Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
1.
J Neurosci ; 41(41): 8577-8588, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34413204

RESUMO

Neuronal ensembles are groups of neurons with coordinated activity that could represent sensory, motor, or cognitive states. The study of how neuronal ensembles are built, recalled, and involved in the guiding of complex behaviors has been limited by the lack of experimental and analytical tools to reliably identify and manipulate neurons that have the ability to activate entire ensembles. Such pattern completion neurons have also been proposed as key elements of artificial and biological neural networks. Indeed, the relevance of pattern completion neurons is highlighted by growing evidence that targeting them can activate neuronal ensembles and trigger behavior. As a method to reliably detect pattern completion neurons, we use conditional random fields (CRFs), a type of probabilistic graphical model. We apply CRFs to identify pattern completion neurons in ensembles in experiments using in vivo two-photon calcium imaging from primary visual cortex of male mice and confirm the CRFs predictions with two-photon optogenetics. To test the broader applicability of CRFs we also analyze publicly available calcium imaging data (Allen Institute Brain Observatory dataset) and demonstrate that CRFs can reliably identify neurons that predict specific features of visual stimuli. Finally, to explore the scalability of CRFs we apply them to in silico network simulations and show that CRFs-identified pattern completion neurons have increased functional connectivity. These results demonstrate the potential of CRFs to characterize and selectively manipulate neural circuits.SIGNIFICANCE STATEMENT We describe a graph theory method to identify and optically manipulate neurons with pattern completion capability in mouse cortical circuits. Using calcium imaging and two-photon optogenetics in vivo we confirm that key neurons identified by this method can recall entire neuronal ensembles. This method could be broadly applied to manipulate neuronal ensemble activity to trigger behavior or for therapeutic applications in brain prostheses.


Assuntos
Modelos Neurológicos , Neurônios/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Probabilidade , Córtex Visual/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Neurônios/química , Optogenética/métodos , Estimulação Luminosa/métodos , Córtex Visual/química , Córtex Visual/citologia
2.
PLoS Comput Biol ; 17(6): e1009028, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34097695

RESUMO

Divisive normalization (DN) is a prominent computational building block in the brain that has been proposed as a canonical cortical operation. Numerous experimental studies have verified its importance for capturing nonlinear neural response properties to simple, artificial stimuli, and computational studies suggest that DN is also an important component for processing natural stimuli. However, we lack quantitative models of DN that are directly informed by measurements of spiking responses in the brain and applicable to arbitrary stimuli. Here, we propose a DN model that is applicable to arbitrary input images. We test its ability to predict how neurons in macaque primary visual cortex (V1) respond to natural images, with a focus on nonlinear response properties within the classical receptive field. Our model consists of one layer of subunits followed by learned orientation-specific DN. It outperforms linear-nonlinear and wavelet-based feature representations and makes a significant step towards the performance of state-of-the-art convolutional neural network (CNN) models. Unlike deep CNNs, our compact DN model offers a direct interpretation of the nature of normalization. By inspecting the learned normalization pool of our model, we gained insights into a long-standing question about the tuning properties of DN that update the current textbook description: we found that within the receptive field oriented features were normalized preferentially by features with similar orientation rather than non-specifically as currently assumed.


Assuntos
Aprendizagem , Córtex Visual/fisiologia , Animais , Macaca mulatta , Masculino , Redes Neurais de Computação , Neurônios/fisiologia , Estimulação Luminosa , Córtex Visual/química , Análise de Ondaletas
3.
J Comp Neurol ; 529(11): 2883-2910, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33683706

