Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
J Clin Invest ; 134(8)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386425

RESUMO

Loss of arterial smooth muscle cells (SMCs) and abnormal accumulation of the extracellular domain of the NOTCH3 receptor (Notch3ECD) are the 2 core features of CADASIL, a common cerebral small vessel disease caused by highly stereotyped dominant mutations in NOTCH3. Yet the relationship between NOTCH3 receptor activity, Notch3ECD accumulation, and arterial SMC loss has remained elusive, hampering the development of disease-modifying therapies. Using dedicated histopathological and multiscale imaging modalities, we could detect and quantify previously undetectable CADASIL-driven arterial SMC loss in the CNS of mice expressing the archetypal Arg169Cys mutation. We found that arterial pathology was more severe and Notch3ECD accumulation greater in transgenic mice overexpressing the mutation on a wild-type Notch3 background (TgNotch3R169C) than in knockin Notch3R170C/R170C mice expressing this mutation without a wild-type Notch3 copy. Notably, expression of Notch3-regulated genes was essentially unchanged in TgNotch3R169C arteries. We further showed that wild-type Notch3ECD coaggregated with mutant Notch3ECD and that elimination of 1 copy of wild-type Notch3 in TgNotch3R169C was sufficient to attenuate Notch3ECD accumulation and arterial pathology. These findings suggest that Notch3ECD accumulation, involving mutant and wild-type NOTCH3, is a major driver of arterial SMC loss in CADASIL, paving the way for NOTCH3-lowering therapeutic strategies.


Assuntos
CADASIL , Camundongos , Animais , Receptor Notch3/genética , CADASIL/genética , CADASIL/metabolismo , CADASIL/patologia , Agregados Proteicos , Receptores Notch/genética , Receptores Notch/metabolismo , Artérias/patologia , Camundongos Transgênicos , Mutação
2.
Neuroimage Clin ; 39: 103485, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37542975

RESUMO

Iron dysregulation may attenuate cognitive performance in patients with CADASIL. However, the underlying pathophysiological mechanisms remain incompletely understood. Whether white matter microstructural changes mediate these processes is largely unclear. In the present study, 30 cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) patients were confirmed via genetic analysis and 30 sex- and age-matched healthy controls underwent multimodal MRI examinations and neuropsychological assessments. Quantitative susceptibility mapping and peak width of skeletonized mean diffusivity (PSMD) were analyzed. Mediation effect analysis was performed to explore the interrelationship between iron deposition, white matter microstructural changes and cognitive deficits in CADASIL. Cognitive deterioration was most affected in memory and executive function, followed by attention and working memory in CADASIL. Excessive iron in the temporal-precuneus pathway and deep gray matter specific to CADASIL were identified. Mediation analysis further revealed that PSMD mediated the relationship between iron concentration and cognitive profile in CADASIL. The present findings provide a new perspective on iron deposition in the corticosubcortical circuit and its contribution to disease-related selective cognitive decline, in which iron concentration may affect cognition by white matter microstructural changes in CADASIL.


Assuntos
CADASIL , Substância Branca , Humanos , CADASIL/diagnóstico por imagem , CADASIL/genética , CADASIL/metabolismo , Imageamento por Ressonância Magnética , Imagem de Difusão por Ressonância Magnética , Ferro/metabolismo
3.
Stroke ; 54(2): 549-557, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36621823

RESUMO

BACKGROUND: Recent studies have demonstrated increased microglial activation using 11C-PK11195 positron emission tomography imaging, indicating central nervous system inflammation, in cerebral small vessel disease. However, whether such areas of neuroinflammation progress to tissue damage is uncertain. We determined whether white matter destined to become white matter hyperintensities (WMH) at 1 year had evidence of altered inflammation at baseline. METHODS: Forty subjects with small vessel disease (20 sporadic and 20 cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy) and 20 controls were recruited to this case-control observational study from in- and out-patient clinics at Addenbrooke's Hospital, Cambridge, UK and imaged at baseline with both 11C-PK11195 positron emission tomography and magnetic resonance imaging; and magnetic resonance imaging including diffusion tensor imaging was repeated at 1 year. WMH were segmented at baseline and 1 year, and areas of new lesion identified. Baseline 11C-PK11195 binding potential and diffusion tensor imaging parameters in these voxels, and normal appearing white matter, was measured. RESULTS: Complete positron emission tomography-magnetic resonance imaging data was available for 17 controls, 16 sporadic small vessel disease, and 14 cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy participants. 11C-PK11195 binding in voxels destined to become new WMH was lower than in normal appearing white matter, which did not progress to WMH (-0.133[±0.081] versus -0.045 [±0.044]; P<0.001). Mean diffusivity was higher and mean fractional anisotropy lower in new WMH voxels than in normal appearing white matter (900 [±80]×10-6 versus 1045 [±149]×10-6 mm2/s and 0.37±0.05 versus 0.29±0.06, both P<0.001) consistent with new WMH showing tissue damage on diffusion tensor imaging a year prior to developing into new WMH; similar results were seen across the 3 groups. CONCLUSIONS: White matter tissue destined to develop into new WMH over the subsequent year is associated with both lower neuroinflammation, and white matter ultrastructural damage at baseline. Our results suggest that this tissue is already damaged 1 year prior to lesion formation. This may reflect that the role of neuroinflammation in the lesion development process occurs at an early stage, although more studies over a longer period would be needed to investigate this further.


