Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 81: 617-629, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31351186

RESUMO

Increasing reports of pregnancy events leading to maternal microbiome dysbiosis (MMD) show strong correlates with atypical neurodevelopmental outcomes. However, the mechanism(s) driving microbiome-mediated behavioral dysfunction in offspring remain understudied. Here, we demonstrate the presence of a novel gut commensal bacterium strain, Lactobacillus murinus HU-1, was sufficient to rescue behavioral deficits and brain region-specific microglial activationobserved in MMD-reared murine offspring. We furtheridentified a postnatal window of susceptibility that could prevent social impairments with timed maternal administration of the symbiotic bacterium. Moreover, MMD increased expression of microglial senescence genes, Trp53 and Il1ß, and Cx3cr1 protein in the prefrontal cortex, which correlated with dysfunctional modeling of synapses and accompanied dysbiosis-induced microglial activation. MMD male offspring harboring Lactobacillus murinus HU-1 or lacking Cx3cr1 showed amelioration of these effects. The current study describes a new avenue of influence by which maternally transferred Lactobacillus drives proper development of social behavior in the offspring through microglia-specific regulation of Cx3cr1 signaling.


Assuntos
Lactobacillus/metabolismo , Microbiota/fisiologia , Transtornos do Neurodesenvolvimento/microbiologia , Animais , Transtorno do Espectro Autista/microbiologia , Receptor 1 de Quimiocina CX3C/metabolismo , Disbiose/microbiologia , Feminino , Microbioma Gastrointestinal/fisiologia , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/fisiologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/microbiologia , Gravidez , Comportamento Social , Proteína Supressora de Tumor p53/metabolismo
2.
Neurotherapeutics ; 15(1): 31-35, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29282673

RESUMO

Environmental and dietary stimuli have always been implicated in brain development and behavioral responses. The gut, being the major portal of communication with the external environment, has recently been brought to the forefront of this interaction with the establishment of a gut-brain axis in health and disease. Moreover, recent breakthroughs in germ-free and antibiotic-treated mice have demonstrated the significant impact of the microbiome in modulating behavioral responses in mice and have established a more specific microbiome-gut-behavior axis. One of the mechanisms by which this axis affects social behavior is by regulating myelination at the prefrontal cortex, an important site for complex cognitive behavior planning and decision-making. The prefrontal cortex exhibits late myelination of its axonal projections that could extend into the third decade of life in humans, which make it susceptible to external influences, such as microbial metabolites. Changes in the gut microbiome were shown to alter the composition of the microbial metabolome affecting highly permeable bioactive compounds, such as p-cresol, which could impair oligodendrocyte differentiation. Dysregulated myelination in the prefrontal cortex is then able to affect behavioral responses in mice, shifting them towards social isolation. The reduced social interactions could then limit microbial exchange, which could otherwise pose a threat to the survival of the existing microbial community in the host and, thus, provide an evolutionary advantage to the specific microbial community. In this review, we will analyze the microbiome-gut-behavior axis, describe the interactions between the gut microbiome and oligodendrocytes and highlight their role in the modulation of social behavior.


Assuntos
Microbioma Gastrointestinal , Oligodendroglia/microbiologia , Córtex Pré-Frontal/microbiologia , Comportamento Social , Animais , Humanos , Bainha de Mielina
3.
Neurobiol Learn Mem ; 144: 36-47, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28602659

RESUMO

Ageing is associated with changes in the gut microbiome that may contribute to age-related changes in cognition. Previous work has shown that dietary supplements with multi-species live microorganisms can influence brain function, including induction of hippocampal synaptic plasticity and production of brain derived neurotrophic factor, in both young and aged rodents. However, the effect of such dietary supplements on memory processes has been less well documented, particularly in the context of aging. The main aim of the present study was to examine the impact of a long-term dietary supplement with a multi-species live Lactobacillus and Bifidobacteria mixture (Lactobacillus acidophilus CUL60, L. acidophilus CUL21, Bifidobacterium bifidum CUL20 and B. lactis CUL34) on tests of memory and behavioural flexibility in 15-17-month-old male rats. Following behavioural testing, the hippocampus and prefrontal cortex was extracted and analysed ex vivo using 1H nuclear magnetic resonance (1H NMR) spectroscopy to examine brain metabolites. The results showed a small beneficial effect of the dietary supplement on watermaze spatial navigation and robust improvements in long-term object recognition memory and short-term memory for object-in-place associations. Short-term object novelty and object temporal order memory was not influenced by the dietary supplement in aging rats. 1H NMR analysis revealed diet-related regional-specific changes in brain metabolites; which indicated changes in several pathways contributing to modulation of neural signaling. These data suggest that chronic dietary supplement with multi-species live microorganisms can alter brain metabolites in aging rats and have beneficial effects on memory.


