Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.596
Filtrar
1.
Food Res Int ; 186: 114333, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729693

RESUMO

Acrylamide is an amide formed in the Maillard reaction, with asparagine as the primary amino acid precursor. The intake of large amounts of acrylamide has induced genotoxic and carcinogenic effects in hormone-sensitive tissues of animals. The enzime asparaginase is one of the most effective methods for lowering the formation of acrylamide in foods such as potatoes. However, the reported sensory outcomes for coffee have been unsatisfactory so far. This study aimed to produce coffees with reduced levels of acrylamide by treating them with asparaginase while retaining their original sensory and bioactive profiles. Three raw samples of Coffea arabica, including two specialty coffees, and one of Coffea canephora were treated with 1000, 2000, and 3000 ASNU of the enzyme. Asparagine and bioactive compounds (chlorogenic acids-CGA, caffeine, and trigonelline) were quantified in raw and roasted beans by HPLC and LC-MS, while the determination of acrylamide and volatile organic compounds was performed in roasted beans by CG-MS. Soluble solids, titratable acidity, and pH were also determined. Professional cupping by Q-graders and consumer sensory tests were also conducted. Results were analyzed by ANOVA-Fisher, MFA, PCA and Cluster analyses, with significance levels set at p ≤ 0.05. Steam treatment alone decreased acrylamide content by 18.4%, on average, and 6.1% in medium roasted arabica and canefora coffees. Average reductions of 32.5-56.0% in acrylamide formation were observed in medium roasted arabica beans when 1000-3000 ASNU were applied. In the canefora sample, 59.4-60.7% reductions were observed. However, steam treatment primarily caused 17.1-26.7% reduction of total CGA and lactones in medium roasted arabica samples and 13.9-22.0% in canefora sample, while changes in trigonelline, caffeine, and other evaluated chemical parameters, including the volatile profiles were minimal. Increasing enzyme loads slightly elevated acidity. The only sensory changes observed by Q-graders and or consumers in treated samples were a modest increase in acidity when 3000 ASNU was used in the sample with lower acidity, loss of mild off-notes in control samples, and increased perception of sensory descriptors. The former was selected given the similarity in chemical outcomes among beans treated with 2000 and 3000 ASNU loads.


Assuntos
Acrilamida , Asparaginase , Asparagina , Coffea , Café , Paladar , Acrilamida/análise , Asparagina/análise , Coffea/química , Café/química , Humanos , Compostos Orgânicos Voláteis/análise , Culinária/métodos , Alcaloides/análise , Ácido Clorogênico/análise , Cafeína/análise , Masculino , Manipulação de Alimentos/métodos , Reação de Maillard , Temperatura Alta , Cromatografia Líquida de Alta Pressão , Sementes/química , Feminino
2.
An Acad Bras Cienc ; 96(2): e20230840, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747838

RESUMO

The extraction of valuable compounds from dried fruits and vegetables by microwave hydrodiffusion and gravity (MHG) requires previous hydration of the plant material. In this work, ultrasound was used to speed up the hydration of guarana powder before MHG extraction and increase caffeine recovery. The humidification step was speeded up with ultrasound taking only 15 min over 60 min without ultrasound. Water and 50% (v/v) ethanol were evaluated as green solvents for humidification, with a higher concentration of caffeine obtained for the hydroalcoholic solution. Ultrasound pretreatment allowed guarana extracts from MHG with two times more caffeine for both solvents evaluated. Therefore, ultrasound can be used in the hydration step before MHG extraction to reduce time and increase caffeine recovery from guarana powder.


Assuntos
Cafeína , Micro-Ondas , Paullinia , Extratos Vegetais , Pós , Cafeína/análise , Cafeína/isolamento & purificação , Paullinia/química , Extratos Vegetais/química , Gravitação , Ultrassom , Solventes
3.
J Sep Sci ; 47(9-10): e2400142, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726732