Assuntos
CADASIL , Leucoencefalopatias , Substância Branca , Humanos , Imagem de Tensor de Difusão , CADASIL/metabolismo , Substância Branca/patologia , Doenças Neuroinflamatórias , Imageamento por Ressonância Magnética/métodos , Infarto Cerebral/patologia , Leucoencefalopatias/patologia , Tomografia por Emissão de Pósitrons , Inflamação/patologia , Encéfalo/patologia
4.
Brain Pathol ; 32(6): e13097, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35695802

RESUMO

We studied small vessel disease (SVD) pathology in Familial Alzheimer's disease (FAD) subjects carrying the presenilin 1 (PSEN1) p.Glu280Ala mutation in comparison to those with sporadic Alzheimer's disease (SAD) as a positive control for Alzheimer's pathology and Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) bearing different NOTCH3 mutations, as positive controls for SVD pathology. Upon magnetic resonance imaging (MRI) in life, some FAD showed mild white matter hyperintensities and no further radiologic evidence of SVD. In post-mortem studies, total SVD pathology in cortical areas and basal ganglia was similar in PSEN1 FAD and CADASIL subjects, except for the feature of arteriosclerosis which was higher in CADASIL subjects than in PSEN1 FAD subjects. Further only a few SAD subjects showed a similar degree of SVD pathology as observed in CADASIL. Furthermore, we found significantly enlarged perivascular spaces in vessels devoid of cerebral amyloid angiopathy in FAD compared with SAD and CADASIL subjects. As expected, there was greater fibrinogen-positive perivascular reactivity in CADASIL but similar reactivity in PSEN1 FAD and SAD groups. Fibrinogen immunoreactivity correlated with onset age in the PSEN1 FAD cases, suggesting increased vascular permeability may contribute to cognitive decline. Additionally, we found reduced perivascular expression of PDGFRß AQP4 in microvessels with enlarged PVS in PSEN1 FAD cases. We demonstrate that there is Aß-independent SVD pathology in PSEN1 FAD, that was marginally lower than that in CADASIL subjects although not evident by MRI. These observations suggest presence of covert SVD even in PSEN1, contributing to disease progression. As is the case in SAD, these consequences may be preventable by early recognition and actively controlling vascular disease risk, even in familial forms of dementia.


Assuntos
Doença de Alzheimer , CADASIL , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , CADASIL/metabolismo , Fibrinogênio
5.
Commun Biol ; 5(1): 331, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393494

RESUMO

Cerebral small vessel disease (SVD) is a prevalent disease of aging and a major contributor to stroke and dementia. The most commonly inherited SVD, CADASIL, is caused by dominantly acting cysteine-altering mutations in NOTCH3. These mutations change the number of cysteines from an even to an odd number, but the impact of these alterations on NOTCH3 protein structure remain unclear. Here, we prepared wildtype and four mutant recombinant NOTCH3 protein fragments to analyze the impact of CADASIL mutations on oligomerization, thiol status, and protein stability. Using gel electrophoresis, tandem MS/MS, and collision-induced unfolding, we find that NOTCH3 mutant proteins feature increased amounts of inappropriate disulfide bridges, reduced cysteines, and structural instability. Presence of a second protein factor, an N-terminal fragment of NOTCH3 (NTF), is capable of further altering disulfide statuses of both wildtype and mutant proteins, leading to increased numbers of reduced cysteines and further destabilization of NOTCH3 structure. In sum, these studies identify specific cysteine residues alterations and quaternary structure induced by CADASIL mutations in NOTCH3; further, we validate that reductive factors alter the structure and stability of this small vessel disease protein.


Assuntos
CADASIL , Demência Vascular , Receptor Notch3 , CADASIL/genética , CADASIL/metabolismo , Cisteína/genética , Dissulfetos , Humanos , Proteínas Mutantes , Receptor Notch3/genética , Receptores Notch/metabolismo , Espectrometria de Massas em Tandem
6.
Int J Mol Sci ; 23(7)2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35409031

RESUMO

Cysteine oxidation states of extracellular proteins participate in functional regulation and in disease pathophysiology. In the most common inherited dementia, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), mutations in NOTCH3 that alter extracellular cysteine number have implicated NOTCH3 cysteine states as potential triggers of cerebral vascular smooth muscle cytopathology. In this report, we describe a novel property of the second EGF-like domain of NOTCH3: its capacity to alter the cysteine redox state of the NOTCH3 ectodomain. Synthetic peptides corresponding to this sequence (NOTCH3 N-terminal fragment 2, NTF2) readily reduce NOTCH3 N-terminal ectodomain polypeptides in a dose- and time-dependent fashion. Furthermore, NTF2 preferentially reduces regional domains of NOTCH3 with the highest intensity against EGF-like domains 12-15. This process requires cysteine residues of NTF2 and is also capable of targeting selected extracellular proteins that include TSP2 and CTSH. CADASIL mutations in NOTCH3 increase susceptibility to NTF2-facilitated reduction and to trans-reduction by NOTCH3 produced in cells. Moreover, NTF2 forms complexes with the NOTCH3 ectodomain, and cleaved NOTCH3 co-localizes with the NOTCH3 ectodomain in cerebral arteries of CADASIL patients. The potential for NTF2 to reduce vascular proteins and the enhanced preference for it to trans-reduce mutant NOTCH3 implicate a role for protein trans-reduction in cerebrovascular pathological states such as CADASIL.


