Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.987
Filtrar
1.
FASEB J ; 38(9): e23650, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38696238

RESUMO

The global challenge of male infertility is escalating, notably due to the decreased testosterone (T) synthesis in testicular Leydig cells under stress, underscoring the critical need for a more profound understanding of its regulatory mechanisms. CREBZF, a novel basic region-leucine zipper transcription factor, regulates testosterone synthesis in mouse Leydig cells in vitro; however, further validation through in vivo experiments is essential. Our study utilized Cyp17a1-Cre to knock out CREBZF in androgen-synthesis cells and explored the physiological roles of CREBZF in fertility, steroid hormone synthesis, and behaviors in adult male mice. Conditional knockout (cKO) CREBZF did not affect fertility and serum testosterone level in male mice. Primary Leydig cells isolated from CREBZF-cKO mice showed impaired testosterone secretion and decreased mRNA levels of Star, Cyp17a1, and Hsd3b1. Loss of CREBZF resulted in thickening of the adrenal cortex, especially X-zone, with elevated serum corticosterone and dehydroepiandrosterone levels and decreased serum dehydroepiandrosterone sulfate levels. Immunohistochemical staining revealed increased expression of StAR, Cyp11a1, and 17ß-Hsd3 in the adrenal cortex of CREBZF-cKO mice, while the expression of AR was significantly reduced. Along with the histological changes and abnormal steroid levels in the adrenal gland, CREBZF-cKO mice showed higher anxiety-like behavior and impaired memory in the elevated plus maze and Barnes maze, respectively. In summary, CREBZF is dispensable for fertility, and CREBZF deficiency in Leydig cells promotes adrenal function in adult male mice. These results shed light on the requirement of CREBZF for fertility, adrenal steroid synthesis, and stress response in adult male mice, and contribute to understanding the crosstalk between testes and adrenal glands.


Assuntos
Córtex Suprarrenal , Células Intersticiais do Testículo , Camundongos Knockout , Animais , Masculino , Camundongos , Células Intersticiais do Testículo/metabolismo , Córtex Suprarrenal/metabolismo , Androgênios/metabolismo , Testosterona/sangue , Testosterona/metabolismo , Comportamento Animal , Camundongos Endogâmicos C57BL
2.
Endocrinology ; 165(5)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38573585

RESUMO

Klotho plays a critical role in the regulation of ion and fluid homeostasis. A previous study reported that haplo-insufficiency of Klotho in mice results in increased aldosterone synthase (CYP11B2) expression, elevated plasma aldosterone, and high blood pressure. This phenotype was presumed to be the result of diminished Klotho expression in zona glomerulosa (zG) cells of the adrenal cortex; however, systemic effects on adrenal aldosterone production could not be ruled out. To examine whether Klotho expressed in the zG is indeed a critical regulator of aldosterone synthesis, we generated a tamoxifen-inducible, zG-specific mouse model of Klotho deficiency by crossing Klotho-flox mice with Cyp11b2-CreERT mice (zG-Kl-KO). Tamoxifen-treated Cyp11b2-CreERT animals (zG-Cre) served as controls. Rosa26-mTmG reporter mice were used for Cre-dependent lineage-marking. Two weeks after tamoxifen induction, the specificity of the zG-Cre line was verified using immunofluorescence analysis to show that GFP expression was restricted to the zG. RNA in situ hybridization revealed a 65% downregulation of Klotho messenger RNA expression in the zG of zG-Kl-KO female mice at age 12 weeks compared to control mice. Despite this significant decrease, zG-Kl-KO mice exhibited no difference in plasma aldosterone levels. However, adrenal CYP11B2 expression and the CYP11B2 promotor regulatory transcription factors, NGFIB and Nurr1, were enhanced. Together with in vitro experiments, these results suggest that zG-derived Klotho modulates Cyp11b2 but does not evoke a systemic phenotype in young adult mice on a normal diet. Further studies are required to investigate the role of adrenal Klotho on aldosterone synthesis in aged animals.


Assuntos
Córtex Suprarrenal , Hiperaldosteronismo , Feminino , Camundongos , Animais , Zona Glomerulosa/metabolismo , Citocromo P-450 CYP11B2/genética , Citocromo P-450 CYP11B2/metabolismo , Aldosterona/metabolismo , Córtex Suprarrenal/metabolismo , Hiperaldosteronismo/genética , Tamoxifeno/farmacologia
3.
Eur Thyroid J ; 13(3)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642580

