Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Histochem Cytochem ; 67(12): 863-871, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31638440

RESUMO

Optic development involves sequential interactions between several different tissue types, including the overlying ectoderm, adjacent mesoderm, and neural crest mesenchyme and the neuroectoderm. In an ongoing expression screen, we identified that Tfap2ß, Casq2, Penk, Zic1, and Zic3 are expressed in unique cell types in and around the developing eye. Tfap2ß, Zic1, and Zic3 are transcription factors, Casq2 is a calcium binding protein and Penk is a neurotransmitter. Tfap2ß, Zic1, and Zic3 have reported roles in brain and craniofacial development, while Casq2 and Penk have unknown roles. These five genes are expressed in the major tissue types in the eye, including the muscles, nerves, cornea, and sclera. Penk expression is found in the sclera and perichondrium. At E12.5 and E15.5, the extra-ocular muscles express Casq2, the entire neural retina expresses Zic1, and Zic3 is expressed in the optic disk and lip of the optic cup. The expression of Tfap2ß expanded from corneal epithelium to the neural retina between E12.5 to E15.5. These genes are expressed in similar domains as Hedgehog (Gli1, and Ptch1) and the Wnt (Lef1) pathways. The expression patterns of these five genes warrant further study to determine their role in eye morphogenesis.


Assuntos
Calsequestrina/genética , Encefalinas/genética , Olho/embriologia , Proteínas de Homeodomínio/genética , Camundongos/embriologia , Precursores de Proteínas/genética , Fator de Transcrição AP-2/genética , Fatores de Transcrição/genética , Animais , Olho/ultraestrutura , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Camundongos/genética , Camundongos Endogâmicos C57BL , Retina/embriologia , Retina/ultraestrutura , Esclera/embriologia , Esclera/ultraestrutura
2.
PLoS One ; 12(9): e0184724, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28886186

RESUMO

Calsequestrin-2 (CASQ2) is the main Ca2+-binding protein inside the sarcoplasmic reticulum of cardiomyocytes. Previously, we demonstrated that MEF-2 and SRF binding sites within the human CASQ2 gene (hCASQ2) promoter region are functional in neonatal cardiomyocytes. In this work, we investigated if the calcineurin/NFAT pathway regulates hCASQ2 expression in neonatal cardiomyocytes. The inhibition of NFAT dephosphorylation with CsA or INCA-6, reduced both the luciferase activity of hCASQ2 promoter constructs (-3102/+176 bp and -288/+176 bp) and the CASQ2 mRNA levels in neonatal rat cardiomyocytes. Additionally, NFATc1 and NFATc3 over-expressing neonatal cardiomyocytes showed a 2-3-fold increase in luciferase activity of both hCASQ2 promoter constructs, which was prevented by CsA treatment. Site-directed mutagenesis of the -133 bp MEF-2 binding site prevented trans-activation of hCASQ2 promoter constructs induced by NFAT overexpression. Chromatin Immunoprecipitation (ChIP) assays revealed NFAT and MEF-2 enrichment within the -288 bp to +76 bp of the hCASQ2 gene promoter. Besides, a direct interaction between NFAT and MEF-2 proteins was demonstrated by protein co-immunoprecipitation experiments. Taken together, these data demonstrate that NFAT interacts with MEF-2 bound to the -133 bp binding site at the hCASQ2 gene promoter. In conclusion, in this work, we demonstrate that the Ca2+-calcineurin/NFAT pathway modulates the transcription of the hCASQ2 gene in neonatal cardiomyocytes.


Assuntos
Calsequestrina/genética , Calsequestrina/metabolismo , Regiões Promotoras Genéticas/genética , Animais , Western Blotting , Calcineurina/genética , Calcineurina/metabolismo , Células Cultivadas , Imunoprecipitação da Cromatina , Mutagênese Sítio-Dirigida , Miócitos Cardíacos/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Ligação Proteica/genética , Ligação Proteica/fisiologia , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Cell Calcium ; 62: 29-40, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28169003

RESUMO

INTRODUCTION: Calcium (Ca2+) leak during cardiac diastole is chiefly mediated by intracellular Ca2+ channel/Ryanodine Receptors. Increased diastolic Ca2+ leak has been proposed as the mechanism underlying the appearance of hereditary arrhythmias. However, little is known about alterations in diastolic Ca2+ leak and the specific roles played by key intracellular Ca2+-handling proteins in hyperthyroidism, a known arrhythmogenic condition. AIM: We sought to determine whether there were modifications in diastolic Ca2+ leak, based on the recording of Ca2+ sparks and Ca2+ waves; we also investigated changes in the expression and activity of key Ca2+ handling proteins, including ryanodine receptors, Sarco-Endoplasmic Reticulum Ca2+ ATPase pump and calsequestrin in isolated left-ventricular cardiomyocytes isolated from hyperthyroid rats. MATERIALS AND METHODS: Electrocardiography (ECG) recordings were performed in control and hyperthyroid rats. Ca2+ sparks, Ca2+ waves, and electrically-stimulated Ca2+ transients were recorded in Fluo-3-loaded cardiomyocytes from both experimental groups using confocal microscopy. In addition, left-ventricular homogenates and Ryanodine Receptor-enriched membrane fractions were prepared for assessing [3H]-ryanodine binding, hydrolytic ATPase activity of SERCA pump and expression levels of key proteins by Western blot, and cDNA for real-time qPCR. RESULTS AND CONCLUSIONS: Extrasystoles were observed in hearts of hyperthyroid rats by ECG recordings. Arrhythmogenic activity, high incidence of Ca2+ waves, and de novo Ca2+ wavelets -in the absence of sarcoplasmic reticulum Ca2+ overload- were recorded in these cardiomyocytes. The exacerbated diastolic Ca2+ leak and arrhythmogenic activities were related to a diminished expression of calsequestrin along with increased SERCA pump activity, which, in effect, promoted a gain-of-function in RyRs without alterations in SR Ca2+ load, RyR expression or its Ca2+ sensitivity.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Cálcio/metabolismo , Hipertireoidismo/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Calsequestrina , Masculino , Miócitos Cardíacos/citologia , Ratos , Ratos Wistar
4.
Int J Exp Pathol ; 96(5): 285-93, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26515458