Assuntos
CADASIL , Doenças de Pequenos Vasos Cerebrais , CADASIL/genética , CADASIL/metabolismo , Cisteína/genética , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/farmacologia , Humanos , Mutação , Receptor Notch3/genética , Receptor Notch3/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo
7.
Acta Neuropathol Commun ; 10(1): 6, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35074002

RESUMO

Cerebral amyloid angiopathy (CAA) is an age-related condition and a major cause of intracerebral hemorrhage and cognitive decline that shows close links with Alzheimer's disease (AD). CAA is characterized by the aggregation of amyloid-ß (Aß) peptides and formation of Aß deposits in the brain vasculature resulting in a disruption of the angioarchitecture. Capillaries are a critical site of Aß pathology in CAA type 1 and become dysfunctional during disease progression. Here, applying an advanced protocol for the isolation of parenchymal microvessels from post-mortem brain tissue combined with liquid chromatography tandem mass spectrometry (LC-MS/MS), we determined the proteomes of CAA type 1 cases (n = 12) including a patient with hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D), and of AD cases without microvascular amyloid pathology (n = 13) in comparison to neurologically healthy controls (n = 12). ELISA measurements revealed microvascular Aß1-40 levels to be exclusively enriched in CAA samples (mean: > 3000-fold compared to controls). The proteomic profile of CAA type 1 was characterized by massive enrichment of multiple predominantly secreted proteins and showed significant overlap with the recently reported brain microvascular proteome of patients with cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a hereditary cerebral small vessel disease (SVD) characterized by the aggregation of the Notch3 extracellular domain. We found this overlap to be largely attributable to the accumulation of high-temperature requirement protein A1 (HTRA1), a serine protease with an established role in the brain vasculature, and several of its substrates. Notably, this signature was not present in AD cases. We further show that HTRA1 co-localizes with Aß deposits in brain capillaries from CAA type 1 patients indicating a pathologic recruitment process. Together, these findings suggest a central role of HTRA1-dependent protein homeostasis in the CAA microvasculature and a molecular connection between multiple types of brain microvascular disease.


Assuntos
Encéfalo/metabolismo , CADASIL/metabolismo , Angiopatia Amiloide Cerebral/metabolismo , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Proteoma/metabolismo , Idoso , Idoso de 80 Anos ou mais , Encéfalo/patologia , CADASIL/patologia , Angiopatia Amiloide Cerebral/patologia , Cromatografia Líquida , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteômica , Espectrometria de Massas em Tandem
8.
J Alzheimers Dis ; 86(1): 67-81, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35001891

RESUMO

BACKGROUND: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) caused by NOTCH3 mutations is the most common monogenic hereditary pattern of cerebral small vessel disease. The aggregation of the mutant NOTCH3 may play a cytotoxic role in CADASIL. However, the main mechanism of this process remains unclear. OBJECTIVE: We aimed to investigate the possible pathogenesis of the mutant NOTCH3 in CADASIL. METHODS: The clinical information of two pedigrees were collected and analyzed. Furthermore, we constructed cell lines corresponding to this mutation in vitro. The degradation of the extracellular domain of NOTCH3 (NOTCH3ECD) was analyzed by Cycloheximide Pulse-Chase Experiment. Flow cytometry and cell counting kit-8 assay were performed to observe the effects of the NOTCH3 mutation on mitochondrial function and apoptosis. RESULTS: We confirmed a de novo heterozygous missense NOTCH3 mutation (c.1690G > A, p. A564T) in two pedigrees. In vitro, the NOTCH3ECD aggregation of A564T mutant may be related to their more difficult to degrade. The mitochondrial membrane potential was attenuated, and cell viability was significant decreased in NOTCH3ECD A564T group. Interestingly, BAX and cytochrome c were significantly increased, which are closely related to the mitochondrial-mediated pathway to apoptosis. CONCLUSION: In our study, the aggregation of NOTCH3ECD A564T mutation may be associated with more difficult degradation of the mutant, and the aggregation may produce toxic effects to induce apoptosis through the mitochondrial-mediated pathway. Therefore, we speculated that mitochondrial dysfunction may hopefully become a new breakthrough point to explain the pathogenesis of cysteine-sparing NOTCH3 mutations.