RESUMO

Background: Fatigue is a frequent adverse event during systemic treatments for advanced thyroid cancer, often leading to reduction, interruption, or discontinuation. We were the first group to demonstrate a correlation between fatigue and primary adrenal insufficiency (PAI). Aim: The objective was to assess the entire adrenal function in patients on systemic treatments. Methods: ACTH, cortisol and all the hormones produced by the adrenal gland were evaluated monthly in 36 patients (25 on lenvatinib, six on vandetanib, and five on selpercatinib). ACTH stimulation tests were performed in 26 cases. Results: After a median treatment period of 7 months, we observed an increase in ACTH values in 80-100% of patients and an impaired cortisol response to the ACTH test in 19% of cases. Additionally, dehydroepiandrosterone sulphate, ∆-4-androstenedione and 17-OH progesterone levels were below the median of normal values in the majority of patients regardless of the drug used. Testosterone in females and oestradiol in males were below the median of normal values in the majority of patients on lenvatinib and vandetanib. Finally, aldosterone was below the median of the normal values in most cases, whilst renin levels were normal. Metanephrines and normetanephrines were always within the normal range. Replacement therapy with cortisone acetate improved fatigue in 14/17 (82%) patients with PAI. Conclusion: Our data confirm that systemic treatments for advanced thyroid cancer can lead to impaired cortisol secretion. A reduction in the other hormones secreted by the adrenal cortex has been first reported and should be considered in the more appropriate management of these fragile patients.


Assuntos
Córtex Suprarrenal , Piperidinas , Neoplasias da Glândula Tireoide , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Suprarrenal/efeitos dos fármacos , Córtex Suprarrenal/metabolismo , Insuficiência Adrenal/tratamento farmacológico , Hormônio Adrenocorticotrópico/sangue , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Fadiga/etiologia , Hidrocortisona , Compostos de Fenilureia/efeitos adversos , Compostos de Fenilureia/uso terapêutico , Piperidinas/efeitos adversos , Piperidinas/uso terapêutico , Quinazolinas/uso terapêutico , Quinolinas/uso terapêutico , Quinolinas/efeitos adversos , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/patologia
4.
Adv Sci (Weinh) ; 11(18): e2307926, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460156

RESUMO

Prostanoids are endogenous lipid bioactive mediators that play essential roles in physiological processes such as glucocorticoid secretion. Here, it is found that the thromboxane (Tx)A2 receptor (TP) is highly expressed in the adrenal cortex of mice. Both global and adrenocortical-specific deletion of the TP receptor lead to increased adiposity in mice by elevating corticosterone synthesis. Mechanistically, the TP receptor deletion increases the phosphorylation of steroidogenic acute regulatory protein (StAR) and corticosterone synthesis in adrenal cortical cells by suppressing p-p38-mediated phosphorylation of 14-3-3γ adapter protein at S71. The activation of the p38 in the adrenal cortical cells by forced expression of the MKK6EE gene attenuates hypercortisolism in TP-deficient mice. These observations suggest that the TxA2/TP signaling regulates adrenal corticosterone homeostasis independent of the hypothalamic-pituitary-adrenal axis and the TP receptor may serve as a promising therapeutic target for hypercortisolism.


Assuntos
Corticosterona , Fosfoproteínas , Transdução de Sinais , Tromboxano A2 , Animais , Camundongos , Corticosterona/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Tromboxano A2/metabolismo , Córtex Suprarrenal/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Masculino , Camundongos Endogâmicos C57BL
5.
J Exp Zool A Ecol Integr Physiol ; 341(5): 587-596, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38497306

RESUMO

There is a need to fully know the physiology of Eurasian beaver due to its essential role in environmental homeostasis. However, a "human factor" impacts this, including stress conditions and environmental pollution. Adrenal glands protect these all. The regulation of endocrine processes by nonclassical androgen and estrogen signaling, the first and fastest control, is still a matter of research. The specific analyses performed here in mature female and male beaver adrenals contained: anatomical and histological examinations, expression and localization of membrane androgen receptor (zinc transporter, Zinc- and Iron-like protein 9; ZIP9) and membrane estrogen receptor coupled with G protein (GPER), and measurement of zinc (Zn2+) and copper (Ca2+) ion levels and corticosterone levels. We revealed normal anatomical localization, size, and tissue histology in female and male beavers, respectively. Equally, ZIP9 and GPER were localized in the membrane of all adrenal cortex cells. The protein expression of these receptors was higher (p < 0.001) in male than female adrenal cortex cells. Similarly, Zn2+ and Ca2+ ion levels were higher (p < 0.05, p < 0.01) in male than female adrenal cortex. The increased corticosterone levels (p < 0.001) were detected in the adrenal cortex of females when compared to males. The present study is the first to report the presence of nonclassical androgen and estrogen signaling and its possible regulatory function in the adrenal cortex of Eurasian beavers. We assume that this first-activated and fast-transmitted regulation can be important in the context of the effect of environmental physical and chemical stressors especially on adrenal cortex cells. The beaver adrenals may constitute an additional supplementary model for searching for universal mechanisms of adrenal cortex physiology and diseases.