RESUMO

Catechins, renowned for their antioxidant properties and health benefits, are commonly present in beverages, particularly tea and wine. An efficient and cost-effective salting-out assisted liquid-liquid extraction (SALLE) method has been developed and validated for the simultaneous determination of six catechins and caffeine in tea and wine samples using high-performance liquid chromatography-ultraviolet (HPLC-UV). This method demonstrates outstanding performance: linearity (1-120 µg/mL, r2 > 0.999), accuracy (96.5%-103.4% recovery), and precision (≤14.7% relative standard deviation), meeting validation requirements set by the US Food and Drug Administration. The reduced sample size (0.1 g) minimizes matrix interferences and costs without compromising sensitivity. All analytes were detected in Camellia sinensis teas, with green tea displaying the highest total catechin content (47.5-100.1 mg/mL), followed by white and black teas. Analysis of wine samples reveals the presence of catechin in all red and white wines, and epigallocatechin gallate in all red wine samples, highlighting the impact of winemaking processes on catechin content. The SALLE-HPLC-UV approach represents a green alternative by eliminating organic waste, surpassing conventional dilution methods in specificity and sensitivity for catechin determination. AGREEprep assessment emphasizes the strengths of the SALLE procedure, including material reusability, throughput efficiency, minimal sample requirements, low energy consumption, and the absence of organic waste generation.


Assuntos
Cafeína , Catequina , Extração Líquido-Líquido , Chá , Vinho , Cromatografia Líquida de Alta Pressão/métodos , Vinho/análise , Cafeína/análise , Catequina/análise , Chá/química , Extração Líquido-Líquido/métodos , Espectrofotometria Ultravioleta , Raios Ultravioleta
4.
An Acad Bras Cienc ; 96(1): e20230067, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656055

RESUMO

Platinum nanoparticles supported by carbon nanotubes were obtained by a simple chemical route and used for preparation of electrochemical sensor towards caffeine determination. Carbon nanotubes were used before and after an acid treatment, yielding two different materials. Morphological and structural characterization of these materials showed platinum nanoparticles (size around 12 nm) distributed randomly along carbon nanotubes. Modified electrodes were directly prepared through a dispersion of these materials. Voltammetric studies in the presence of caffeine revealed an electrocatalytic effect of platinum oxides, electrochemically produced from the chemical oxidation of the platinum nanoparticles. This behavior was explored in the development a selective method for caffeine determination based on platinum oxide reduction at a lower potential value (+0.45 V vs. Ag/AgCl). Using the best set of experimental conditions, it was shown a linear relationship for the caffeine concentration ranging from 5.0 to 25 µmol L-1 with a sensitivity of 449 nA L µmol-1. Limits of detection and quantification of 0.54 and 1.80 µmol L-1 were calculated, respectively. Recovery values for real samples of caffeine pharmaceutical formulations between 98.6% and 101.0% (n = 3) were obtained using the proposed procedure. Statistical calculations showed good concordance (95% confidence level) between the added and recovery values.


Assuntos
Cafeína , Técnicas Eletroquímicas , Nanopartículas Metálicas , Nanotubos de Carbono , Platina , Nanotubos de Carbono/química , Cafeína/análise , Cafeína/química , Platina/química , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Eletrodos , Limite de Detecção , Reprodutibilidade dos Testes , Oxirredução
5.
Biofabrication ; 16(3)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38569494

RESUMO

The ever-stricter regulations on animal experiments in the field of cosmetic testing have prompted a surge in skin-related research with a special focus on recapitulation of thein vivoskin structurein vitro. In vitrohuman skin models are seen as an important tool for skin research, which in recent years attracted a lot of attention and effort, with researchers moving from the simplest 2-layered models (dermis with epidermis) to models that incorporate other vital skin structures such as hypodermis, vascular structures, and skin appendages. In this study, we designed a microfluidic device with a reverse flange-shaped anchor that allows culturing of anin vitroskin model in a conventional 6-well plate and assessing its barrier function without transferring the skin model to another device or using additional contraptions. Perfusion of the skin model through vascular-like channels improved the morphogenesis of the epidermis compared with skin models cultured under static conditions. This also allowed us to assess the percutaneous penetration of the tested caffeine permeation and vascular absorption, which is one of the key metrics for systemic drug exposure evaluation.


