Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.453
Filtrar
1.
Brain Behav Evol ; 99(1): 25-44, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38354714

RESUMO

INTRODUCTION: Felids have evolved a specialized suite of morphological adaptations for obligate carnivory. Although the musculoskeletal anatomy of the Felidae has been studied extensively, the comparative neuroanatomy of felids is relatively unexplored. Little is known about how variation in the cerebral anatomy of felids relates to species-specific differences in sociality, hunting strategy, or activity patterns. METHODS: We quantitatively analyzed neuropil variation in the prefrontal, primary motor, and primary visual cortices of six species of Felidae (Panthera leo, Panthera uncia, Panthera tigris, Panthera leopardus, Acinonyx jubatus, Felis sylvestris domesticus) to investigate relationships with brain size, neuronal cell parameters, and select behavioral and ecological factors. Neuropil is the dense, intricate network of axons, dendrites, and synapses in the brain, playing a critical role in information processing and communication between neurons. RESULTS: There were significant species and regional differences in neuropil proportions, with African lion, cheetah, and tiger having more neuropil in all three cortical regions in comparison to the other species. Based on regression analyses, we find that the increased neuropil fraction in the prefrontal cortex supports social and behavioral flexibility, while in the primary motor cortex, this facilitates the neural activity needed for hunting movements. Greater neuropil fraction in the primary visual cortex may contribute to visual requirements associated with diel activity patterns. CONCLUSION: These results provide a cross-species comparison of neuropil fraction variation in the Felidae, particularly the understudied Panthera, and provide evidence for convergence of the neuroanatomy of Panthera and cheetahs.


Assuntos
Córtex Motor , Neurópilo , Córtex Pré-Frontal , Especificidade da Espécie , Córtex Visual , Animais , Córtex Pré-Frontal/anatomia & histologia , Córtex Pré-Frontal/fisiologia , Córtex Motor/anatomia & histologia , Córtex Motor/fisiologia , Córtex Visual/anatomia & histologia , Felidae/anatomia & histologia , Felidae/fisiologia , Masculino , Feminino
2.
Soc Cogn Affect Neurosci ; 18(1)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-34471927

RESUMO

Morphological features of the lateral prefrontal cortex (PFC) in late childhood and early adolescence may provide important clues as to the developmental etiology of clinical conditions such as obesity. Body composition measurements and structural brain imaging were performed on 11 226 youth at baseline (age 9 or 10 years) and follow-up (age 11 or 12 years). Baseline morphological features of the lateral PFC were examined as predictors of body composition. Findings revealed reliable associations between middle frontal gyrus volume, thickness and surface area and multiple indices of body composition. These findings were consistent across both time points and remained significant after covariate adjustment. Cortical thicknesses of the inferior frontal gyrus and lateral orbitofrontal cortex were also reliable predictors. Morphology effects on body composition were mediated by performance on a non-verbal reasoning task. Modest but reliable moderation effects were observed with respect to environmental self-regulatory demand after controlling for sex, race/ethnicity, income and methodological variables. Overall findings suggest that PFC morphology is a reliable predictor of body composition in early adolescence, as mediated through select cognitive functions and partially moderated by environmental characteristics.


Assuntos
Composição Corporal , Lobo Frontal , Córtex Pré-Frontal , Adolescente , Criança , Humanos , Cognição , Imageamento por Ressonância Magnética , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/anatomia & histologia
4.
Nat Commun ; 13(1): 339, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039510

RESUMO

The decision to either approach or avoid a potentially threatening environment is thought to rely upon the coordinated activity of heterogeneous neural populations in the hippocampus and prefrontal cortex (PFC). However, how this circuitry is organized to flexibly promote both approach or avoidance at different times has remained elusive. Here, we show that the hippocampal projection to PFC is composed of two parallel circuits located in the superficial or deep pyramidal layers of the CA1/subiculum border. These circuits have unique upstream and downstream connectivity, and are differentially active during approach and avoidance behaviour. The superficial population is preferentially connected to widespread PFC inhibitory interneurons, and its activation promotes exploration; while the deep circuit is connected to PFC pyramidal neurons and fast spiking interneurons, and its activation promotes avoidance. Together this provides a mechanism for regulation of behaviour during approach avoidance conflict: through two specialized, parallel circuits that allow bidirectional hippocampal control of PFC.