RESUMO

In Long Evans rats, ocular dominance columns (ODCs) in V1 overlap with patches of callosal connections. Using anatomical tracers, we found that ODCs and callosal patches are present at postnatal day 10 (P10), several days before eye opening, and about 10 days before the activation of the critical period for ocular dominance plasticity (~P20). In rats monocularly enucleated at P10 and perfused ~P20, ODCs ipsilateral to the remaining eye desegregated, indicating that rat ODCs are highly susceptible to monocular enucleation during a precritical period. Monocular enucleation during the critical period exerted significant, although smaller, effects. Monocular eye lid suture during the critical period led to a significant expansion of the ipsilateral projection from the nondeprived eye, whereas the contralateral projection invaded into, and intermixed with, ipsilateral ODCs innervated by the deprived eye. We propose that this intermixing allows callosal connections to contribute to the effects of monocular deprivation assessed in the hemisphere ipsilateral to the nondeprived eye. The ipsilateral and contralateral projections from the deprived eye did not undergo significant shrinkage. In contrast, we found that callosal patches are less susceptible to imbalance of eye input. In rats monocularly enucleated during either the precritical or critical periods, callosal patches were maintained in the hemisphere ipsilateral to the remaining eye, but desegregated in the hemisphere ipsilateral to the enucleated orbit. Callosal patches were maintained in rats binocularly enucleated at P10 or later. Similarly, monocular deprivation during the critical period had no significant effect on callosal patches in either hemisphere.


Assuntos
Corpo Caloso/crescimento & desenvolvimento , Período Crítico Psicológico , Dominância Ocular/fisiologia , Visão Monocular/fisiologia , Córtex Visual/crescimento & desenvolvimento , Vias Visuais/crescimento & desenvolvimento , Fatores Etários , Animais , Animais Recém-Nascidos , Corpo Caloso/química , Estimulação Luminosa/métodos , Ratos , Ratos Long-Evans , Privação Sensorial/fisiologia , Córtex Visual/química , Vias Visuais/química
4.
J Neurosci ; 41(12): 2656-2667, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33563727

RESUMO

Neural oscillations play critical roles in information processing, communication between brain areas, learning, and memory. We have recently discovered that familiar visual stimuli can robustly induce 5-Hz oscillations in the primary visual cortex (V1) of awake mice after the visual experience. To gain more mechanistic insight into this phenomenon, we used in vivo patch-clamp recordings to monitor the subthreshold activity of individual neurons during these oscillations. We analyzed the visual tuning properties of V1 neurons in naive and experienced mice to assess the effect of visual experience on the orientation and direction selectivity. Using optogenetic stimulation through the patch pipette in vivo, we measured the synaptic strength of specific intracortical and thalamocortical projections in vivo in the visual cortex before and after the visual experience. We found 5-Hz oscillations in membrane potential (Vm) and firing rates evoked in single neurons in response to the familiar stimulus, consistent with previous studies. Following the visual experience, the average firing rates of visual responses were reduced while the orientation and direction selectivities were increased. Light-evoked EPSCs were significantly increased for layer 5 (L5) projections to other layers of V1 after the visual experience, while the thalamocortical synaptic strength was decreased. In addition, we developed a computational model that could reproduce 5-Hz oscillations with enhanced neuronal selectivity following synaptic plasticity within the recurrent network and decreased feedforward input.SIGNIFICANCE STATEMENT Neural oscillations at around 5 Hz are involved in visual working memory and temporal expectations in primary visual cortex (V1). However, how the oscillations modulate the visual response properties of neurons in V1 and their underlying mechanism is poorly understood. Here, we show that these oscillations may alter the orientation and direction selectivity of the layer 2/3 (L2/3) neurons and correlate with the synaptic plasticity within V1. Our computational recurrent network model reproduces all these observations and provides a mechanistic framework for studying the role of 5-Hz oscillations in visual familiarity.


Assuntos
Potenciais da Membrana/fisiologia , Orientação/fisiologia , Reconhecimento Psicológico/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Optogenética/métodos , Estimulação Luminosa/métodos , Córtex Visual/química
5.
Nat Commun ; 12(1): 1029, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33589635

RESUMO

A primary challenge in single-cell RNA sequencing (scRNA-seq) studies comes from the massive amount of data and the excess noise level. To address this challenge, we introduce an analysis framework, named single-cell Decomposition using Hierarchical Autoencoder (scDHA), that reliably extracts representative information of each cell. The scDHA pipeline consists of two core modules. The first module is a non-negative kernel autoencoder able to remove genes or components that have insignificant contributions to the part-based representation of the data. The second module is a stacked Bayesian autoencoder that projects the data onto a low-dimensional space (compressed). To diminish the tendency to overfit of neural networks, we repeatedly perturb the compressed space to learn a more generalized representation of the data. In an extensive analysis, we demonstrate that scDHA outperforms state-of-the-art techniques in many research sub-fields of scRNA-seq analysis, including cell segregation through unsupervised learning, visualization of transcriptome landscape, cell classification, and pseudo-time inference.