Assuntos
Epiderme , Pele , Animais , Pele/metabolismo , Epiderme/química , Epiderme/metabolismo , Absorção Cutânea , Cafeína/farmacologia , Cafeína/análise , Cafeína/metabolismo , Perfusão
6.
Anal Methods ; 16(17): 2678-2683, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38623781

RESUMO

Caffeine is present in a large number of beverages and is an additive used in dietary supplements. Therefore, the concern about its quality and safety for consumers has been increasing and hence requires faster and simpler analytical methods to determine the caffeine amount. The high-throughput analysis is an appropriate solution to pharmaceuticals, bioanalysis, forensic and food laboratory routines. In this sense, Venturi easy ambient sonic-spray ionization mass spectrometry (V-EASI-MS), a specific ambient ionization source, is suitable to enable direct analysis of sample solutions in real time and is appropriate to be coupled to liquid chromatography (LC). The development of an on-line solid phase extraction system coupled to V-EASI-MS optimizes the advantages of LC-MS hyphenation by enhancing the figures of merit of the analytical method according to AOAC guidelines and simultaneously minimizing the runtime analysis to 1.5 min per sample, as well as sample preparation steps and solvent consumption, which is currently a challenge for quantitative applications of ambient ionization MS.


Assuntos
Cafeína , Suplementos Nutricionais , Extração em Fase Sólida , Espectrometria de Massas por Ionização por Electrospray , Cafeína/análise , Extração em Fase Sólida/métodos , Suplementos Nutricionais/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Ensaios de Triagem em Larga Escala/métodos , Cromatografia Líquida/métodos
7.
Sensors (Basel) ; 24(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38544236

RESUMO

Caffeine is the most widely consumed stimulant and is the subject of significant ongoing research and discussions due to its impact on human health. The industry's need to comply with country-specific food and beverage regulations underscores the importance of monitoring caffeine levels in commercial products. In this study, we propose an alternative technique for caffeine analysis that relies on mid-infrared laser-based photothermal spectroscopy (PTS). PTS exploits the high-power output of the quantum cascade laser (QCL) sources to enhance the sensitivity of the mid-IR measurement. The laser-induced thermal gradient in the sample scales with the analytes' absorption coefficient and concentration, thus allowing for both qualitative and quantitative assessment. We evaluated the performance of our experimental PTS spectrometer, incorporating a tunable QCL and a Mach-Zehnder interferometer, for detecting caffeine in coffee, black tea, and an energy drink. We calibrated the setup with caffeine standards (0.1-2.5 mg mL-1) and we benchmarked the setup's capabilities against gas chromatography (GC) and Fourier-transform infrared (FTIR) spectroscopy. Quantitative results aligned with GC analysis, and limits of detection matched the research-grade FTIR spectrometer, indicating an excellent performance of our custom-made instrument. This method offers an alternative to established techniques, providing a platform for fast, sensitive, and non-destructive analysis without consumables as well as with high potential for miniaturization.


Assuntos
Bebidas , Cafeína , Humanos , Cafeína/análise , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Bebidas/análise , Lasers Semicondutores
8.
PLoS One ; 19(3): e0298331, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38530838

RESUMO

Electrochemical measurements, which exhibit high accuracy and sensitivity under low contamination, controlled electrolyte concentration, and pH conditions, have been used in determining various compounds. The electrochemical quantification capability decreases with an increase in the complexity of the measurement object. Therefore, solvent pretreatment and electrolyte addition are crucial in performing electrochemical measurements of specific compounds directly from beverages owing to the poor measurement quality caused by unspecified noise signals from foreign substances and unstable electrolyte concentrations. To prevent such signal disturbances from affecting quantitative analysis, spectral data of voltage-current values from electrochemical measurements must be used for principal component analysis (PCA). Moreover, this method enables highly accurate quantification even though numerical data alone are challenging to analyze. This study utilized boron-doped diamond (BDD) single-chip electrochemical detection to quantify caffeine content in commercial beverages without dilution. By applying PCA, we integrated electrochemical signals with known caffeine contents and subsequently utilized principal component regression to predict the caffeine content in unknown beverages. Consequently, we addressed existing research problems, such as the high quantification cost and the long measurement time required to obtain results after quantification. The average prediction accuracy was 93.8% compared to the actual content values. Electrochemical measurements are helpful in medical care and indirectly support our lives.