Assuntos
CADASIL , CADASIL/genética , CADASIL/metabolismo , Humanos , Mitocôndrias/metabolismo , Mutação/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Receptor Notch3/genética , Receptor Notch3/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Proteína X Associada a bcl-2/genética
9.
Neuropathol Appl Neurobiol ; 48(1): e12751, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34297860

RESUMO

AIMS: CADASIL, the most prevalent hereditary cerebral small vessel disease, is caused by cysteine-altering NOTCH3 variants (NOTCH3cys ) leading to vascular NOTCH3 protein aggregation. It has recently been shown that variants located in one of NOTCH3 protein epidermal growth-factor like repeat (EGFr) domains 1-6, are associated with a more severe phenotype than variants located in one of the EGFr domains 7-34. The underlying mechanism for this genotype-phenotype correlation is unknown. The aim of this study was to analyse whether NOTCH3cys variant position is associated with NOTCH3 protein aggregation load. METHODS: We quantified vascular NOTCH3 aggregation in skin biopsies (n = 25) and brain tissue (n = 7) of CADASIL patients with a NOTCH3cys EGFr 1-6 variant or a EGFr 7-34 variant, using NOTCH3 immunohistochemistry (NOTCH3 score) and ultrastructural analysis of granular osmiophilic material (GOM count). Disease severity was assessed by neuroimaging (lacune count and white matter hyperintensity volume) and disability (modified Rankin scale). RESULTS: Patients with NOTCH3cys EGFr 7-34 variants had lower NOTCH3 scores (P = 1.3·10-5 ) and lower GOM counts (P = 8.2·10-5 ) than patients with NOTCH3cys EGFr 1-6 variants in skin vessels. A similar trend was observed in brain vasculature. In the EGFr 7-34 group, NOTCH3 aggregation levels were associated with lacune count (P = 0.03) and white matter hyperintensity volume (P = 0.02), but not with disability. CONCLUSIONS: CADASIL patients with an EGFr 7-34 variant have significantly less vascular NOTCH3 aggregation than patients with an EGFr 1-6 variant. This may be one of the factors underlying the difference in disease severity between NOTCH3cys EGFr 7-34 and EGFr 1-6 variants.


Assuntos
CADASIL , Encéfalo/patologia , CADASIL/genética , CADASIL/metabolismo , CADASIL/patologia , Humanos , Imageamento por Ressonância Magnética , Mutação , Neuroimagem , Fenótipo , Receptor Notch3/genética , Receptor Notch3/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo
10.
Sci Rep ; 11(1): 17246, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446744

RESUMO

Cerebrovascular pathology at the biochemical level has been informed by the study of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a vascular disorder caused by NOTCH3 mutations. Previous work in CADASIL described N-terminal proteolysis of NOTCH3 generated by specific non-enzymatic cleavage of the first Asp-Pro sequence of the protein. Here, we investigated whether the second Asp-Pro peptide bond (residues 121-122) of NOTCH3 is cleaved in CADASIL. Monospecific antibodies were generated that recognize the neo-epitope predicted to be generated by cleavage after Asp121. These antibodies were used to localize cleavage events at Asp121 in post-mortem CADASIL and control brain tissue and to investigate factors that regulate cleavage at Asp121. We report that cleavage at Asp121 occurs at a high level in the arterial media of CADASIL cerebral arteries. Leptomeningeal arteries demonstrated substantially more cleavage product than penetrating arteries in the white matter, and control vessels harbored only a small amount of cleaved NOTCH3. Proteolysis at Asp121 occurred in purified preparations of NOTCH3 ectodomain, was increased by acidic pH and reductive conditions, and required native protein conformation for cleavage. Increasing the concentration of NOTCH3 EGF-like domain protein elevated the level of proteolysis. On the other hand, several polyanionic chemicals potently blocked cleavage at Asp121. These studies demonstrate that the NOTCH3 protein in CADASIL is cleaved in multiple locations at labile Asp-Pro peptide bonds. As such, chronic brain vascular disease, like other neurodegenerative conditions, features proteolysis of pathological proteins at multiple sites which may generate small pathological peptides.


Assuntos
CADASIL/metabolismo , Dipeptídeos/metabolismo , Receptor Notch3/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , CADASIL/genética , Dipeptídeos/genética , Células HEK293 , Humanos , Hidrólise , Proteólise , Receptor Notch3/química , Receptor Notch3/genética
11.
Fluids Barriers CNS ; 18(1): 29, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193191

RESUMO

BACKGROUND: White matter hyperintensities (WMHs) are one of the hallmarks of cerebral small vessel disease (CSVD), but the pathological mechanisms underlying WMHs remain unclear. Recent studies suggest that extracellular fluid (ECF) is increased in brain regions with WMHs. It has been hypothesized that ECF accumulation may have detrimental effects on white matter microstructure. To test this hypothesis, we used cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) as a unique CSVD model to investigate the relationships between ECF and fiber microstructural changes in WMHs. METHODS: Thirty-eight CADASIL patients underwent 3.0 T MRI with multi-model sequences. Parameters of free water (FW) and apparent fiber density (AFD) obtained from diffusion-weighted imaging (b = 0 and 1000 s/mm2) were respectively used to quantify the ECF and fiber density. WMHs were split into four subregions with four levels of FW using quartiles (FWq1 to FWq4) for each participant. We analyzed the relationships between FW and AFD in each subregion of WMHs. Additionally, we tested whether FW of WMHs were associated with other accompanied CSVD imaging markers including lacunes and microbleeds. RESULTS: We found an inverse correlation between FW and AFD in WMHs. Subregions of WMHs with high-level of FW (FWq3 and FWq4) were accompanied with decreased AFD and with changes in FW-corrected diffusion tensor imaging parameters. Furthermore, FW was also independently associated with lacunes and microbleeds. CONCLUSIONS: Our study demonstrated that increased ECF was associated with WM degeneration and the occurrence of lacunes and microbleeds, providing important new insights into the role of ECF in CADASIL pathology. Improving ECF drainage might become a therapeutic strategy in future.