Assuntos
Redes Neurais de Computação , Análise de Sequência de RNA/estatística & dados numéricos , Análise de Célula Única/estatística & dados numéricos , Aprendizado de Máquina não Supervisionado/estatística & dados numéricos , Animais , Teorema de Bayes , Benchmarking , Separação Celular/métodos , Cerebelo/química , Cerebelo/citologia , Embrião de Mamíferos , Humanos , Fígado/química , Fígado/citologia , Pulmão/química , Pulmão/citologia , Camundongos , Células-Tronco Embrionárias Murinas/química , Células-Tronco Embrionárias Murinas/citologia , Pâncreas/química , Pâncreas/citologia , Retina/química , Retina/citologia , Análise de Célula Única/métodos , Córtex Visual/química , Córtex Visual/citologia , Zigoto/química , Zigoto/citologia
6.
J Neurosci ; 41(6): 1274-1287, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33380470

RESUMO

Microglia have crucial roles in sculpting synapses and maintaining neural circuits during development. To test the hypothesis that microglia continue to regulate neural circuit connectivity in adult brain, we have investigated the effects of chronic microglial depletion, via CSF1R inhibition, on synaptic connectivity in the visual cortex in adult mice of both sexes. We find that the absence of microglia dramatically increases both excitatory and inhibitory synaptic connections to excitatory cortical neurons assessed with functional circuit mapping experiments in acutely prepared adult brain slices. Microglia depletion leads to increased densities and intensities of perineuronal nets. Furthermore, in vivo calcium imaging across large populations of visual cortical neurons reveals enhanced neural activities of both excitatory neurons and parvalbumin-expressing interneurons in the visual cortex following microglia depletion. These changes recover following adult microglia repopulation. In summary, our new results demonstrate a prominent role of microglia in sculpting neuronal circuit connectivity and regulating subsequent functional activity in adult cortex.SIGNIFICANCE STATEMENT Microglia are the primary immune cell of the brain, but recent evidence supports that microglia play an important role in synaptic sculpting during development. However, it remains unknown whether and how microglia regulate synaptic connectivity in adult brain. Our present work shows chronic microglia depletion in adult visual cortex induces robust increases in perineuronal nets, and enhances local excitatory and inhibitory circuit connectivity to excitatory neurons. Microglia depletion increases in vivo neural activities of both excitatory neurons and parvalbumin inhibitory neurons. Our new results reveal new potential avenues to modulate adult neural plasticity by microglia manipulation to better treat brain disorders, such as Alzheimer's disease.


Assuntos
Microglia/metabolismo , Rede Nervosa/metabolismo , Estimulação Luminosa/métodos , Córtex Visual/metabolismo , Aminopiridinas/farmacologia , Animais , Feminino , Masculino , Camundongos , Microglia/química , Microglia/efeitos dos fármacos , Rede Nervosa/química , Rede Nervosa/efeitos dos fármacos , Pirróis/farmacologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Córtex Visual/química , Córtex Visual/efeitos dos fármacos
7.
Cereb Cortex ; 31(2): 1307-1315, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33063102

RESUMO

Integration of information processed separately in distributed brain regions is essential for brain functions. This integration is enabled by long-range projection neurons, and further, concerted interactions between long-range projections and local microcircuits are crucial. It is not well known, however, how this interaction is implemented in cortical circuits. Here, to decipher this logic, using callosal projection neurons (CPNs) in layer 2/3 of the mouse visual cortex as a model of long-range projections, we found that CPNs exhibited distinct response properties and fine-scale local connectivity patterns. In vivo 2-photon calcium imaging revealed that CPNs showed a higher ipsilateral (to their somata) eye preference, and that CPN pairs showed stronger signal/noise correlation than random pairs. Slice recordings showed CPNs were preferentially connected to CPNs, demonstrating the existence of projection target-dependent fine-scale subnetworks. Collectively, our results suggest that long-range projection target predicts response properties and local connectivity of cortical projection neurons.