Assuntos
Aprendizagem da Esquiva/fisiologia , Comportamento Animal/fisiologia , Hipocampo/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Toxina da Cólera/toxicidade , Fenômenos Eletrofisiológicos , Teste de Labirinto em Cruz Elevado , Feminino , Hipocampo/anatomia & histologia , Masculino , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Optogenética , Córtex Pré-Frontal/anatomia & histologia
5.
Nat Commun ; 13(1): 90, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013248

RESUMO

Training in working memory tasks is associated with lasting changes in prefrontal cortical activity. To assess the neural activity changes induced by training, we recorded single units, multi-unit activity (MUA) and local field potentials (LFP) with chronic electrode arrays implanted in the prefrontal cortex of two monkeys, throughout the period they were trained to perform cognitive tasks. Mastering different task phases was associated with distinct changes in neural activity, which included recruitment of larger numbers of neurons, increases or decreases of their firing rate, changes in the correlation structure between neurons, and redistribution of power across LFP frequency bands. In every training phase, changes induced by the actively learned task were also observed in a control task, which remained the same across the training period. Our results reveal how learning to perform cognitive tasks induces plasticity of prefrontal cortical activity, and how activity changes may generalize between tasks.


Assuntos
Potenciais de Ação/fisiologia , Cognição/fisiologia , Memória de Curto Prazo/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Eletrodos Implantados , Macaca mulatta , Masculino , Neurônios/citologia , Córtex Pré-Frontal/anatomia & histologia , Técnicas Estereotáxicas
6.
Bull Exp Biol Med ; 172(1): 1-4, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34792715

RESUMO

We studied structural organization of cortical area 10 of the prefrontal cortex in the left and right hemispheres of the brain of an outstanding scientist and inventor (age 78 years). To this end, continuous series of 20-µm Nissl-stained frontal slices were compared with cortex sections of the same area from senile men (control group). It was found that the cytoarchitectonic organization of the cortical area 10 of the prefrontal cortex of the brain of an outstanding scientist-inventor is characterized by more pronounced vertical striation, greater thickness of the cortex and association layer III, higher density and size of pyramid neurons and higher density of satellite glia.


Assuntos
Córtex Pré-Frontal/anatomia & histologia , Córtex Pré-Frontal/fisiologia , Células Piramidais/fisiologia , Idoso , Mapeamento Encefálico/métodos , Contagem de Células , Criatividade , Demência/patologia , Humanos , Masculino , Neuroglia/fisiologia , Neurônios/fisiologia
7.
Int J Mol Sci ; 22(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34681799

RESUMO

Schizophrenia is a neurodevelopmental disorder whose etiopathogenesis includes changes in cellular as well as extracellular structures. Perineuronal nets (PNNs) associated with parvalbumin-positive interneurons (PVs) in the prefrontal cortex (PFC) are dysregulated in schizophrenia. However, the postnatal development of these structures along with their associated neurons in the PFC is unexplored, as is their effects on behavior and neural activity. Therefore, in this study, we employed a DISC1 (Disruption in Schizophrenia) mutation mouse model of schizophrenia to assess these developmental changes and tested whether enzymatic digestion of PNNs in the PFC affected schizophrenia-like behaviors and neural activity. Developmentally, we found that the normal formation of PNNs, PVs, and colocalization of these two in the PFC, peaked around PND 22 (postnatal day 22). However, in DISC1, mutation animals from PND 0 to PND 60, both PNNs and PVs were significantly reduced. After enzymatic digestion of PNNs with chondroitinase in adult animals, the behavioral pattern of control animals mimicked that of DISC1 mutation animals, exhibiting reduced sociability, novelty and increased ultrasonic vocalizations, while there was very little change in other behaviors, such as working memory (Y-maze task involving medial temporal lobe) or depression-like behavior (tail-suspension test involving processing via the hypothalamic pituitary adrenal (HPA) axis). Moreover, following chondroitinase treatment, electrophysiological recordings from the PFC exhibited a reduced proportion of spontaneous, high-frequency firing neurons, and an increased proportion of irregularly firing neurons, with increased spike count and reduced inter-spike intervals in control animals. These results support the proposition that the aberrant development of PNNs and PVs affects normal neural operations in the PFC and contributes to the emergence of some of the behavioral phenotypes observed in the DISC1 mutation model of schizophrenia.