Assuntos
CADASIL/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Líquido Extracelular/diagnóstico por imagem , Degeneração Neural/diagnóstico por imagem , Fibras Nervosas Mielinizadas , Substância Branca/diagnóstico por imagem , Adulto , CADASIL/metabolismo , Estudos Transversais , Líquido Extracelular/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Degeneração Neural/metabolismo , Fibras Nervosas Mielinizadas/metabolismo , Substância Branca/metabolismo
12.
Int J Mol Sci ; 22(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298974

RESUMO

CADASIL (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy) is a small vessel disease caused by mutations in NOTCH3 that lead to an odd number of cysteines in the epidermal growth factor (EGF)-like repeat domain, causing protein misfolding and aggregation. The main symptoms are migraines, psychiatric disorders, recurrent strokes, and dementia. Omic technologies allow the massive study of different molecules for understanding diseases in a non-biased manner or even for discovering targets and their possible treatments. We analyzed the progress in understanding CADASIL that has been made possible by omics sciences. For this purpose, we included studies that focused on CADASIL and used omics techniques, searching bibliographic resources, such as PubMed. We excluded studies with other phenotypes, such as migraine or leukodystrophies. A total of 18 articles were reviewed. Due to the high prevalence of NOTCH3 mutations considered pathogenic to date in genomic repositories, one can ask whether all of them produce CADASIL, different degrees of the disease, or whether they are just a risk factor for small vessel disease. Besides, proteomics and transcriptomics studies found that the molecules that are significantly altered in CADASIL are mainly related to cell adhesion, the cytoskeleton or extracellular matrix components, misfolding control, autophagia, angiogenesis, or the transforming growth factor ß (TGFß) signaling pathway. The omics studies performed on CADASIL have been useful for understanding the biological mechanisms and could be key factors for finding potential drug targets.


Assuntos
CADASIL/fisiopatologia , Genômica/métodos , Proteômica/métodos , Receptor Notch3/genética , CADASIL/epidemiologia , CADASIL/genética , CADASIL/metabolismo , Cisteína/química , Microbioma Gastrointestinal , Frequência do Gene , Ontologia Genética , Estudos de Associação Genética , Estudo de Associação Genômica Ampla , Humanos , Modelos Moleculares , Mutação , Proteínas do Tecido Nervoso/análise , Prevalência , Prognóstico , Agregação Patológica de Proteínas/etiologia , Conformação Proteica , Domínios Proteicos , Receptor Notch3/química , Receptor Notch3/fisiologia , Análise de Sequência de DNA , Transcriptoma
13.
Biochem Biophys Res Commun ; 557: 302-308, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33894418

RESUMO

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a genetic small vessel disease characterized by NOTCH3 mutation and abnormal aggregation of NOTCH3 mutant proteins around vessel walls. NOTCH3 is a transmembrane receptor that is degraded by JAGGED1 (JAG1) through a process called trans-endocytosis. There are two types of CADASIL-associated NOTCH3 mutations: signal-active (SA) and signal-deficient (SD) mutations. However, the conditions that lead to abnormal aggregation of NOTCH3 mutant proteins remain poorly understood. Performing a coculture assay, we found that the SA NOTCH3 mutants (C49Y, R90C, R141C, and C185R) were degraded and trans-endocytosed by JAG1 similar to wild-type (WT) NOTCH3, but the SD NOTCH3 mutant (C428S) was not degraded or endocytosed by JAG1, suggesting that other environmental factors may be necessary for the aggregation of SA NOTCH3 mutants. Lunatic fringe (LFNG) is a glycosyltransferase of NOTCH3, but whether LFNG affects the aggregation of NOTCH3 mutants remains unknown. Performing a sucrose gradient ultracentrifugation assay, we found that LFNG might decrease the aggregation propensity of WT NOTCH3 but increase that of C185R NOTCH3. In conclusion, the SD NOTCH3 mutant may be more likely to accumulate than the SA NOTCH3 mutants upon interaction with JAG1. Moreover, LFNG may play an important role in promoting the aggregation of SA NOTCH3 mutants.


