critical period before the onset of hearing is involved in the refinement of topographic maps as well as in setting the properties of synaptic transmission at a central auditory nucleus.SIGNIFICANCE STATEMENT Cochlear inner hair cells of altricial mammals display spontaneous electrical activity before hearing onset. The pattern and firing rate of these cells are crucial for the correct maturation of the central auditory pathway. A descending efferent innervation from the CNS contacts the hair cells during this developmental window. The present work shows that genetic enhancement of efferent function disrupts the orderly topographic distribution of biophysical and synaptic properties in the auditory brainstem and causes severe synaptic dysfunction. This work adds to the notion that the transient efferent innervation to the cochlea is necessary for the correct establishment of the central auditory circuitry.


Assuntos
Cóclea/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico , Núcleo Olivar/fisiologia , Potenciais Sinápticos , Corpo Trapezoide/fisiologia , Animais , Percepção Auditiva , Cóclea/crescimento & desenvolvimento , Cóclea/metabolismo , Feminino , Células Ciliadas Auditivas/citologia , Células Ciliadas Auditivas/fisiologia , Masculino , Camundongos , Neurônios Motores/citologia , Neurônios Motores/fisiologia , Núcleo Olivar/crescimento & desenvolvimento , Núcleo Olivar/metabolismo , Receptores Nicotínicos/genética , Corpo Trapezoide/crescimento & desenvolvimento , Corpo Trapezoide/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...