Assuntos
Comportamento Animal/fisiologia , Rede Nervosa/patologia , Córtex Pré-Frontal/patologia , Esquizofrenia/patologia , Animais , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos , Feminino , Interneurônios/patologia , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiopatologia , Neurônios/patologia , Neurônios/fisiologia , Córtex Pré-Frontal/anatomia & histologia , Córtex Pré-Frontal/fisiopatologia , Esquizofrenia/fisiopatologia
8.
Nature ; 598(7881): 483-488, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34599305

RESUMO

The prefrontal cortex (PFC) and its connections with the mediodorsal thalamus are crucial for cognitive flexibility and working memory1 and are thought to be altered in disorders such as autism2,3 and schizophrenia4,5. Although developmental mechanisms that govern the regional patterning of the cerebral cortex have been characterized in rodents6-9, the mechanisms that underlie the development of PFC-mediodorsal thalamus connectivity and the lateral expansion of the PFC with a distinct granular layer 4 in primates10,11 remain unknown. Here we report an anterior (frontal) to posterior (temporal), PFC-enriched gradient of retinoic acid, a signalling molecule that regulates neural development and function12-15, and we identify genes that are regulated by retinoic acid in the neocortex of humans and macaques at the early and middle stages of fetal development. We observed several potential sources of retinoic acid, including the expression and cortical expansion of retinoic-acid-synthesizing enzymes specifically in primates as compared to mice. Furthermore, retinoic acid signalling is largely confined to the prospective PFC by CYP26B1, a retinoic-acid-catabolizing enzyme, which is upregulated in the prospective motor cortex. Genetic deletions in mice revealed that retinoic acid signalling through the retinoic acid receptors RXRG and RARB, as well as CYP26B1-dependent catabolism, are involved in proper molecular patterning of prefrontal and motor areas, development of PFC-mediodorsal thalamus connectivity, intra-PFC dendritic spinogenesis and expression of the layer 4 marker RORB. Together, these findings show that retinoic acid signalling has a critical role in the development of the PFC and, potentially, in its evolutionary expansion.


Assuntos
Organogênese , Córtex Pré-Frontal/embriologia , Córtex Pré-Frontal/metabolismo , Tretinoína/metabolismo , Animais , Axônios/metabolismo , Córtex Cerebral , Regulação para Baixo , Feminino , Humanos , Macaca mulatta , Masculino , Camundongos , Pan troglodytes , Córtex Pré-Frontal/anatomia & histologia , Córtex Pré-Frontal/citologia , Receptores do Ácido Retinoico/deficiência , Receptor X Retinoide gama/deficiência , Transdução de Sinais , Sinapses/metabolismo , Tálamo/anatomia & histologia , Tálamo/citologia , Tálamo/metabolismo
9.
Hum Brain Mapp ; 42(18): 6028-6037, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34587347