Assuntos
Córtex Suprarrenal , Receptores Androgênicos , Receptores de Estrogênio , Roedores , Transdução de Sinais , Animais , Feminino , Masculino , Receptores de Estrogênio/metabolismo , Receptores Androgênicos/metabolismo , Córtex Suprarrenal/metabolismo , Transdução de Sinais/fisiologia , Roedores/fisiologia , Corticosterona/sangue , Corticosterona/metabolismo , Zinco/metabolismo , Cobre/metabolismo
6.
Endocrinology ; 165(3)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38301271

RESUMO

Cholesterol is the precursor of all steroids, but how cholesterol flux is controlled in steroidogenic tissues is poorly understood. The cholesterol exporter ABCG1 is an essential component of the reverse cholesterol pathway and its global inactivation results in neutral lipid redistribution to tissue macrophages. The function of ABCG1 in steroidogenic tissues, however, has not been explored. To model this, we inactivated Abcg1 in the mouse adrenal cortex, which led to an adrenal-specific increase in transcripts involved in cholesterol uptake and de novo synthesis. Abcg1 inactivation did not affect adrenal cholesterol content, zonation, or serum lipid profile. Instead, we observed a moderate increase in corticosterone production that was not recapitulated by the inactivation of the functionally similar cholesterol exporter Abca1. Altogether, our data imply that Abcg1 controls cholesterol uptake and biosynthesis and regulates glucocorticoid production in the adrenal cortex, introducing the possibility that ABCG1 variants may account for physiological or subclinical variation in stress response.


Assuntos
Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Córtex Suprarrenal , Colesterol , Animais , Camundongos , Córtex Suprarrenal/metabolismo , Transporte Biológico , Colesterol/metabolismo , Corticosterona , Glucocorticoides , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo
7.
Vitam Horm ; 124: 429-447, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38408807

RESUMO

The bone morphogenetic protein (BMP) system in the adrenal cortex plays modulatory roles in the control of adrenocortical steroidogenesis. BMP-6 enhances aldosterone production by modulating angiotensin (Ang) II-mitogen-activated protein kinase (MAPK) signaling, whereas activin regulates the adrenocorticotropin (ACTH)-cAMP cascade in adrenocortical cells. A peripheral clock system in the adrenal cortex was discovered and it has been shown to have functional roles in the adjustment of adrenocortical steroidogenesis by interacting with the BMP system. It was found that follistatin, a binding protein of activin, increased Clock mRNA levels, indicating an endogenous function of activin in the regulation of Clock mRNA expression. Elucidation of the interrelationships among the circadian clock system, the BMP system and adrenocortical steroidogenesis regulated by the hypothalamic-pituitary-adrenal (HPA) axis would lead to an understanding of the pathophysiology of adrenal disorders and metabolic disorders and the establishment of better medical treatment from the viewpoint of pharmacokinetics.


Assuntos
Córtex Suprarrenal , Humanos , Córtex Suprarrenal/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Aldosterona/metabolismo , Ativinas/genética , Ativinas/metabolismo , RNA Mensageiro/metabolismo
8.
Vitam Horm ; 124: 393-404, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38408805

RESUMO

The adrenal cortex is responsible for production of adrenal steroid hormones and is anatomically divided into three distinct zones: zona glomerulosa secreting mineralocorticoids (mainly aldosterone), zona fasciculata secreting glucocorticoids (cortisol), and zona reticularis producing androgens. Importantly, due to their high lipophilicity, no adrenal steroid hormone (including aldosterone) is stored in vesicles but rather gets synthesized and secreted instantly upon cell stimulation with specific stimuli. Aldosterone is the most potent mineralocorticoid hormone produced from the adrenal cortex in response to either angiotensin II (AngII) or elevated K+ levels in the blood (hyperkalemia). AngII, being a peptide, cannot cross cell membranes and thus, uses two distinct G protein-coupled receptor (GPCR) types, AngII type 1 receptor (AT1R) and AT2R to exert its effects inside cells. In zona glomerulosa cells, AT1R activation by AngII results in aldosterone synthesis and secretion via two main pathways: (a) Gq/11 proteins that activate phospholipase C ultimately raising intracellular free calcium concentration; and (b) ßarrestin1 and -2 (also known as Arrestin-2 and -3, respectively) that elicit sustained extracellular signal-regulated kinase (ERK) activation. Both pathways induce upregulation and acute activation of StAR (steroidogenic acute regulatory) protein, the enzyme that catalyzes the rate-limiting step in aldosterone biosynthesis. This chapter describes these two salient pathways underlying AT1R-induced aldosterone production in zona glomerulosa cells. We also highlight some pharmacologically important notions pertaining to the efficacy of the currently available AT1R antagonists, also known as angiotensin receptor blockers (ARBs) or sartans at suppressing both pathways, i.e., their inverse agonism efficacy at G proteins and ßarrestins.