Assuntos
Cafeína , Café , Cafeína/análise , Boro/química , Eletrodos , Aprendizado de Máquina , Eletrólitos
9.
Huan Jing Ke Xue ; 45(3): 1468-1479, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471862

RESUMO

Pharmaceuticals and personal care products (PPCPs) are a group of emerging contaminants causing detrimental effects on aquatic living organisms even at low doses. To investigate the contamination characteristics and ecological risks of PPCPs in drains flowing into the Yellow River of Ningxia, 21 PPCPs were detected and analyzed using solid phase extraction and ultra-high performance liquid chromatography-mass spectrometry in this study. All 21 targeted compounds were detected in the drains, with total concentrations ranging from 47.52 to 1 700.96 ng·L-1. Ciprofloxacin, acetaminophen, benzophenone-3, and diethyltoluamide were the more commonly detected compounds, with detection frequencies exceeding 80%. The five highest-concentration PPCPs were acetaminophen, diethyltoluamide, caffeine, benzophenone-3, and levofloxacin, with the maximum concentrations of 597.21, 563.23, 559.00, 477.28, and 473.07 ng·L-1, respectively. Spatial analysis showed that the pollution levels of PPCPs in the drains of the four cities were different, with average concentrations of ∑PPCPs in the order of Yinchuan>Shizuishan>Wuzhong>Zhongwei. The total concentration of PPCPs before flowing into the Yellow River ranged from 124.82 to 1 046.61 ng·L-1. Source analysis showed that livestock and poultry breeding wastewater was the primary source for sulfadiazine and oxytetracycline, whereas medical wastewater was the primary source for levofloxacin and ciprofloxacin. The primary sources of triclocarban and triclosan were domestic sewage and industrial wastewater, whereas the primary source of caffeine and diethyltoluamide was domestic sewage. The pollution of diciofenac, cimetidine, triclocarban, and triclosan in the drains was positively correlated with the regional population and economic development level. The ecological risk assessment indicated that levofloxacin, diclofenac, gemfibrozil, benzophenone-3, and triclocarban posed high risks to aquatic organisms in drains flowing into the Yellow River. It is worthwhile to consider the mixture risk of the PPCPs that exhibited high risk at most sampling sites.


Assuntos
Benzofenonas , Carbanilidas , Cosméticos , Triclosan , Poluentes Químicos da Água , Acetaminofen , Organismos Aquáticos , Cafeína/análise , Ciprofloxacina , Cosméticos/análise , Monitoramento Ambiental/métodos , Levofloxacino/análise , Preparações Farmacêuticas , Medição de Risco , Rios/química , Esgotos/análise , Águas Residuárias , Poluentes Químicos da Água/análise
10.
Environ Sci Pollut Res Int ; 31(19): 28124-28138, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38530524

RESUMO

The present study aimed to investigate the occurrence of caffeine residues in the Nile River according to drainage of treated wastewater at Assiut, Egypt, and the effects of physicochemical parameters and zinc on its concentration. Four different sites were selected to perform the study: S, wastewater treatment plant (WWTP) canal (source site); J, a junction site between WWTP canal and the Nile; R, a reference site in the Nile before J site; and A, a site located after J site in the Nile. Water and sediment samples were collected in Summer 2022 and Winter 2023. Caffeine and Zn concentrations and physicochemical parameters were measured in the collected samples. The caffeine concentrations in water samples ranged from 5.73 to 53.85 µg L-1 at S in winter and summer, respectively, while those in sediment ranged from 0.14 mg kg-1 at R in winter to 1.54 mg kg-1 at S in summer. Caffeine and Zn concentrations were higher in summer samples. The Water Quality Index (WQI) of the collected samples recorded the lowest values in winter season at S and J sites. The study found that caffeine and zinc concentrations are positively correlated with water temperature and conductivity, while negatively correlated with pH. The association between caffeine and Zn highlights the environmental impact of heavy metals and pharmaceutical residues, and stresses the need for future research on these interactions.


Assuntos
Cafeína , Monitoramento Ambiental , Rios , Águas Residuárias , Poluentes Químicos da Água , Zinco , Cafeína/análise , Águas Residuárias/química , Zinco/análise , Rios/química , Poluentes Químicos da Água/análise , Egito , Eliminação de Resíduos Líquidos , Estações do Ano
11.
Chemosphere ; 352: 141444, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346513