RESUMO

It has been hypothesized that a higher genetic risk of bipolar disorder (BD) is associated with greater creativity. Given the clinical importance of bipolar disorder and the importance of creativity to human society and cultural development, it is essential to reveal their associations and the neural basis of the genetic risk of bipolar disorder to gain insight into its etiology. However, despite the previous demonstration of the associations of polygenic risk score (PRS) of BD and creative jobs, the associations of BD-PRS and creativity measured by the divergent thinking (CMDT) and regional gray matter volume (rGMV) as well as regional white matter volume (rWMV) have not been investigated. Using psychological analyses and whole-brain voxel-by-voxel analyses, we examined these potential associations in 1558 young, typically developing adult students. After adjusting for confounding variables and multiple comparisons, a greater BD-PRS was associated with a greater total CMDT fluency score, and a significant relationship was found in fluency subscores. A greater BD-PRS was also associated with lower total mood disturbance. Neuroimaging analyses revealed that the BD-PRS was associated with greater rGMV in the right inferior frontal gyrus, which is a consistently affected area in BD, as well as a greater rWMV in the left middle frontal gyrus, which has been suggested to play a central role in the increased creativity associated with the risk of BD with creativity. These findings suggest a relationship between the genetic risk of BD and CMDT and prefrontal cortical structures among young educated individuals.


Assuntos
Transtorno Bipolar/genética , Criatividade , Córtex Pré-Frontal/anatomia & histologia , Adolescente , Adulto , Feminino , Predisposição Genética para Doença , Humanos , Imageamento por Ressonância Magnética , Masculino , Herança Multifatorial , Córtex Pré-Frontal/diagnóstico por imagem , Risco , Adulto Jovem
10.
Nat Commun ; 12(1): 5122, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433806

RESUMO

The lateral prefrontal cortex (LPFC) is disproportionately expanded in humans compared to non-human primates, although the relationship between LPFC brain structures and uniquely human cognitive skills is largely unknown. Here, we test the relationship between variability in LPFC tertiary sulcal morphology and reasoning scores in a cohort of children and adolescents. Using a data-driven approach in independent discovery and replication samples, we show that the depth of specific LPFC tertiary sulci is associated with individual differences in reasoning scores beyond age. To expedite discoveries in future neuroanatomical-behavioral studies, we share tertiary sulcal definitions with the field. These findings support a classic but largely untested theory linking the protracted development of tertiary sulci to late-developing cognitive processes.


Assuntos
Cognição , Córtex Pré-Frontal/fisiologia , Adolescente , Comportamento , Mapeamento Encefálico , Criança , Estudos de Coortes , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Pré-Frontal/anatomia & histologia , Córtex Pré-Frontal/diagnóstico por imagem
11.
PLoS One ; 16(8): e0248909, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34432808

RESUMO

Brain-based deception research began only two decades ago and has since included a wide variety of contexts and response modalities for deception paradigms. Investigations of this sort serve to better our neuroscientific and legal knowledge of the ways in which individuals deceive others. To this end, we conducted activation likelihood estimation (ALE) and meta-analytic connectivity modelling (MACM) using BrainMap software to examine 45 task-based fMRI brain activation studies on deception. An activation likelihood estimation comparing activations during deceptive versus honest behavior revealed 7 significant peak activation clusters (bilateral insula, left superior frontal gyrus, bilateral supramarginal gyrus, and bilateral medial frontal gyrus). Meta-analytic connectivity modelling revealed an interconnected network amongst the 7 regions comprising both unidirectional and bidirectional connections. Together with subsequent behavioral and paradigm decoding, these findings implicate the supramarginal gyrus as a key component for the sociocognitive process of deception.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Enganação , Modelos Neurológicos , Rede Nervosa/fisiologia , Adulto , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Feminino , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/anatomia & histologia , Lobo Parietal/anatomia & histologia , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiologia , Córtex Pré-Frontal/anatomia & histologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia
12.
Hum Brain Mapp ; 42(15): 4857-4868, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34236128