Assuntos
Rede Nervosa/fisiologia , Neurônios/fisiologia , Estimulação Luminosa/métodos , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/química , Neurônios/química , Técnicas de Cultura de Órgãos , Córtex Visual/química , Vias Visuais/química
8.
Elife ; 92020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33174836

RESUMO

A powerful paradigm to identify neural correlates of consciousness is binocular rivalry, wherein a constant visual stimulus evokes a varying conscious percept. It has recently been suggested that activity modulations observed during rivalry may represent the act of report rather than the conscious percept itself. Here, we performed single-unit recordings from face patches in macaque inferotemporal (IT) cortex using a no-report paradigm in which the animal's conscious percept was inferred from eye movements. We found that large proportions of IT neurons represented the conscious percept even without active report. Furthermore, on single trials we could decode both the conscious percept and the suppressed stimulus. Together, these findings indicate that (1) IT cortex possesses a true neural correlate of consciousness and (2) this correlate consists of a population code wherein single cells multiplex representation of the conscious percept and veridical physical stimulus, rather than a subset of cells perfectly reflecting consciousness.


Assuntos
Reconhecimento Facial , Córtex Visual/fisiologia , Animais , Estado de Consciência , Eletrofisiologia , Macaca , Masculino , Reconhecimento Visual de Modelos , Córtex Visual/química , Córtex Visual/diagnóstico por imagem , Percepção Visual
9.
Proc Natl Acad Sci U S A ; 117(39): 24514-24525, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32917810

RESUMO

Homeostasis is indispensable to counteract the destabilizing effects of Hebbian plasticity. Although it is commonly assumed that homeostasis modulates synaptic strength, membrane excitability, and firing rates, its role at the neural circuit and network level is unknown. Here, we identify changes in higher-order network properties of freely behaving rodents during prolonged visual deprivation. Strikingly, our data reveal that functional pairwise correlations and their structure are subject to homeostatic regulation. Using a computational model, we demonstrate that the interplay of different plasticity and homeostatic mechanisms can capture the initial drop and delayed recovery of firing rates and correlations observed experimentally. Moreover, our model indicates that synaptic scaling is crucial for the recovery of correlations and network structure, while intrinsic plasticity is essential for the rebound of firing rates, suggesting that synaptic scaling and intrinsic plasticity can serve distinct functions in homeostatically regulating network dynamics.


Assuntos
Homeostase , Plasticidade Neuronal , Animais , Neurônios/química , Neurônios/fisiologia , Roedores , Sinapses/fisiologia , Córtex Visual/química , Córtex Visual/fisiologia
10.
Front Neural Circuits ; 14: 38, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32719589

RESUMO

The cholinergic potentiation of visual conditioning enhances visual acuity and discrimination of the trained stimulus. To determine if this also induces long-term plastic changes on cortical maps and connectivity in the visual cortex and higher associative areas, mesoscopic calcium imaging was performed in head-fixed awake GCaMP6s adult mice before and after conditioning. The conditioned stimulus (0.03 cpd, 30°, 100% contrast, 1 Hz-drifting gratings) was presented 10 min daily for a week. Saline or Donepezil (DPZ, 0.3 mg/kg, s.c.), a cholinesterase inhibitor that potentiates cholinergic transmission, were injected prior to each conditioning session and compared to a sham-conditioned group. Cortical maps of resting state and evoked response to the monocular presentation of conditioned or non-conditioned stimulus (30°, 50 and 75% contrast; 90°, 50, 75, and 100% contrast) were established. Amplitude, duration, and latency of the peak response, as well as size of activation were measured in the primary visual cortex (V1), secondary visual areas (AL, A, AM, PM, LM, RL), retrosplenial cortex (RSC), and higher cortical areas. Visual stimulation increased calcium signaling in all primary and secondary visual areas, the RSC, but no other cortices. There were no significant effects of sham-conditioning or conditioning alone, but DPZ treatment during conditioning significantly decreased the integrated neuronal activity of superficial layers evoked by the conditioned stimulus in V1, AL, PM, and LM. The activity of downstream cortical areas was not changed. The size of the activated area was decreased in V1 and PM, and the signal-to-noise ratio was decreased in AL and PM. Interestingly, signal correlation was seen only between V1, the ventral visual pathway, and the RSC, and was decreased by DPZ administration. The resting state activity was slightly correlated and rarely affected by treatments, except between binocular and monocular V1 in both hemispheres. In conclusion, cholinergic potentiation of visual conditioning induced change in visual processing in the superficial cortical layers. This effect might be a key mechanism in the establishment of the fine cortical tuning in response to the conditioned visual stimulus.