RESUMO

This study assessed the occurrence of five antibiotics, three hormones, caffeine, and long and short-chain perfluoroalkyl and polyfluoroalkyl substances (PFASs) in surface water and feedstuff samples obtained from aquaculture cages in Três Marias reservoir in Brazil. This is the first work to evaluate the presence of PFAS in surface water used for aquaculture in Brazil. Solid-phase extraction and low temperature partitioning extraction followed by liquid chromatography coupled to mass spectrometry (LC-MS) were performed to process and analyze surface water samples and feedstuff, respectively. The ecotoxicological risk quotient was calculated for target compounds detected in water. Ciprofloxacin and caffeine were detected in all surface water samples. Pharmaceutical drugs ranged from 0.7 ng L-1 (trimethoprim) to 389.2 ng L -1 (ß-estradiol). Estrone (10.24 ng g-1) and ß-estradiol (66.20 ng g-1) were also found in feedstuff. Four PFASs (PFOA, PFDoA, PFTeDA, and PFBS) were detected (9.40-15.2 µg L-1) at levels higher than reported in studies conducted worldwide. Ecotoxicological risk assessment indicated high risks for caffeine and PFOA, PFDoA, and PFTeDA with RQ values from 10 to 103. These findings reveal risks to biodiversity, ecosystem integrity and human health considering possible intake of these contaminants by fish consumption due to potential bioaccumulation of these substances. Hence, it is critical to conduct more studies in this direction in Brazil and other low and middle-low-income countries.


Assuntos
Ácidos Alcanossulfônicos , Ciclídeos , Fluorocarbonos , Poluentes Químicos da Água , Humanos , Animais , Água/análise , Brasil , Monitoramento Ambiental , Antibacterianos/análise , Ácidos Alcanossulfônicos/análise , Cafeína/análise , Ecossistema , Estradiol/análise , Poluentes Químicos da Água/análise , Fluorocarbonos/análise
12.
Prev Med ; 180: 107889, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325607

RESUMO

The consumption of energy drinks poses significant risks to minors' health, and strict regulations are urgently needed to protect them. The high caffeine, high sugar, and high caloric content of energy drinks have drawn concern from health professionals. The consumption of energy drinks has been linked to unhealthy dietary behaviors, obesity, and mental health problems in adolescents. The psychoactive and stimulant effects of energy drinks are particularly worrisome, and the marketing of these drinks on social media platforms is also a cause for alarm. In light of these concerns, we strongly recommend policy measures, such as restrictions on the sale of energy drinks to minors, to prevent their health risks. The evidence clearly suggests that energy drinks pose significant risks to minors' health and well-being, and regulatory standards must be implemented without further delay.


Assuntos
Bebidas Energéticas , Adolescente , Humanos , Bebidas Energéticas/efeitos adversos , Cafeína/análise , Europa (Continente) , Marketing , Comércio
13.
J Hum Lact ; 40(2): 307-313, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38407091

RESUMO

BACKGROUND: Human milk banks have been established to provide human milk to preterm infants who are unable to obtain milk from their mothers. Donor screening methods vary, and prospective donors are commonly screened for drug and recreational substance use through behavioral screening. Although the risk of illegal drug consumption in Japan is extremely low, caffeine may be consumed unknowingly and can be found in human milk. To date, only a few reports have been conducted on the concentration of caffeine in donor milk. RESEARCH AIM: This study aimed to examine the pre-pasteurization levels of caffeine in human milk donated to a milk bank in Japan. METHODS: This was a cross-sectional, observational study of caffeine concentrations in human milk donated to a human milk bank in Japan. Caffeine concentration in the donor milk was measured using high-performance liquid chromatography. RESULTS: Caffeine was detected in 70% of the donor milk samples (N = 350). The median (range) of caffeine concentration was 0.46 [< 0.10, 7.54] mg/L, and 64.0% of the samples had less than 1 mg/L of caffeine. The caffeine concentration varied widely among as well as within individuals. CONCLUSION: The average caffeine concentration in Japanese donor milk samples was higher than that previously reported in samples from Spain, but the range was similar. Donors should be informed that caffeine intake should be within a moderate range, to further increase the safety of donor milk.