RESUMO

Although regular physical exercise has multiple positive benefits for the general population, excessive exercise may lead to exercise dependence (EXD), which is harmful to one's physical and mental health. Increasing evidence suggests that stress is a potential risk factor for the onset and development of EXD. However, little is known about the neural substrates of EXD and the underlying neuropsychological mechanism by which stress affects EXD. Herein, we investigate these issues in 86 individuals who exercise regularly by estimating their cortical gray matter volume (GMV) utilizing a voxel-based morphometry method based on structural magnetic resonance imaging. Whole-brain correlation analyses and prediction analyses showed negative relationships between EXD and GMV of the right orbitofrontal cortex (OFC), left subgenual cingulate gyrus (sgCG), and left inferior parietal lobe (IPL). Furthermore, mediation analyses found that the GMV of the right OFC was an important mediator between stress and EXD. Importantly, these results remained significant even when adjusting for sex, age, body mass index, family socioeconomic status, general intelligence and total intracranial volume, as well as depression and anxiety. Collectively, the results of the present study provide crucial evidence of the neuroanatomical basis of EXD and reveal a potential neuropsychological pathway in predicting EXD in which GMV mediates the relationship between stress and EXD.


Assuntos
Comportamento Aditivo/patologia , Exercício Físico , Substância Cinzenta/anatomia & histologia , Giro do Cíngulo/anatomia & histologia , Lobo Parietal/anatomia & histologia , Córtex Pré-Frontal/anatomia & histologia , Adolescente , Adulto , Comportamento Aditivo/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Giro do Cíngulo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Lobo Parietal/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Estresse Psicológico/diagnóstico por imagem , Estresse Psicológico/patologia , Adulto Jovem
13.
Sci Rep ; 11(1): 14565, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267273

RESUMO

This study was aimed at establishing the subcorticals substrates of the cognitive and visceromotor circuits of the A32 and A25 cortices of the medial prefrontal cortex and their projections and interactions with subcortical complexes in the common marmoset monkey (Callithrix jacchus). The study was primarily restricted to the nuclei of the diencephalon and amygdala. The common marmoset is a neotropical primate of the new world, and the absence of telencephalic gyrus favors the mapping of neuronal fibers. The biotinylated dextran amine was employed as an anterograde tracer. There was an evident pattern of rostrocaudal distribution of fibers within the subcortical nuclei, with medial orientation. Considering this distribution, fibers originating from the A25 cortex were found to be more clustered in the diencephalon and amygdala than those originating in the A32 cortex. Most areas of the amygdala received fibers from both cortices. In the diencephalon, all regions received projections from the A32, while the A25 fibers were restricted to the thalamus, hypothalamus, and epithalamus at different densities. Precise deposits of neuronal tracers provided here may significantly contribute to expand our understanding of specific connectivity among the medial prefrontal cortex with limbic regions and diencephalic areas, key elements to the viscerocognitive process.


Assuntos
Callithrix , Córtex Pré-Frontal/fisiologia , Tonsila do Cerebelo/fisiologia , Animais , Biotina/análogos & derivados , Biotina/farmacocinética , Mapeamento Encefálico , Dextranos/farmacocinética , Feminino , Hipotálamo/fisiologia , Masculino , Vias Neurais/fisiologia , Córtex Pré-Frontal/anatomia & histologia , Técnicas Estereotáxicas , Tálamo/fisiologia
14.
Sci Rep ; 11(1): 14910, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290327