Assuntos
Mapeamento Encefálico/métodos , Colinérgicos/metabolismo , Plasticidade Neuronal/fisiologia , Estimulação Luminosa/métodos , Córtex Visual/metabolismo , Vias Visuais/metabolismo , Animais , Cálcio/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Imagem Molecular/métodos , Córtex Visual/química , Vias Visuais/química
11.
Folia Histochem Cytobiol ; 58(2): 61-72, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32490536

RESUMO

INTRODUCTION: In order to enhance our understanding of bat vision, we investigated tyrosine hydroxylase (TH)-immunoreactive (IR) fibers in the visual cortex of the microbat. MATERIAL AND METHODS: The study was conducted on 12 freshly-caught adult bats (Rhinolophus ferrumequinum, both sexes, weighing 15-20 g). We used standard immunocytochemistry and confocal microscopy. RESULTS: TH-IR fibers were distributed throughout all layers of the visual cortex, with the highest density in layer I. Two types of TH-IR fibers were observed: small and large varicose fibers. TH-IR cells were not found in the microbat visual cortex. The microbat substantia nigra and ventral tegmental areas, previously identified sources of TH-IR fibers in the mammalian visual cortex, all contained strongly labeled TH-IR cells. The average diameters of TH-IR cells in the substantia nigra and the ventral tegmental areas were 14.39 ± 0.13 µm (mean ± SEM) and 11.85 ± 0.13 µm, respectively. CONCLUSIONS: Our results suggest that the microbat has a well-constructed neurochemical organization of THIR fibers. This observation should provide fundamental insights into a better understanding of the nocturnal, echolocating bat visual system.


Assuntos
Tirosina 3-Mono-Oxigenase/metabolismo , Córtex Visual/ultraestrutura , Animais , Quirópteros , Feminino , Masculino , Neurônios/metabolismo , Córtex Visual/química
12.
J Comp Neurol ; 528(4): 650-663, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31606892

RESUMO

In albino rats, it has been reported that lateral striate cortex (V1) is highly binocular, and that input from the ipsilateral eye to this region comes through the callosum. In contrast, in Long Evans rats, this region is nearly exclusively dominated by the contralateral eye even though it is richly innervated by the callosum (Laing, Turecek, Takahata, & Olavarria, 2015). We hypothesized that the inability of callosal connections to relay ipsilateral eye input to lateral V1 in Long Evans rats is a consequence of the existence of ocular dominance columns (ODCs), and of callosal patches in register with ipsilateral ODCs in the binocular region of V1 (Laing et al., 2015). We therefore predicted that in albino rats input from both eyes intermix in the binocular region, without segregating into ODCs, and that callosal connections are not patchy. Confirming our predictions, we found that inputs from both eyes, studied with the transneuronal tracer WGA-HRP, are intermixed in the binocular zone of albinos, without segregating into ODCs. Similarly, we found that callosal connections in albino rats are not patchy but instead are distributed homogeneously throughout the callosal region in V1. We propose that these changes allow the transcallosal passage of ipsilateral eye input to lateral striate cortex, increasing its binocularity. Thus, the binocular region in V1 of albino rats includes lateral striate cortex, being therefore about 25% larger in area than the binocular region in Long Evans rats. Our findings provide insight on the role of callosal connections in generating binocular cells.