Assuntos
Bancos de Leite Humano , Leite Humano , Feminino , Lactente , Recém-Nascido , Humanos , Leite Humano/química , Cafeína/análise , Japão , Estudos Transversais , Recém-Nascido Prematuro , Aleitamento Materno
14.
Artigo em Inglês | MEDLINE | ID: mdl-38309045

RESUMO

A UV-HPLC method optimized by Box-Behnken design model was developed to determine caffeine in pharmaceutical preparations and urine samples. The chromatographic conditions followed were mobile phase: methanol/water/ citrate buffer (pH 4.6) (40:25:35, v/v/v),AcclaimTMDionex C18 column (ODS 100A˚, 5 µm; 4.6 × 250 mm),flow rate (0.9 mL min-1), column temperature (30 °C) and UV-detection wavelength (204 nm). The chromatographic variables: pH (A), % methanol fraction (B), flow rate(C) and column temperature (D) were optimized at 50 µg mL-1caffeine using BBD model. The chromatogram resulted in the asymmetry factor (1.23), theoretical plate 13,786 and retention time (5.79 min). The proposed HPLC method's greenness point was assessed byAnalytical Eco-scale and found to be 78 (as per guidelines, ranked as excellent). The linearity was ranged from2.0 to 70 µg mL-1 with coefficient of correlation (r = 0.999) and detection limit of 0.19 µg mL-1. The proposedmethod was developed successfully and applied for the assay of active caffeine in pharmaceutical preparations and urine samples. The % recovery obtained by both (proposed and reference) methods ranged from 99.98 to 100.05 % followed the compliance (100 ± 2 %) with Canadian Health Protection regulatory guidelines. The performance of the proposed method was compared with published papers and found to be acceptable and superior. The proposed method was quite effective as the reference method, and hence can be used as an alternative method for the assay of active caffeine in pharmaceutical preparations and urine samples.


Assuntos
Cafeína , Metanol , Cafeína/análise , Cromatografia Líquida de Alta Pressão/métodos , Canadá , Preparações Farmacêuticas
15.
PLoS One ; 19(2): e0296526, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38324553

RESUMO

The study introduces a methodology that utilizes data-driven approaches to optimize coffee drying operations. This is achieved through the integration of ambient sensor data and chemical analysis. This statement underscores the significance of temperature regulation, humidity levels, and light intensity within the context of coffee production. There exists a positive correlation between elevated temperatures and increased rates of drying, but humidity has a role in determining the duration of the drying process and the preservation of aromatic compounds. The significance of light intensity in dry processing is also crucial, since excessive exposure can compromise both the taste and quality of the product. The findings of chemical investigations demonstrate a correlation between environmental factors and the composition of coffee. Specifically, increased temperatures are associated with higher quantities of caffeine, while the concentration of chlorogenic acid is influenced by humidity levels. The research additionally underscores the variations in sensory characteristics among various processing techniques, underscoring the significance of procedure choice in attaining desirable taste profiles. The integration of weather monitoring, chemical analysis, and sensory assessments is a robust approach to augmenting quality control within the coffee sector, thereby facilitating the provision of great coffee products to discerning consumers.


Assuntos
Café , Compostos Orgânicos Voláteis , Café/química , Cafeína/análise , Dessecação/métodos , Cromatografia Gasosa , Compostos Orgânicos Voláteis/análise
17.
Food Res Int ; 176: 113791, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163705

RESUMO

Coffee is one of the most consumed beverages worldwide. Espírito Santo is the largest Brazilian producer of conilon coffee, and invested in the creation of new cultivars, such as "Conquista ES8152", launched in 2019. Therefore, the present study aimed to evaluate the effects of maturation and roasting on the chemical and sensorial composition of the new conilon coffee cultivar "Conquista ES8152". The coffee was harvested containing 3 different percentages of ripe fruits: 60%, 80%, and 100%, and roasted at 3 different degrees of roasting: light, medium, and dark, to evaluate the moisture and ash content, yield of soluble extract, volatile compound profile, chlorogenic acid and caffeine content, and sensory profile. "Conquista ES8152" coffee has a moisture content between 1.38 and 2.62%; ash between 4.34 and 4.72%; and yield between 30.7 and 35.8%. Sensory scores ranged between 75 and 80 and the majority of volatile compounds belong to the pyrazine, phenol, furan, and pyrrole groups. The content of total chlorogenic acids was drastically reduced by roasting, with values between 2.40 and 9.33%, with 3-caffeoylquinic acid being the majority. Caffeine was not influenced by either maturation or roasting, with values between 2.16 and 2.41%. The volatile compounds furfural, 5-methylfurfural, and 2-ethyl-5-methylpyrazine were positively correlated with the evaluated sensory attributes and 5-methylfurfural was the only one significantly correlated with all attributes. Ethylpyrazine, furfuryl acetate, 1-furfurylpyrrole, 4-ethyl-2-methoxyphenol, and difurfuryl ether were negatively correlated. The stripping did not affect the quality and composition of this new cultivar, however, the roasting caused changes in both the chemical and sensorial profiles, appropriately indicated by the principal component analysis.