Assuntos
Córtex Suprarrenal , Aldosterona , Humanos , Aldosterona/metabolismo , Angiotensina II , Antagonistas de Receptores de Angiotensina/farmacologia , Agonismo Inverso de Drogas , Inibidores da Enzima Conversora de Angiotensina , Córtex Suprarrenal/metabolismo
9.
Mol Cell Endocrinol ; 585: 112176, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38341019

RESUMO

Hyperaldosteronism is often associated with inappropriate aldosterone production and aldosterone synthase (Cyp11b2) expression. Normally, Cyp11b2 expression is limited to the adrenal zona glomerulosa (ZG) and regulated by angiotensin II which signals through Gq protein-coupled receptors. As cells migrate inwards, they differentiate into 11ß-hydroxylase-expressing zona fasciculata (ZF) cells lacking Cyp11b2. The mechanism causing ZG-specific aldosterone biosynthesis is still unclear. We investigated the effect of chronic Gq signaling using transgenic mice with a clozapine N-oxide (CNO)-activated human M3 muscarinic receptor (DREADD) coupled to Gq (hM3Dq) that was expressed throughout the adrenal cortex. CNO raised circulating aldosterone in the presence of a high sodium diet with greater response seen in females compared to males. Immunohistochemistry and transcriptomics indicated disrupted zonal Cyp11b2 expression while Wnt signaling remained unchanged. Chronic Gq-DREADD signaling also induced an intra-adrenal RAAS in CNO-treated mice. Chronic Gq signaling disrupted adrenal cortex zonal aldosterone production associated with ZF expression of Cyp11b2.


Assuntos
Córtex Suprarrenal , Hiperaldosteronismo , Masculino , Feminino , Humanos , Camundongos , Animais , Zona Fasciculada , Aldosterona/metabolismo , Córtex Suprarrenal/metabolismo , Zona Glomerulosa/metabolismo , Citocromo P-450 CYP11B2/genética , Via de Sinalização Wnt , Camundongos Transgênicos
10.
Sci Rep ; 14(1): 3985, 2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368491

RESUMO

Nucleobindin-derived peptides, nesfatin-1 [NESF-1] and nesfatin-1-like-peptide [NLP] have diverse roles in endocrine and metabolic regulation. While both peptides showed a stimulatory effect on the synthesis of proopiomelanocortin (POMC), the adrenocorticotropic hormone (ACTH) precursor in mouse corticotrophs, whether NESF-1 and NLP have any direct effect on glucocorticoid [GC] synthesis in the adrenal cortex remains unknown. The main aim of this study was to determine if NESF-1 and/or NLP act directly on adrenal cortex cells to regulate cortisol synthesis in vitro. Whether NLP injection affects stress-hormone gene expression in the adrenal gland and pituitary in vivo in mice was also assessed. In addition, cortisol synthetic pathway in Nucb1 knockout mice was studied. Human adrenal cortical [H295R] cells showed immunoreactivity for both NUCB1/NLP and NUCB2/NESF-1. NLP and NESF-1 decreased the abundance of steroidogenic enzyme mRNAs, and cortisol synthesis and release through the AC/PKA/CREB pathway in H295R cells. Similarly, intraperitoneal injection of NLP in mice decreased the expression of enzymes involved in glucocorticoid (GC) synthesis in the adrenal gland while increasing the expression of Pomc, Pcsk1 and Crhr1 in the pituitary. Moreover, the melanocortin 2 receptor (Mc2r) mRNA level was enhanced in the adrenal gland samples of NLP injected mice. However, the global genetic disruption in Nucb1 did not affect most steroidogenic enzyme mRNAs, and Pomc, Pcsk2 and Crhr1 mRNAs in mice adrenal gland and pituitary gland, respectively. Collectively, these data provide the first evidence for a direct inhibition of cortisol synthesis and secretion by NLP and NESF-1. NUCB peptides might still elicit a net stimulatory effect on GC synthesis and secretion through their positive effects on ACTH-MC2R pathway in the pituitary.