Assuntos
CADASIL/genética , CADASIL/metabolismo , Glicosiltransferases/metabolismo , Receptor Notch3/genética , Receptor Notch3/metabolismo , Técnicas de Cocultura , Endocitose/genética , Glicosiltransferases/genética , Células HEK293 , Células HeLa , Humanos , Imuno-Histoquímica , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Mutação
14.
Am J Pathol ; 191(11): 1856-1870, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33895122

RESUMO

Mutations in the NOTCH3 gene can lead to small-vessel disease in humans, including the well-characterized cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a condition caused by NOTCH3 mutations altering the number of cysteine residues in the extracellular domain of Notch3. Growing evidence indicates that other types of mutations in NOTCH3, including cysteine-sparing missense mutations or frameshift and premature stop codons, can lead to small-vessel disease phenotypes of variable severity or penetrance. There are currently no disease-modifying therapies for small-vessel disease, including those associated with NOTCH3 mutations. A deeper understanding of underlying molecular mechanisms and clearly defined targets are needed to promote the development of therapies. This review discusses two key pathophysiological mechanisms believed to contribute to the emergence and progression of small-vessel disease associated with NOTCH3 mutations: abnormal Notch3 aggregation and aberrant Notch3 signaling. This review offers a summary of the literature supporting and challenging the relevance of these mechanisms, together with an overview of available preclinical experiments derived from these mechanisms. It highlights knowledge gaps and future research directions. In view of recent evidence demonstrating the relatively high frequency of NOTCH3 mutations in the population, and their potential role in promoting small-vessel disease, progress in the development of therapies for NOTCH3-associated small-vessel disease is urgently needed.


Assuntos
Doenças de Pequenos Vasos Cerebrais/metabolismo , Doenças de Pequenos Vasos Cerebrais/patologia , Agregação Patológica de Proteínas/patologia , Receptor Notch3/metabolismo , Animais , CADASIL/genética , CADASIL/metabolismo , CADASIL/patologia , Doenças de Pequenos Vasos Cerebrais/genética , Humanos , Mutação , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Receptor Notch3/genética , Transdução de Sinais/fisiologia
15.
Sci Rep ; 11(1): 6846, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767277

RESUMO

CADASIL is a small vessel disease caused by mutations in NOTCH3 that lead to an odd number of cysteines in the EGF-like repeat domain, causing protein misfolding and aggregation. The main symptoms are migraine, psychiatric disturbances, recurrent strokes and dementia, being executive function characteristically impaired. The molecular pathways altered by this receptor aggregation need to be studied further. A genome-wide transcriptome study (four cases paired with three healthy siblings) was carried out, in addition to a qRT-PCR for validation purposes (ten new cases and eight new controls). To study the expression profile by cell type of the significant mRNAs found, we performed an in situ hybridization (ISH) (nine cases and eight controls) and a research in the Single-nuclei Brain RNA-seq expression browser (SNBREB). Pathway analysis enrichment was carried out with Gene Ontology and Reactome. Neuropsychological tests were performed in five of the qRT-PCR cases. The two most significant differentially expressed mRNAs (BANP, p-value = 7.23 × 10-4 and PDCD6IP, p-value = 8.36 × 10-4) were selected for the validation study by qRT-PCR. Additionally, we selected two more mRNAs (CAMK2G, p-value = 4.52 × 10-3 and E2F4, p-value = 4.77 × 10-3) due to their association with ischemic neuronal death. E2F4 showed differential expression in the genome-wide transcriptome study and in the qRT-PCR (p = 1.23 × 10-3), and it was upregulated in CADASIL cases. Furthermore, higher E2F4 expression was associated with worse executive function (p = 2.04 × 10-2) and attention and information processing speed (IPS) (p = 8.73 × 10-2). In situ hibridization showed E2F4 expression in endothelial and vascular smooth vessel cells. In silico studies indicated that E2F4 is also expressed in brain endothelial cells. Among the most significant pathways analyzed, there was an enrichment of vascular development, cell adhesion and vesicular machinery terms and autophagy process. E2F4 is more highly expressed in the skin biopsy of CADASIL patients compared to controls, and its expression is present in endothelial cells and VSMCs. Further studies are needed to understand whether E2F4 could be useful as a biomarker, to monitor the disease or be used as a therapeutic target.


Assuntos
CADASIL/patologia , Disfunção Cognitiva/patologia , Fator de Transcrição E2F4/genética , Genoma Humano , Mutação , Pele/patologia , Transcriptoma , Adulto , Biópsia , CADASIL/genética , CADASIL/metabolismo , Estudos de Casos e Controles , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Pele/metabolismo
16.
Clin Sci (Lond) ; 135(6): 753-773, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33681964