RESUMO

Little is known regarding structural brain changes in traumatized refugees and the association with psychopathology. In the present study, the cortical thickness in North Korean refugees and the association with psychological symptoms were explored. North Korean refugees with lifetime post-traumatic stress disorder (PTSD group, n = 27), trauma-exposed North Korean refugees without lifetime PTSD (trauma-exposed control (TEC) group, n = 23), and healthy South Korean controls without traumatic experiences (HC group, n = 51) completed questionnaires assessing depression, anxiety, somatization, and PTSD symptoms. The cortical thickness was measured by magnetic resonance imaging (MRI) using FreeSurfer. Age- and sex-adjusted cortical thickness of the right medial prefrontal cortex (mPFC) was greater in the TEC group than in the HC group. However, significant differences were not observed between the PTSD and HC groups. Increased right mPFC thickness was significantly correlated with less anxiety and somatization after controlling for age and sex in the TEC group, but not in the PTSD or HC groups. North Korean refugees who did not develop PTSD after trauma showed increased right mPFC thickness, which was associated with less severe psychiatric symptoms. These findings indicate that increased mPFC thickness might have helped to reduce PTSD and psychiatric symptoms after trauma, and likely reflects resilience achieved by potentially enhancing emotional regulation in the mPFC.


Assuntos
Acontecimentos que Mudam a Vida , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/fisiologia , Trauma Psicológico/patologia , Refugiados/psicologia , Resiliência Psicológica , Transtornos de Estresse Pós-Traumáticos/patologia , Adulto , Ansiedade/patologia , República Democrática Popular da Coreia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Pré-Frontal/anatomia & histologia , Córtex Pré-Frontal/diagnóstico por imagem , Transtornos Somatoformes/patologia , Adulto Jovem
15.
Commun Biol ; 4(1): 728, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140617

RESUMO

In any stage of life, humans crave connection with other people. In midlife, transitions in social networks can relate to new leadership roles at work or becoming a caregiver for aging parents. Previous neuroimaging studies have pinpointed the medial prefrontal cortex (mPFC) to undergo structural remodelling during midlife. Social behavior, personality predisposition, and demographic profile all have intimate links to the mPFC according in largely disconnected literatures. Here, we explicitly estimated their unique associations with brain structure using a fully Bayesian framework. We weighed against each other a rich collection of 40 UK Biobank traits with their interindividual variation in social brain morphology in ~10,000 middle-aged participants. Household size and daily routines showed several of the largest effects in explaining variation in social brain regions. We also revealed male-biased effects in the dorsal mPFC and amygdala for job income, and a female-biased effect in the ventral mPFC for health satisfaction.


Assuntos
Encéfalo/anatomia & histologia , Pessoa de Meia-Idade/fisiologia , Personalidade , Rede Social , Adulto , Idoso , Tonsila do Cerebelo/anatomia & histologia , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/fisiologia , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Bases de Dados como Assunto , Características da Família , Feminino , Humanos , Masculino , Pessoa de Meia-Idade/psicologia , Neuroimagem , Córtex Pré-Frontal/anatomia & histologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Fatores Sexuais , Comportamento Social , Fatores Socioeconômicos , Reino Unido
16.
World Neurosurg ; 152: e625-e634, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34144169

RESUMO

BACKGROUND: Recent studies advocate a connectivity pattern wider than previously believed of the uncinate fasciculus that extends to the ventrolateral and dorsolateral prefrontal cortices. These new percepts on the connectivity of the tract suggest a more expansive role for the uncinate fasciculus. Our aim was to shed light on this controversy through fiber dissections. METHODS: Twenty normal adult human formalin-fixed cerebral hemispheres were used. Focused dissections on the insular, orbitofrontal, ventromedial, ventrolateral, and dorsolateral prefrontal areas were performed to record the topography of the frontal terminations of the uncinate fasciculus. RESULTS: Three discrete fiber layers were consistently disclosed: the first layer was recorded to terminate at the posterior orbital gyrus and pars orbitalis, the second layer at the posterior two thirds of the gyrus rectus, and the last layer at the posterior one third of the paraolfactory gyrus. The insular apex was documented as a crucial landmark regarding the topographic differentiation of the uncinate and occipitofrontal fasciculi (i.e., fibers that travel ventrally belong to the uncinate fasciculus whereas those traveling dorsally are occipitofrontal fibers). CONCLUSIONS: The frontal terminations of the uncinate fasciculus were consistently documented to project to the posterior orbitofrontal area. The area of the insular apex is introduced for the first time as a crucial surface landmark to effectively distinguish the stems of the uncinate and occipitofrontal fasciculi. This finding could refine the spatial resolution of awake subcortical mapping, especially for insular lesions, and improve the accuracy of in vivo diffusion tensor imaging protocols.