Assuntos
Córtex Suprarrenal , Hidrocortisona , Humanos , Camundongos , Animais , Glucocorticoides , Pró-Opiomelanocortina/metabolismo , Peptídeos , Hormônio Adrenocorticotrópico/farmacologia , Córtex Suprarrenal/metabolismo
11.
Steroids ; 203: 109366, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242273

RESUMO

The adrenal gland produces steroid hormones that act in the homeostasis of organisms. During aging, alterations in the hormonal balance affect the adrenal glands, but these have not yet been fully described due to the lack of adequate animal models. The adrenal gland of the Mongolian gerbil has a morphology similar to the primate's adrenal gland, which makes it a possible animal model for endocrine studies. Therefore, the current study aimed to study the morphophysiology of the adrenal gland under the effect of aging. For this purpose, males Meriones unguiculatus, aged three, six, nine, twelve, and fifteen months were used. Morphometric, immunohistochemical, and hormonal analyses were performed. It was observed that during aging the adrenal gland presents hypertrophy of the fasciculata and reticularis zones. Lipofuscin accumulation was observed during aging, in addition to changes in proliferation, cell death, and cell receptors. The analyses also showed that the gerbil presents steroidogenic enzymes and the production of steroid hormones, such as DHEA, like that found in humans. The data provide the first comprehensive assessment of the morphophysiology of the Mongolian gerbil adrenal cortex during aging, indicating that this species is a possible experimental model for studies of the adrenal gland and aging.


Assuntos
Córtex Suprarrenal , Humanos , Animais , Masculino , Gerbillinae/anatomia & histologia , Córtex Suprarrenal/metabolismo , Glândulas Suprarrenais/metabolismo , Corticosteroides/farmacologia , Hormônios/metabolismo , Envelhecimento , Esteroides/farmacologia
12.
Psychoneuroendocrinology ; 160: 106683, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086320

RESUMO

Mitochondria within the adrenal cortex play a key role in synthesizing steroid hormones. The adrenal cortex is organized in three functionally specialized zones (glomerulosa, fasciculata, and reticularis) that produce different classes of steroid hormones in response to various stimuli, including psychosocial stress. Given that the functions and morphology of mitochondria are dynamically related and respond to stress, we applied transmission electron microscopy (TEM) to examine potential differences in mitochondrial morphology under basal and chronic psychosocial stress conditions. We used the chronic subordinate colony housing (CSC) paradigm, a murine model of chronic psychosocial stress. Our findings quantitatively define how mitochondrial morphology differs among each of the three adrenal cortex zones under basal conditions, and show that chronic psychosocial stress mainly affected mitochondria in the zona glomerulosa, shifting their morphology towards the more typical glucocorticoid-producing zona fasciculata mitochondrial phenotype. Analysis of adrenocortical lipid droplets that provide cholesterol for steroidogenesis showed that chronic psychosocial stress altered lipid droplet diameter, without affecting droplet number or inter-organellar mitochondria-lipid droplet interactions. Together, our findings support the hypothesis that each adrenal cortex layer is characterized by morphologically distinct mitochondria and that this adrenal zone-specific mitochondrial morphology is sensitive to environmental stimuli, including chronic psychosocial stressors. Further research is needed to define the role of these stress-induced changes in mitochondrial morphology, particularly in the zona glomerulosa, on stress resilience and related behaviors.


Assuntos
Córtex Suprarrenal , Camundongos , Animais , Córtex Suprarrenal/metabolismo , Corticosteroides/metabolismo , Mitocôndrias , Colesterol/metabolismo , Estresse Psicológico
13.
Horm Metab Res ; 56(1): 78-90, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37884032

RESUMO

Endocrine-disrupting chemicals (EDCs) are exogenous substances known to interfere with endocrine homeostasis and promote adverse health outcomes. Their impact on the adrenal cortex, corticosteroids and their physiological role in the organism has not yet been sufficiently elucidated. In this review, we collect experimental and epidemiological evidence on adrenal disruption by relevant endocrine disruptors. In vitro data suggest significant alterations of gene expression, cell signalling, steroid production, steroid distribution, and action. Additionally, morphological studies revealed disturbances in tissue organization and development, local inflammation, and zone-specific hyperplasia. Finally, endocrine circuits, such as the hypothalamic-pituitary-adrenal axis, might be affected by EDCs. Many questions regarding the detection of steroidogenesis disruption and the effects of combined toxicity remain unanswered. Not only due to the diverse mode of action of adrenal steroids and their implication in many common diseases, there is no doubt that further research on endocrine disruption of the adrenocortical system is needed.