Assuntos
Corpo Caloso/fisiologia , Dominância Ocular/fisiologia , Visão Binocular/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Animais , Corpo Caloso/anatomia & histologia , Corpo Caloso/química , Estimulação Luminosa/métodos , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Córtex Visual/anatomia & histologia , Córtex Visual/química , Vias Visuais/anatomia & histologia , Vias Visuais/química , Percepção Visual/fisiologia
13.
J Comp Neurol ; 528(3): 389-406, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31423581

RESUMO

Area prostriata (Pro) has been found to play important roles in the rapid processing of moving stimuli in the far peripheral visual field. However, the specific neural substrates responsible for these functions remain unknown. In this study, we first examined the location, extent, and topography of the rodent equivalent of the primate Pro based on cytoarchitecture and molecular markers. We then identified its intimate connections with the primary visual cortex (V1) using retrograde and anterograde tracers. Our main finding is that medial V1, which receives peripheral visual information, has strong reciprocal connections with the Pro in both rat and mouse while lateral V1 has significantly fewer such connections. The direct V1 inputs to the Pro provide at least one of the shortest pathways for visual information to reach the Pro, and may be crucial to the fast processing of unexpected stimuli in the peripheral visual field.


Assuntos
Rede Nervosa/química , Rede Nervosa/fisiologia , Córtex Visual/química , Córtex Visual/fisiologia , Vias Visuais/química , Vias Visuais/fisiologia , Animais , Hibridização In Situ/métodos , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Campos Visuais/fisiologia
14.
J Comp Neurol ; 528(1): 95-107, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31265129

RESUMO

Higher-order visual thalamus communicates broadly and bi-directionally with primary and extrastriate cortical areas in various mammals. In primates, the pulvinar is a topographically and functionally organized thalamic nucleus that is largely dedicated to visual processing. Still, a more granular connectivity map is needed to understand the role of thalamocortical loops in visually guided behavior. Similarly, the secondary visual thalamic nucleus in mice (the lateral posterior nucleus, LP) has extensive connections with cortex. To resolve the precise connectivity of these circuits, we first mapped mouse visual cortical areas using intrinsic signal optical imaging and then injected fluorescently tagged retrograde tracers (cholera toxin subunit B) into retinotopically-matched locations in various combinations of seven different visual areas. We find that LP neurons representing matched regions in visual space but projecting to different extrastriate areas are found in different topographically organized zones, with few double-labeled cells (~4-6%). In addition, V1 and extrastriate visual areas received input from the ventrolateral part of the laterodorsal nucleus of the thalamus (LDVL). These observations indicate that the thalamus provides topographically organized circuits to each mouse visual area and raise new questions about the contributions from LP and LDVL to cortical activity.


Assuntos
Mapeamento Encefálico/métodos , Núcleos Laterais do Tálamo/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Animais , Feminino , Núcleos Laterais do Tálamo/química , Masculino , Camundongos Endogâmicos C57BL , Córtex Visual/química , Vias Visuais/química
15.
J Neural Eng ; 17(1): 016062, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31822640

RESUMO

OBJECTIVE: Multimodal neuroimaging approaches are beneficial to discover brain functionalities at high spatial and temporal resolution. In our work, a novel material composition of a microECoG device relying on Parylene HT and indium-tin-oxide (ITO) is presented, which facilitates two-photon imaging of Ca2+ signals and concurrent recording of cortical EEG. APPROACH: Long-term stability of the interfaces of the transparent microdevice is confirmed in vitro by electrochemical and mechanical tests. The outstanding optical properties, like high transmittance and low auto-fluorescent are proven by fluorimetric measurements. Spatial resolution of fluorescent two-photon imaging through the microECoG device is presented in transgenic hippocampal slices, while concurrent recording of Ca2+ signals and cortical EEG is demonstrated in vivo. Photoartefacts and photodegradation of the materials are also investigated in detail to provide safety guidelines for further use in two-photon in vivo imaging schemes. MAIN RESULTS: Two-photon imaging of Ca signals can be safely performed through the proposed transparent ECoG device, without significant distortion in the dimensions of detected neuronal structures or in the temporal signaling. In chronic use, we demonstrated that fluorescent Ca signals of individual neurons can be clearly recorded even after 51 d. SIGNIFICANCE: Our results give a firm indication that highly transparent microECoG electrode arrays made of Parylene HT/ITO/Parylene HT multilayer are excellent candidates for synergetic recording of optical signals and EEG from intact brains with high resolution and are free of electrical and optical artefacts.