Assuntos
Fibras Nervosas , Córtex Pré-Frontal/anatomia & histologia , Fascículo Uncinado/anatomia & histologia , Substância Branca/anatomia & histologia , Mapeamento Encefálico , Cadáver , Dissecação , Lobo Frontal/anatomia & histologia , Lobo Frontal/citologia , Humanos , Lobo Occipital/anatomia & histologia , Lobo Occipital/citologia , Órbita/anatomia & histologia , Órbita/citologia , Córtex Pré-Frontal/citologia , Fascículo Uncinado/citologia , Substância Branca/citologia
17.
Sci Rep ; 11(1): 11601, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078934

RESUMO

The tendency to ruminate (i.e., repetitive negative self-referential thoughts that perpetuate depressive mood) is associated with (a) an elevated propensity to maladaptively experience counterfactual thinking (CFT) and regret, and (b) hypo-activity of the left dorsolateral prefrontal cortex (DLPFC). The goal of this study was to investigate whether anodal transcranial direct current stimulation (tDCS) over the left DLPFC, in function of self-critical rumination tendencies, momentarily reduces counterfactual thinking and regret (assessed via self-report and psychophysiological indices). Eighty healthy participants with different levels of self-critical rumination received either anodal or sham tDCS while performing a decision making task in which they were repeatedly confronted with optimal, suboptimal, and non-optimal choice outcomes. The results showed that among rumination-prone individuals, anodal (versus sham) tDCS was associated with decreased CFT and attenuated psychophysiological reactivity to the differential choice outcomes. Conversely, among low rumination-prone individuals, anodal (versus sham) tDCS was associated with increased CFT and regret, but in absence of any effects on psychophysiological reactivity. Potential working mechanisms for these differential tDCS effects are discussed. Taken together, these results provide initial converging evidence for the adaptive effects of left prefrontal tDCS on CFT and regret to personal choice outcomes among individuals prone to engage in self-critical rumination.


Assuntos
Afeto/fisiologia , Tomada de Decisões/fisiologia , Emoções/fisiologia , Córtex Pré-Frontal/fisiologia , Ruminação Cognitiva/fisiologia , Autoavaliação (Psicologia) , Depressão/fisiopatologia , Depressão/psicologia , Feminino , Voluntários Saudáveis , Humanos , Córtex Pré-Frontal/anatomia & histologia , Estimulação Transcraniana por Corrente Contínua , Adulto Jovem
18.
Neuron ; 109(12): 1925-1944, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33894133

RESUMO

The prefrontal cortex (PFC) is considered to constitute the highest stage of neural integration and to be devoted to representation and production of actions. Studies in primates have laid the foundation for theories regarding the principles of prefrontal function and provided mechanistic insights. The recent surge of studies of the PFC in mice holds promise for evolvement of present theories and development of novel concepts, particularly regarding principles shared across mammals. Here we review recent empirical work on the mouse PFC capitalizing on the experimental toolbox currently privileged to studies in this species. We conclude that this line of research has revealed cellular and structural distinctions of the PFC and neuronal activity with direct relevance to theories regarding the functions of the PFC. We foresee that data-rich mouse studies will be key to shed light on the general prefrontal architecture and mechanisms underlying cognitive aspects of organized actions.