Assuntos
Córtex Suprarrenal , Disruptores Endócrinos , Córtex Suprarrenal/metabolismo , Corticosteroides/metabolismo , Disruptores Endócrinos/toxicidade , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Esteroides/metabolismo
14.
Protoplasma ; 261(3): 487-496, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38052957

RESUMO

The importance and regulation of adrenal androgen production and signaling are not completely understood and are scarcely studied. In addition, there is still a search for appropriate animal models and experimental systems for the investigation of adrenal physiology and disease. Therefore, the main objective of the study was to evaluate the effect of luteinizing hormone (LH) signaling and selenium (Se2+) exposure on androgen adrenal signaling via canonical androgen receptor (AR), and membrane androgen receptor acting as zinc transporter (zinc- and iron-like protein 9; ZIP9). For herein evaluations, adrenals isolated from transgenic mice with elevated LH receptor signaling (KiLHRD582G) and adrenals obtained from rabbits used for ex vivo adenal cortex culture and exposure to Se2+ were utilized. Tissues were assessed for morphological, morphometric, and Western blot analyses and testosterone and zinc level measurements.Comparison of adrenal cortex histology and morphometric analysis in KiLHRD582G mice and Se2+-treated rabbits revealed cell hypertrophy. No changes in the expression of proliferating cell nuclear antigen (PCNA) were found. In addition, AR expression was decreased (p < 0.001) in both KiLHRD582G mouse and Se2+-treated rabbit adrenal cortex while expression of ZIP9 showed diverse changes. Its expression was increased (P < 0.001) in KiLHRD582G mice and decreased (P < 0.001) in Se2+-treated rabbits but only at the dose 10 ug/100 mg/ tissue. Moreover, increased testosterone levels (P < 0.05) and zinc levels were detected in the adrenal cortex of KiLHRD582G mice whereas in rabbit adrenal cortex treated with Se2+, the effect was the opposite (P < 0.001).


Assuntos
Córtex Suprarrenal , Selênio , Camundongos , Animais , Coelhos , Androgênios , Receptores Androgênicos/metabolismo , Receptores do LH , Selênio/farmacologia , Testosterona , Córtex Suprarrenal/metabolismo , Receptores Acoplados a Proteínas G , Zinco
15.
Front Endocrinol (Lausanne) ; 14: 1309053, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034003

RESUMO

X-linked adrenoleukodystrophy (X-ALD; OMIM:300100) is a progressive neurodegenerative disorder caused by a congenital defect in the ATP-binding cassette transporters sub-family D member 1 gene (ABCD1) producing adrenoleukodystrophy protein (ALDP). According to population studies, X-ALD has an estimated birth prevalence of 1 in 17.000 subjects (considering both hemizygous males and heterozygous females), and there is no evidence that this prevalence varies among regions or ethnic groups. ALDP deficiency results in a defective peroxisomal ß-oxidation of very long chain fatty acids (VLCFA). As a consequence of this metabolic abnormality, VLCFAs accumulate in nervous system (brain white matter and spinal cord), testis and adrenal cortex. All X-ALD affected patients carry a mutation on the ABCD1 gene. Nevertheless, patients with a defect on the ABCD1 gene can have a dramatic difference in the clinical presentation of the disease. In fact, X-ALD can vary from the most severe cerebral paediatric form (CerALD), to adult adrenomyeloneuropathy (AMN), Addison-only and asymptomatic forms. Primary adrenal insufficiency (PAI) is one of the main features of X-ALD, with a prevalence of 70% in ALD/AMN patients and 5% in female carriers. The pathogenesis of X-ALD related PAI is still unclear, even if a few published data suggests a defective adrenal response to ACTH, related to VLCFA accumulation with progressive disruption of adrenal cell membrane function and ACTH receptor activity. The reason why PAI develops only in a proportion of ALD/AMN patients remains incompletely understood. A growing consensus supports VLCFA assessment in all male children presenting with PAI, as early diagnosis and start of therapy may be essential for X-ALD patients. Children and adults with PAI require individualized glucocorticoid replacement therapy, while mineralocorticoid therapy is needed only in a few cases after consideration of hormonal and electrolytes status. Novel approaches, such as prolonged release glucocorticoids, offer potential benefit in optimizing hormonal replacement for X-ALD-related PAI. Although the association between PAI and X-ALD has been observed in clinical practice, the underlying mechanisms remain poorly understood. This paper aims to explore the multifaceted relationship between PAI and X-ALD, shedding light on shared pathophysiology, clinical manifestations, and potential therapeutic interventions.


Assuntos
Doença de Addison , Córtex Suprarrenal , Adrenoleucodistrofia , Adulto , Humanos , Masculino , Feminino , Criança , Adrenoleucodistrofia/complicações , Adrenoleucodistrofia/diagnóstico , Adrenoleucodistrofia/epidemiologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Doença de Addison/complicações , Doença de Addison/diagnóstico , Doença de Addison/genética , Ácidos Graxos/metabolismo , Córtex Suprarrenal/metabolismo , Glucocorticoides/uso terapêutico
16.
J Anat ; 243(4): 684-689, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37294692