Assuntos
Cálcio/metabolismo , Eletrocorticografia/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Microtecnologia/métodos , Córtex Visual/fisiologia , Animais , Mapeamento Encefálico/métodos , Cálcio/química , Eletrodos Implantados , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Microeletrodos , Técnicas de Cultura de Órgãos , Córtex Visual/química
16.
J Comp Neurol ; 528(8): 1349-1366, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31792992

RESUMO

Several experimental manipulations, including visual deprivation, are able to induce critical period-like plasticity in the visual cortex of adult animals. In this regard, many studies have analyzed the effects of dark exposure in adult animals, but still little is known about the role of interneurons and plasticity-related molecules on such mechanisms. In this study, we analyzed the effects of 10 days of dark exposure on the connectivity and structure of interneurons, both in the primary visual cortex and in the rest of cerebral regions implicated in the transmission of visual stimulus. We found that this environmental manipulation induces changes in the expression of synaptic molecules throughout the visual pathway and in the structure of interneurons in the primary visual cortex. Moreover, we found altered expression in the polysialylated form of the neural cell adhesion molecule and in perineuronal nets surrounding parvalbumin expressing interneurons, suggesting that these plasticity-related molecules may be involved in the changes produced by dark exposure. Together, our findings indicate that dark exposure produces an important alteration of inhibitory circuits and molecules related to their plasticity, not only in the visual cortex but throughout the visual pathway.


Assuntos
Escuridão/efeitos adversos , Interneurônios/metabolismo , Rede Nervosa/metabolismo , Plasticidade Neuronal/fisiologia , Privação Sensorial/fisiologia , Córtex Visual/metabolismo , Fatores Etários , Animais , Interneurônios/química , Masculino , Camundongos , Camundongos Transgênicos , Rede Nervosa/química , Rede Nervosa/crescimento & desenvolvimento , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Ácidos Siálicos/metabolismo , Córtex Visual/química , Córtex Visual/crescimento & desenvolvimento
17.
Neural Plast ; 2019: 6804575, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31772567

RESUMO

The perineuronal net (PNN) is a mesh-like proteoglycan structure on the neuronal surface which is involved in regulating plasticity. The PNN regulates plasticity via multiple pathways, one of which is direct regulation of synapses through the control of AMPA receptor mobility. Since neuronal pentraxin 2 (Nptx2) is a known regulator of AMPA receptor mobility and Nptx2 can be removed from the neuronal surface by PNN removal, we investigated whether Nptx2 has a function in the PNN. We found that Nptx2 binds to the glycosaminoglycans hyaluronan and chondroitin sulphate E in the PNN. Furthermore, in primary cortical neuron cultures, the addition of NPTX2 to the culture medium enhances PNN formation during PNN development. These findings suggest Nptx2 as a novel PNN binding protein with a role in the mechanism of PNN formation.


Assuntos
Proteína C-Reativa/metabolismo , Rede Nervosa/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células Satélites Perineuronais/metabolismo , Córtex Visual/metabolismo , Animais , Células Cultivadas , Feminino , Rede Nervosa/química , Rede Nervosa/citologia , Plasticidade Neuronal/fisiologia , Neurônios/química , Neurônios/metabolismo , Ligação Proteica/fisiologia , Ratos , Ratos Sprague-Dawley , Células Satélites Perineuronais/química , Córtex Visual/química , Córtex Visual/citologia
18.
Nat Commun ; 10(1): 4915, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664052

RESUMO

Cortical populations produce complex spatiotemporal activity spontaneously without sensory inputs. However, the fundamental computational roles of such spontaneous activity remain unclear. Here, we propose a new neural computation mechanism for understanding how spontaneous activity is actively involved in cortical processing: Computing by Modulating Spontaneous Activity (CMSA). Using biophysically plausible circuit models, we demonstrate that spontaneous activity patterns with dynamical properties, as found in empirical observations, are modulated or redistributed by external stimuli to give rise to neural responses. We find that this CMSA mechanism of generating neural responses provides profound computational advantages, such as actively speeding up cortical processing. We further reveal that the CMSA mechanism provides a unifying explanation for many experimental findings at both the single-neuron and circuit levels, and that CMSA in response to natural stimuli such as face images is the underlying neurophysiological mechanism of perceptual "bubbles" as found in psychophysical studies.