Assuntos
Envelhecimento , Comportamento Animal , Bifidobacterium , Hipocampo/metabolismo , Lactobacillus , Memória , Córtex Pré-Frontal/metabolismo , Probióticos/administração & dosagem , Animais , Hipocampo/microbiologia , Masculino , Aprendizagem em Labirinto , Córtex Pré-Frontal/microbiologia , Reconhecimento Psicológico
4.
Transl Psychiatry ; 6: e774, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27045844

RESUMO

The prefrontal cortex (PFC) is a key region implicated in a range of neuropsychiatric disorders such as depression, schizophrenia and autism. In parallel, the role of the gut microbiota in contributing to these disorders is emerging. Germ-free (GF) animals, microbiota-deficient throughout life, have been instrumental in elucidating the role of the microbiota in many aspects of physiology, especially the role of the microbiota in anxiety-related behaviours, impaired social cognition and stress responsivity. Here we aim to further elucidate the mechanisms of the microbial influence by investigating changes in the homeostatic regulation of neuronal transcription of GF mice within the PFC using a genome-wide transcriptome profiling approach. Our results reveal a marked, concerted upregulation of genes linked to myelination and myelin plasticity. This coincided with upregulation of neural activity-induced pathways, potentially driving myelin plasticity. Subsequent investigation at the ultrastructural level demonstrated the presence of hypermyelinated axons within the PFC of GF mice. Notably, these changes in myelin and activity-related gene expression could be reversed by colonization with a conventional microbiota following weaning. In summary, we believe we demonstrate for the first time that the microbiome is necessary for appropriate and dynamic regulation of myelin-related genes with clear implications for cortical myelination at an ultrastructural level. The microbiota is therefore a potential therapeutic target for psychiatric disorders involving dynamic myelination in the PFC.


Assuntos
Microbiota/fisiologia , Bainha de Mielina/metabolismo , Córtex Pré-Frontal/metabolismo , Animais , Western Blotting , Perfilação da Expressão Gênica/métodos , Camundongos , Microbiota/genética , Microscopia Eletrônica de Transmissão , Bainha de Mielina/genética , Córtex Pré-Frontal/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Transcriptoma/genética , Transcriptoma/fisiologia , Regulação para Cima/genética , Regulação para Cima/fisiologia
5.
Mol Microbiol ; 71(2): 461-77, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19040644

RESUMO

Streptococcus pneumoniae is the most frequent cause of bacterial meningitis, leading to permanent neurological damage in 30% and lethal outcome in 25% of patients. The cholesterol-dependent cytolysin pneumolysin is a major virulence factor of S. pneumoniae. It produces rapid cell lysis at higher concentrations or apoptosis at lower concentrations. Here, we show that sublytic amounts of pneumolysin produce rapid bundling and increased acetylation of microtubules (signs of excessive microtubule stabilization) in various types of cells--neuroblastoma cells, fibroblasts and primary astrocytes. The bundling started perinuclearly and extended peripherally towards the membrane. The effect was not connected to pneumolysin's capacity to mediate calcium influx, macropore formation, apoptosis, or RhoA and Rac1 activation. Cellular cholesterol depletion and neutralization of the toxin by pre-incubation with cholesterol completely inhibited the microtubule phenotype. Pharmacological inhibition of Src-family kinases diminished microtubule bundling, suggesting their involvement in the process. The relevance of microtubule stabilization to meningitis was confirmed in an experimental pneumococcal meningitis animal model, where increased acetylation was observed. Live imaging experiments demonstrated a decrease in organelle motility after toxin challenge in a manner comparable to the microtubule-stabilizing agent taxol, thus proposing a possible pathogenic mechanism that might contribute to the CNS damage in pneumococcal meningitis.


Assuntos
Proteínas de Bactérias/metabolismo , Colesterol/metabolismo , Microtúbulos/metabolismo , Streptococcus pneumoniae/metabolismo , Estreptolisinas/metabolismo , Quinases da Família src/metabolismo , Acetilação , Animais , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Humanos , Camundongos , Córtex Pré-Frontal/microbiologia , Coelhos , Streptococcus pneumoniae/patogenicidade , Tubulina (Proteína)/metabolismo , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...