RESUMO

Notch3 mutations cause Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL), which predisposes to stroke and dementia. CADASIL is characterised by vascular dysfunction and granular osmiophilic material (GOM) accumulation in cerebral small vessels. Systemic vessels may also be impacted by Notch3 mutations. However vascular characteristics and pathophysiological processes remain elusive. We investigated mechanisms underlying the peripheral vasculopathy mediated by CADASIL-causing Notch3 gain-of-function mutation. We studied: (i) small arteries and vascular smooth muscle cells (VSMCs) from TgNotch3R169C mice (CADASIL model), (ii) VSMCs from peripheral arteries from CADASIL patients, and (iii) post-mortem brains from CADASIL individuals. TgNotch3R169C vessels exhibited GOM deposits, increased vasoreactivity and impaired vasorelaxation. Hypercontractile responses were normalised by fasudil (Rho kinase inhibitor) and 4-phenylbutyrate (4-PBA; endoplasmic-reticulum (ER) stress inhibitor). Ca2+ transients and Ca2+ channel expression were increased in CADASIL VSMCs, with increased expression of Rho guanine nucleotide-exchange factors (GEFs) and ER stress proteins. Vasorelaxation mechanisms were impaired in CADASIL, evidenced by decreased endothelial nitric oxide synthase (eNOS) phosphorylation and reduced cyclic guanosine 3',5'-monophosphate (cGMP) levels, with associated increased soluble guanylate cyclase (sGC) oxidation, decreased sGC activity and reduced levels of the vasodilator hydrogen peroxide (H2O2). In VSMCs from CADASIL patients, sGC oxidation was increased and cGMP levels decreased, effects normalised by fasudil and 4-PBA. Cerebral vessels in CADASIL patients exhibited significant oxidative damage. In conclusion, peripheral vascular dysfunction in CADASIL is associated with altered Ca2+ homoeostasis, oxidative stress and blunted eNOS/sGC/cGMP signaling, processes involving Rho kinase and ER stress. We identify novel pathways underlying the peripheral arteriopathy induced by Notch3 gain-of-function mutation, phenomena that may also be important in cerebral vessels.


Assuntos
CADASIL/metabolismo , Músculo Liso Vascular/patologia , Receptor Notch3/genética , Doenças Vasculares/metabolismo , Animais , Artérias/patologia , Encéfalo/metabolismo , CADASIL/genética , CADASIL/patologia , GMP Cíclico/metabolismo , Grânulos Citoplasmáticos , Estresse do Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/fisiologia , Mutação com Ganho de Função , Humanos , Camundongos , Camundongos Transgênicos , Músculo Liso Vascular/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Transdução de Sinais , Guanilil Ciclase Solúvel , Doenças Vasculares/genética
17.
J Alzheimers Dis ; 81(1): 221-229, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33749657

RESUMO

BACKGROUND: Exosomes are nano-sized extracellular vesicles which are secreted by cells and usually found in body fluids. Previous research has shown that exosomal secretion and autophagy-lysosomal pathway synergistically participates in intracellular abnormal protein elimination. The main pathological manifestations of Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is abnormal accumulation of mutant NOTCH3, and CADASIL vascular smooth muscle cells have been found with autophagy-lysosomal dysfunction. However, whether plasma exosomes change in CADASIL patients is still unclear. OBJECTIVE: We are aimed to investigate the differences of plasma exosomes between CADASIL patients and healthy controls. METHODS: The subjects included 30 CADASIL patients and 30 healthy controls without NOTCH3 mutation. The severity of white matter lesions (WMLs) of CADASIL patients was quantified by Fazekas score. Transmission electron microscopy and nanoparticle tracking analysis were performed to characterize plasma exosomes. In addition, NOTCH3, Neurofilament light and Aß42 levels in plasma exosomes were quantified by enzyme-linked immunosorbent assays. RESULTS: We found that exosomes from CADASIL patients were lower in quantity. In addition, CADASIL plasma exosomes had significantly lower levels of NOTCH3 and significantly increased levels of NFL than those of matched healthy subjects. Interestingly, plasma exosome NOTCH3 levels of CADASIL patients significantly correlated with severity of WMLs. CONCLUSION: The exosome NOTCH3 may be related to the pathological changes of CADASIL, which provides a basis for the pathogenesis research of CADASIL. In addition, plasma exosome NOTCH3 and NFL levels may act as biomarkers to monitor and predict disease progression and measure therapeutic effectiveness in the future clinical trials.


Assuntos
CADASIL/genética , Exossomos/metabolismo , Receptor Notch3/genética , Idoso , CADASIL/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Receptor Notch3/metabolismo
18.
Am J Pathol ; 191(11): 1871-1887, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33387456

RESUMO

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and cerebral amyloid angiopathy (CAA) are two distinct vascular angiopathies that share several similarities in clinical presentation and vascular pathology. Given the clinical and pathologic overlap, the molecular overlap between CADASIL and CAA was explored. CADASIL and CAA protein profiles from recently published proteomics-based and immuno-based studies were compared to investigate the potential for shared disease mechanisms. A comparison of affected proteins in each disease highlighted 19 proteins that are regulated in both CADASIL and CAA. Functional analysis of the shared proteins predicts significant interaction between them and suggests that most enriched proteins play roles in extracellular matrix structure and remodeling. Proposed models to explain the observed enrichment of extracellular matrix proteins include both increased protein secretion and decreased protein turnover by sequestration of chaperones and proteases or formation of stable protein complexes. Single-cell RNA sequencing of vascular cells in mice suggested that the vast majority of the genes accounting for the overlapped proteins between CADASIL and CAA are expressed by fibroblasts. Thus, our current understanding of the molecular profiles of CADASIL and CAA appears to support potential for common mechanisms underlying the two disorders.