Assuntos
Modelos Neurológicos , Neurônios/química , Animais , Humanos , Camundongos , Plasticidade Neuronal , Neurônios/citologia , Córtex Visual/química , Córtex Visual/citologia , Córtex Visual/fisiologia , Percepção Visual
19.
J Neurosci ; 39(47): 9360-9368, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31570535

RESUMO

Visual responses are extensively shaped by internal factors. This effect is drastic in the primary visual cortex (V1), where locomotion profoundly increases visually-evoked responses. Here we investigate whether a similar effect exists in another major visual structure, the superior colliculus (SC). By performing two-photon calcium imaging of head-fixed male and female mice running on a treadmill, we find that only a minority of neurons in the most superficial lamina of the SC display significant changes during locomotion. This modulation includes both increase and decrease in response amplitude and is similar between excitatory and inhibitory neurons. The overall change in the SC is small, whereas V1 responses almost double during locomotion. Additionally, SC neurons display lower response variability and less spontaneous activity than V1 neurons. Together, these experiments indicate that locomotion-dependent modulation is not a widespread phenomenon in the early visual system and that the SC and V1 use different strategies to encode visual information.SIGNIFICANCE STATEMENT Visual information captured by the retina is processed in parallel through two major pathways, one reaching the primary visual cortex through the thalamus, and the other projecting to the superior colliculus. The two pathways then merge in the higher areas of the visual cortex. Recent studies have shown that behavioral state such as locomotion is an essential component of vision and can strongly affect visual responses in the thalamocortical pathway. Here we demonstrate that neurons in the mouse superior colliculus and primary visual cortex display striking differences in their modulation by locomotion, as well as in response variability and spontaneous activity. Our results reveal an important "division of labor" in visual processing between these two evolutionarily distinct structures.


Assuntos
Locomoção/fisiologia , Estimulação Luminosa/métodos , Colículos Superiores/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Colículos Superiores/química , Córtex Visual/química , Vias Visuais/química
20.
J Neurosci ; 39(40): 7968-7975, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31358655

RESUMO

We investigated the relationship between neurochemical and hemodynamic responses as a function of image contrast in the human primary visual cortex (V1). Simultaneously acquired BOLD-fMRI and single voxel proton MR spectroscopy signals were measured in V1 of 24 healthy human participants of either sex at 7 tesla field strength, in response to presentations (64 s blocks) of different levels of image contrast (3%, 12.5%, 50%, 100%). Our results suggest that complementary measures of neurotransmission and energy metabolism are in partial agreement: BOLD and glutamate signals were linear with image contrast; however, a significant increase in glutamate concentration was evident only at the highest intensity level. In contrast, GABA signals were steady across all intensity levels. These results suggest that neurochemical concentrations are maintained at lower ranges of contrast levels, which match the statistics of natural vision, and that high stimulus intensity may be critical to increase sensitivity to visually modulated glutamate signals in the early visual cortex using MR spectroscopy.SIGNIFICANCE STATEMENT Glutamate and GABA are the major excitatory and inhibitory neurotransmitters of the brain. To better understand the relationship between MRS-visible neurochemicals, the BOLD signal change, and stimulus intensity, we measured combined neurochemical and BOLD signals (combined fMRI-MRS) to different image contrasts in human V1 at 7 tesla. While a linear change to contrast was present for both signals, the increase in glutamate was significant only at the highest stimulus intensity. These results suggest that hemodynamic and neurochemical signals reflect common metabolic markers of neural activity, whereas the mismatch at lower contrast levels may indicate a sensitivity threshold for detecting neurochemical changes during visual processing. Our results highlight the challenge and importance of reconciling cellular and metabolic measures of neural activity in the human brain.


Assuntos
Oxigênio/sangue , Córtex Visual/química , Córtex Visual/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Ácido Glutâmico/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Desempenho Psicomotor , Visão Ocular/fisiologia , Percepção Visual , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...