RESUMO

Recent studies in mouse models have demonstrated that the multi-cellular rosette structure of the adrenal zona glomerulosa (ZG) is crucial for aldosterone production by ZG cells. However, the rosette structure of human ZG has remained unclear. The human adrenal cortex undergoes remodeling during aging, and one surprising change is the occurrence of aldosterone-producing cell clusters (APCCs). It is intriguing to know whether APCCs form a rosette structure like normal ZG cells. In this study, we investigated the rosette structure of ZG in human adrenal with and without APCCs, as well as the structure of APCCs. We found that glomeruli in human adrenal are enclosed by a laminin subunit ß1 (lamb1)-rich basement membrane. In slices without APCCs, each glomerulus contains an average of 11 ± 1 cells. In slices with APCCs, each glomerulus in normal ZG contains around 10 ± 1 cells, while each glomerulus in APCCs has significantly more cells (average of 22 ± 1). Similar to what was observed in mice, cells in normal ZG or in APCCs of human adrenal formed rosettes through ß-catenin- and F-actin-rich adherens junctions. The cells in APCCs form larger rosettes through enhanced adherens junctions. This study provides, for the first time, a detailed characterization of the rosette structure of human adrenal ZG and shows that APCCs are not an unstructured cluster of ZG cells. This suggests that the multi-cellular rosette structure may also be necessary for aldosterone production in APCCs.


Assuntos
Córtex Suprarrenal , Zona Glomerulosa , Humanos , Camundongos , Animais , Zona Glomerulosa/metabolismo , Aldosterona/metabolismo , Córtex Suprarrenal/metabolismo
17.
Endocrinology ; 164(5)2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36932649

RESUMO

Primary aldosteronism is the most common cause of secondary hypertension. The first-line treatment adrenalectomy resects adrenal nodules and adjacent normal tissue, limiting suitability to those who present with unilateral disease. Use of thermal ablation represents an emerging approach as a possible minimally invasive therapy for unilateral and bilateral disease, to target and disrupt hypersecreting aldosterone-producing adenomas, while preserving adjacent normal adrenal cortex. To determine the extent of damage to adrenal cells upon exposure to hyperthermia, the steroidogenic adrenocortical cell lines H295R and HAC15 were treated with hyperthermia at temperatures between 37 and 50°C with the effects of hyperthermia on steroidogenesis evaluated following stimulation with forskolin and ANGII. Cell death, protein/mRNA expression of steroidogenic enzymes and damage markers (HSP70/90), and steroid secretion were analyzed immediately and 7 days after treatment. Following treatment with hyperthermia, 42°C and 45°C did not induce cell death and were deemed sublethal doses while ≥50°C caused excess cell death in adrenal cells. Sublethal hyperthermia (45°C) caused a significant reduction in cortisol secretion immediately following treatment while differentially affecting the expression of various steroidogenic enzymes, although recovery of steroidogenesis was evident 7 days after treatment. As such, sublethal hyperthermia, which occurs in the transitional zone during thermal ablation induces a short-lived, unsustained inhibition of cortisol steroidogenesis in adrenocortical cells in vitro.


Assuntos
Córtex Suprarrenal , Adenoma Adrenocortical , Hipertermia Induzida , Humanos , Hidrocortisona/metabolismo , Córtex Suprarrenal/metabolismo , Corticosteroides/metabolismo , Adenoma Adrenocortical/metabolismo , Aldosterona/metabolismo
18.
Probl Endokrinol (Mosk) ; 68(6): 76-88, 2023 Jan 08.
Artigo em Russo | MEDLINE | ID: mdl-36689714

RESUMO

BACKGROUND: Adrenocortical cancer (ACC) is an orphan malignant tumor of the adrenal cortex with a predominantly poor prognosis and an aggressive clinical course. Nowadays, mitotane is a non-alternative drug in the treatment of ACC. The search for prognostic parameters that determine the sensitivity of ACC to ongoing treatment is currently an urgent task. Expression levels of the large subunit of ribonucleotide reductase M1 (RRM1), cytochrome P450 2W1 (CYP2W1), and sterol- O-acyltransferase-1 (SOAT1) are considered as potential predictors of response to mitotane therapy. AIM: To assess the immunohistochemical expression of RRM1, CYP2W1 and SOAT1 in ACC as markers of clinical outcomes and response to the therapy with mitotane. MATERIALS AND METHODS: The study included 62 patients older than 17 years of age with a diagnosis of ACC confirmed histologically and immunohistochemically. Mitotane therapy was initiated in 29 patients in the postoperative period, 33 patients were under dynamic observation without concomitant drug treatment. Antibodies to RRM1, CYP2W1, SOAT1 were used diluted in accordance with recommendations of firms-manufacturers for immunohistochemical detection. RESULTS: In the group of patients with low and moderate RRM1, CYP2W1 and SOAT1 immunoreactivity in the tumor and no antitumor therapy, a better DFS was noted (p=0.037, p=0.020 and p=0.001, respectively) compared to the group of patients receiving mitotane therapy at this level of marker expression. With high immunoreactivity of the markers, no statistically significant differences in DFS were found. CONCLUSION: Consistent with the findings in our study, low expression of RRM1, CYP2W1 and SOAT1 was associated with worse DFS with antitumor therapy. The results of the work indicate the need to assess the levels of immunoreactivity of these markers in patients with ACC before starting treatment with mitotane in order to predict the efficiency of therapy.