Assuntos
CADASIL/metabolismo , CADASIL/patologia , Angiopatia Amiloide Cerebral/metabolismo , Angiopatia Amiloide Cerebral/patologia , Animais , Humanos
19.
Neurology ; 95(9): e1188-e1198, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32586899

RESUMO

OBJECTIVE: To assess the relationship among iron accumulation, blood-brain barrier (BBB) damage, and cognitive function in patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). METHODS: We enrolled 21 patients with NOTCH3 mutations and 21 age-matched healthy controls in this cross-sectional study. All participants underwent global physical and cognitive assessments and brain MRI using voxel-based quantitative susceptibility mapping (QSM; iron deposition measure) and dynamic contrast-enhanced MRI (BBB permeability measure). We compared behavioral and imaging data between the groups and analyzed the correlations in each group. RESULTS: Among 21 NOTCH3 mutation carriers, 10 were symptomatic and 11 asymptomatic. Montreal Cognitive Assessment scores were significantly different among the groups (symptomatic < asymptomatic < control participants). Voxel-based QSM analysis revealed that the symptomatic group had higher QSM values than did the asymptomatic group in the putamen, caudate nucleus, temporal pole, and centrum semiovale. These QSM values were positively correlated with regional BBB permeabilities (putamen: r = 0.57, p = 0.006; caudate nucleus: r = 0.51, p = 0.019; temporal pole: r = 0.48, p = 0.030; centrum semiovale: r = 0.45, p = 0.044) and negatively correlated with Montreal Cognitive Assessment scores (caudate nucleus: r = -0.53, p = 0.012; temporal pole: r = -0.56, p = 0.008). CONCLUSIONS: This study showed that cerebral iron burden was associated with regional BBB permeability and cognitive dysfunction in patients with CADASIL, highlighting the potential of these imaging techniques as auxiliary biomarkers to monitor the course of small vessel disease.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , CADASIL/metabolismo , Cognição , Ferro/metabolismo , Adulto , Idoso , Doenças Assintomáticas , Encéfalo/diagnóstico por imagem , CADASIL/diagnóstico por imagem , CADASIL/genética , CADASIL/psicologia , Estudos de Casos e Controles , Núcleo Caudado/diagnóstico por imagem , Núcleo Caudado/metabolismo , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/metabolismo , Feminino , Globo Pálido/diagnóstico por imagem , Globo Pálido/metabolismo , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes de Estado Mental e Demência , Pessoa de Meia-Idade , Mutação , Testes Neuropsicológicos , Permeabilidade , Putamen/diagnóstico por imagem , Putamen/metabolismo , Receptor Notch3/genética , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/metabolismo
20.
Biochim Biophys Acta Mol Basis Dis ; 1866(8): 165797, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32302650

RESUMO

Sporadic Alzheimer's disease (SAD) is the most common form of dementia, and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most frequent hereditary ischemic small vessel disease of the brain. Relevant biomarkers or specific metabolic signatures could provide powerful tools to manage these diseases. Therefore, the main goal of this study was to compare the postmortem frontal cortex gray matter, white matter and cerebrospinal fluid (CSF) between a cognitively healthy group and CADASIL and SAD groups. We evaluated 352 individual lipids, belonging to 13 lipid classes/subclasses, using mass spectrometry, and the lipid profiles were subjected to multivariate analysis to discriminate between the dementia groups (CADASIL and SAD) and healthy controls. The main lipid molecular species showing greater discrimination by partial least squares-discriminant analysis (PLS-DA) and a higher significance multivariate correlation (sMC) index were as follows: phosphatidylserine (PS) PS(44:7) and lysophosphatidylethanolamine (LPE) LPE(18:2) in gray matter (GM); phosphatidylethanolamine (PE) PE(32:2) and phosphatidylcholine PC PC(44:6) in white matter (WM), and ether PE (ePE) ePE(38:2) and ether PC (ePC) ePC(34:3) in CSF. Common phospholipid molecular species were obtained in both dementias, such as PS(44:7) and lyso PC (LPC) LPC(22:5) in GM, PE(32:2) in WM and phosphatidic acid (PA) PA(38:5) and PC(42:7) in CFS. Our exploratory study suggests that phospholipids (PLs) involved in neurotransmission alteration, connectivity impairment and inflammation response in GM, WM and CSF are a transversal phenomenon affecting dementias such as CADASIL and SAD independent of the etiopathogenesis, thus providing a possible common prodromal phospholipidic biomarker of dementia.


Assuntos
Doença de Alzheimer/metabolismo , CADASIL/metabolismo , Lobo Frontal/metabolismo , Substância Cinzenta/metabolismo , Tecido Parenquimatoso/metabolismo , Fosfolipídeos/metabolismo , Substância Branca/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Autopsia , Biomarcadores/análise , CADASIL/diagnóstico , CADASIL/patologia , Estudos de Casos e Controles , Análise Discriminante , Feminino , Lobo Frontal/patologia , Substância Cinzenta/patologia , Humanos , Análise dos Mínimos Quadrados , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Tecido Parenquimatoso/patologia , Fosfolipídeos/química , Fosfolipídeos/classificação , Fosfolipídeos/isolamento & purificação , Substância Branca/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...