Assuntos
Coffea , Café , Café/química , Coffea/química , Quimiometria , Cafeína/análise , Ácido Clorogênico/análise
18.
Food Res Int ; 176: 113814, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163718

RESUMO

FTIR spectroscopy and multivariate analysis were used in the chemical study of the terroirs of Coffea canephora. Conilon coffees from Espírito Santo and Amazon robusta from Matas of Rondônia, were separated by PCA, with lipids and caffeine being the markers responsible for the separation. Coffees from Bahia, Minas Gerais, and São Paulo did not exhibit separation, indicating that the botanical variety had a greater effect on the terroir than geographic origin. Thus, the genetic factor was investigated considering the conilon and robusta botanical varieties. This last group was composed of hybrid robusta and apoatã. The DD-SIMCA favored the identification of the genetic predominance of the samples. PLS-DA had a high classification performance regarding the conilon, hybrid robusta, and apoatã genetic nature. Lipids, caffeine, chlorogenic acids, quinic acid, trigonelline, proteins, amino acids, and carbohydrates were identified as chemical markers that discriminated the genetic groups.


Assuntos
Coffea , Coffea/genética , Coffea/química , Cafeína/análise , Brasil , Café/química , Lipídeos
19.
Anal Methods ; 16(8): 1158-1174, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38189175

RESUMO

The growing interest in health and well-being has spurred the evolution of functional foods, which provide enhanced health benefits beyond basic nutrition. Guaraná seeds (Paullinia cupana) have been widely studied and used as a functional food due to their richness in caffeine, phenolic compounds, amino acids, and other nutrients. This has established guaraná as a significant food supplement, with Brazil being the largest producer of the world. This study aims to propose a set of analytical methods to chemically evaluate fifty-six different guaraná clones, from the Guaraná Germplasm Active Bank, to accommodate the diverse requirements of the food industry. Metabolomic approaches were employed, in which a non-target metabolomic analysis via UPLC-QTOF-MSE led to the annotation of nineteen specialized metabolites. Furthermore, targeted metabolomics was also used, leading to the identification and quantification of metabolites by NMR. The extensive data generated were subjected to multivariate analysis, elucidating the similarities and differences between the evaluated guaraná seeds, particularly concerning the varying concentration levels of the metabolites. The metabolomics approach based on the combination of UPLC-QTOF-MSE, NMR and chemometric tools provided sensitivity, precision and accuracy to establish the chemical profiles of guaraná seeds. In conclusion, evaluating and determining the metabolic specificities of different guarana clones allow for their application in the development of products with different levels of specific metabolites, such as caffeine. This caters to various purposes within the food industry. Moreover, the recognized pharmacological properties of the annotated specialized metabolites affirm the use of guarana clones as an excellent nutritional source.


Assuntos
Cafeína , Paullinia , Cafeína/análise , Cafeína/metabolismo , Paullinia/química , Paullinia/metabolismo , Cromatografia Líquida de Alta Pressão , Extratos Vegetais/análise , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Sementes/química , Sementes/metabolismo
20.
Food Chem ; 441: 138341, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38176147

RESUMO

The key components dominating the quality of green tea and black tea are still unclear. Here, we respectively produced green and black teas in March and June, and investigated the correlations between sensory quality and chemical compositions of dry teas by multivariate statistics, bioinformatics and artificial intelligence algorithm. The key chemical indices were screened out to establish tea sensory quality-prediction models based on the result of OPLS-DA and random forest, namely 4 flavonol glycosides of green tea and 8 indices of black tea (4 pigments, epigallocatechin, kaempferol-3-O-rhamnosyl-glucoside, ratios of caffeine/total catechins and epi/non-epi catechins). Compared with OPLS-DA and random forest, the support vector machine model had good sensory quality-prediction performance for both green tea and black tea (F1-score > 0.92), even based on the indices of fresh tea leaves. Our study explores the potential of artificial intelligence algorithm in classification and prediction of tea products with different sensory quality.


Assuntos
Camellia sinensis , Catequina , Chá/química , Inteligência Artificial , Cafeína/análise , Camellia sinensis/química , Catequina/análise , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...