Assuntos
Cognição/fisiologia , Camundongos , Modelos Animais , Vias Neurais/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Fenômenos Eletrofisiológicos , Perfilação da Expressão Gênica , Córtex Pré-Frontal/anatomia & histologia , Córtex Pré-Frontal/metabolismo , Transcriptoma
19.
World Neurosurg ; 150: e520-e529, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33744423

RESUMO

BACKGROUND: The middle frontal gyrus (MFG) is involved in attention, working memory, and language-related processing. A detailed understanding of the subcortical white matter tracts connected within the MFG can facilitate improved navigation of white matter lesions in and around this gyrus and explain the postoperative morbidity after surgery. We aimed to characterize the fiber tracts within the MFG according to their connection to neuroanatomic structures through the use of diffusion spectrum imaging-based fiber tractography and validate the findings by gross anatomic dissection for qualitative visual agreement. METHODS: Tractography analysis was completed using diffusion imaging data from 10 healthy, adult subjects enrolled in the Human Connectome Project. We assessed the MFG as a whole component according to its fiber connectivity with other neural regions. Mapping was completed on all tracts within both hemispheres, with the resultant tract volumes used to calculate a lateralization index. A modified Klingler technique was used on 10 postmortem dissections to demonstrate the location and orientation of the major tracts. RESULTS: Two major connections of the MFG were identified: the superior longitudinal fasciculus, which connects the MFG to parts of the inferior parietal lobule, posterior temporal lobe, and lateral occipital cortex; and the inferior fronto-occipital fasciculus, which connected the MFG to the lingual gyrus and cuneus. Intra- and intergyral short association, U-shaped fibers were also identified. CONCLUSIONS: Subcortical white matter pathways integrated within the MFG include the superior longitudinal fasciculus and inferior fronto-occipital fasciculus. The MFG is implicated in a variety of tasks involving attention and memory, making it an important cortical region. The postoperative neurologic outcomes related to surgery in and around the MFG could be clarified in the context of the anatomy of the fiber bundles highlighted in the present study.


Assuntos
Vias Neurais/anatomia & histologia , Córtex Pré-Frontal/anatomia & histologia , Substância Branca/anatomia & histologia , Imagem de Tensor de Difusão/métodos , Humanos
20.
J Psychiatry Neurosci ; 46(2): E212-E221, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33703868

RESUMO

Background: Threat anticipation engages neural circuitry that has evolved to promote defensive behaviours; perturbations in this circuitry could generate excessive threat-anticipation response, a key characteristic of pathological anxiety. Research into such mechanisms in youth faces ethical and practical limitations. Here, we use thermal stimulation to elicit pain-anticipatory psychophysiological response and map its correlates to brain structure among youth with anxiety and healthy youth. Methods: Youth with anxiety (n = 25) and healthy youth (n = 25) completed an instructed threat-anticipation task in which cues predicted nonpainful or painful thermal stimulation; we indexed psychophysiological response during the anticipation and experience of pain using skin conductance response. High-resolution brain-structure imaging data collected in another visit were available for 41 participants. Analyses tested whether the 2 groups differed in their psychophysiological cue-based pain-anticipatory and pain-experience responses. Analyses then mapped psychophysiological response magnitude to brain structure. Results: Youth with anxiety showed enhanced psychophysiological response specifically during anticipation of painful stimulation (b = 0.52, p = 0.003). Across the sample, the magnitude of psychophysiological anticipatory response correlated negatively with the thickness of the dorsolateral prefrontal cortex (pFWE < 0.05); psychophysiological response to the thermal stimulation correlated positively with the thickness of the posterior insula (pFWE < 0.05). Limitations: Limitations included the modest sample size and the cross-sectional design. Conclusion: These findings show that threat-anticipatory psychophysiological response differentiates youth with anxiety from healthy youth, and they link brain structure to psychophysiological response during pain anticipation and experience. A focus on threat anticipation in research on anxiety could delineate relevant neural circuitry.


Assuntos
Antecipação Psicológica , Transtornos de Ansiedade/fisiopatologia , Transtornos de Ansiedade/psicologia , Córtex Pré-Frontal/anatomia & histologia , Adolescente , Estudos Transversais , Córtex Pré-Frontal Dorsolateral , Feminino , Humanos , Masculino , Dor/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...