Assuntos
Neoplasias do Córtex Suprarrenal , Córtex Suprarrenal , Carcinoma Adrenocortical , Humanos , Mitotano/uso terapêutico , Carcinoma Adrenocortical/tratamento farmacológico , Carcinoma Adrenocortical/metabolismo , Carcinoma Adrenocortical/patologia , Antineoplásicos Hormonais/uso terapêutico , Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Neoplasias do Córtex Suprarrenal/metabolismo , Neoplasias do Córtex Suprarrenal/patologia , Córtex Suprarrenal/metabolismo , Córtex Suprarrenal/patologia , Sistema Enzimático do Citocromo P-450/uso terapêutico
19.
Environ Toxicol ; 38(5): 997-1010, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36715143

RESUMO

Di-n-pentyl phthalate (DPeP) is an endocrine-disrupting phthalate plasticizer. The objective of this study was to investigate the effect of DPeP on adrenocortical function in adult male rats following in utero exposure. DPeP (0, 10, 50, 100, and 500 mg/kg/day) was administered by gavage to pregnant Sprague-Dawley rats from gestational day 14 to 21. The morphology and function of the adrenal cortex in 56-day-old male offspring were studied. DPeP at 100 and 500 mg/kg/day significantly reduced serum aldosterone levels and at 500 mg/kg/day markedly reduced corticosterone and adrenocorticotropic hormone levels. DPeP at 10-500 mg/kg markedly reduced the thickness of zona glomerulosa without affecting the thickness of zona fasciculata. DPeP significantly downregulated the expression of Agtr1a, Mc2r, Scarb1, Cyp11a1, Hsd3b1, Cyp21, Cyp11b1, Cyp11b2, Nr5a1, Nr4a2, and Bcl2 genes as well as their proteins. DPeP at 500 mg/kg/day significantly increased phosphorylated AMPK, while DPeP at 100 mg/kg/day and higher doses reduced phosphorylated AKT1 and total SIRT1 level. DPeP at 100 and 500 µM markedly induced reactive oxygen species and apoptosis in H295R cells after 24 h of culture. In conclusion, in utero exposure to DPeP disrupts adrenocortical function of the adult male offspring by (1) increasing AMPK phosphorylation and decreasing AKT1 phosphorylation and SIRT1 levels, (2) reducing adrenocorticotropic hormone levels, and (3) possibly inducing oxidative stress and apoptosis.


Assuntos
Proteínas Quinases Ativadas por AMP , Córtex Suprarrenal , Gravidez , Feminino , Ratos , Animais , Masculino , Ratos Sprague-Dawley , Proteínas Quinases Ativadas por AMP/metabolismo , Fosforilação , Sirtuína 1/metabolismo , Córtex Suprarrenal/metabolismo , Hormônio Adrenocorticotrópico/metabolismo
20.
Endocrine ; 79(3): 554-558, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36350461

RESUMO

PURPOSE: In this study, we aimed to investigate the endocan expression in tissue samples of patients diagnosed with Cushing's syndrome (CS) due to Cortisol-Producing-Adenoma (CPA) and compare it with normal adrenal cortex tissue, and also to evaluate the correlations of endocan expression with clinical and histopathological features. METHODS: 11 patients who were operated for CS due to CPA between 2009-2021 and 14 control subjects with normal adrenal cortex were included in the study. Demographic, laboratory and clinicopathological data of the patients were recorded. Sections of 4-5 µm thickness were taken from paraffin blocks of patients diagnosed with CS due to CPA and control subjects with normal adrenal cortex tissue. The sections were then stained in a closed system automatic immunohistochemical staining device to perform immunohistochemical analysis. The endocan positive grade were determined based on the proportion of stained cells on a scale of negative to strong. RESULTS: The number of subjects with positive endocan expression and the mean endocan expression level in the CS group were significantly higher than the control group (p = 0.005, p < 0.001, respectively). No correlation was found between endocan expression and clinical and histopathological features. CONCLUSION: According to the results of our study, endocan overexpression in CPA tissues may be related to the hormonal functionality of CPA.


Assuntos
Adenoma , Córtex Suprarrenal , Síndrome de Cushing , Humanos , Síndrome de Cushing/diagnóstico , Hidrocortisona/metabolismo , Córtex Suprarrenal/metabolismo , Adenoma/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...