RESUMO

In Duchenne muscular dystrophy (DMD), the search for new biomarkers to follow the evolution of the disease is of fundamental importance in the light of the evolving gene and pharmacological therapies. In addition to the lack of dystrophin, secondary events including changes in calcium levels, inflammation and fibrosis greatly contribute to DMD progression and the molecules involved in these events may represent potential biomarkers. In this study, we performed a comparative evaluation of the progression of dystrophy within muscles that are differently affected by dystrophy (diaphragm; DIA and quadriceps; QDR) or spared (intrinsic laryngeal muscles) using the mdx mice model of DMD. We assessed muscle levels of calsequestrin (calcium-related protein), tumour necrosis factor (TNF-α; pro-inflammatory cytokine), tumour growth factor (TGF-ß; pro-fibrotic factor) and MyoD (muscle proliferation) vs. histopathology at early (1 and 4 months of age) and late (9 months of age) stages of dystrophy. Fibrosis was the primary feature in the DIA of mdx mice (9 months: 32% fibrosis), which was greater than in the QDR (9 months: 0.6% fibrosis). Muscle regeneration was the primary feature in the QDR (9 months: 90% of centrally nucleated fibres areas vs. 33% in the DIA). The QDR expressed higher levels of calsequestrin than the DIA. Laryngeal muscles showed normal levels of TNF-α, TGF-ß and MyoD. A positive correlation between histopathology and cytokine levels was observed only in the diaphragm, suggesting that TNF-α and TGF-ß serve as markers of dystrophy primarily for the diaphragm.


Assuntos
Biomarcadores/análise , Diafragma/metabolismo , Músculos Laríngeos/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Músculo Quadríceps/metabolismo , Animais , Western Blotting , Calsequestrina/análise , Calsequestrina/biossíntese , Diafragma/patologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Imunofluorescência , Músculos Laríngeos/patologia , Masculino , Camundongos , Camundongos Endogâmicos mdx , Proteína MyoD/análise , Proteína MyoD/biossíntese , Músculo Quadríceps/patologia , Fator de Crescimento Transformador beta/análise , Fator de Crescimento Transformador beta/biossíntese , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/biossíntese
5.
Muscle Nerve ; 50(2): 283-6, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24435758

RESUMO

INTRODUCTION: The purpose of this study was to better understand the beneficial effects of doxycycline on the dystrophic muscles of the mdx mouse. METHODS: Doxycycline (DOX) was administered for 36 days, starting on postnatal day 0, via drinking water. Untreated mdx mice received plain water for the same period and served as a control group. RESULTS: DOX decreased the levels of metalloproteinase-9 and tumor necrosis factor-alpha in the biceps brachii and diaphragm of the mdx mice. It also reduced the total amount of calcium in the muscles studied, concomitant with an increase in the levels of calsequestrin 1. CONCLUSIONS: The results show that DOX can affect factors that are important in dystrophic pathogenesis and highlight its potential as a readily accessible therapy in clinical trials for treatment of Duchenne muscular dystrophy.


Assuntos
Antibacterianos/uso terapêutico , Doxiciclina/uso terapêutico , Distrofia Muscular Animal/tratamento farmacológico , Aldeídos/metabolismo , Animais , Antibacterianos/farmacologia , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Calsequestrina , Doxiciclina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo
6.
Can J Physiol Pharmacol ; 90(8): 1017-28, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22784385

RESUMO

The precise control of Ca(2+) levels during the contraction-relaxation cycle in cardiac myocytes is extremely important for normal beat-to-beat contractile activity. The sarcoplasmic reticulum (SR) plays a key role controlling calcium concentration in the cytosol. The SR Ca(2+)-ATPase (SERCA2) transports Ca(2+) inside the SR lumen during relaxation of the cardiac myocyte. Calsequestrin (Casq2) is the main protein in the SR lumen, functioning as a Ca(2+) buffer and participating in Ca(2+) release by interacting with the ryanodine receptor 2 (RyR2) Ca(2+)-release channel. Alterations in normal Ca(2+) handling significantly contribute to the contractile dysfunction observed in cardiac hypertrophy and in heart failure. Transcriptional regulation of the SERCA2 gene has been extensively studied and some of the mechanisms regulating its expression have been elucidated. Overexpression of Sp1 factor in cardiac hypertrophy downregulates SERCA2 gene expression and increased levels of thyroid hormone up-regulates its transcription. Other hormones such norepinephrine, angiotensin II, endothelin-1, parathyroid hormone, prostaglandin-F2α, as well the cytokines tumor necrosis factor-α and interleukin-6 also downregulate SERCA2 expression. Calcium acting through the calcineurin-NFAT (nuclear factor of activated T cells) pathway has been suggested to regulate SERCA2 and CASQ2 gene expression. This review focuses on the current knowledge regarding transcriptional regulation of SERCA2 and CASQ2 genes in the normal and pathologic heart.


Assuntos
Calsequestrina/biossíntese , Regulação para Baixo , Miócitos Cardíacos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/biossíntese , Retículo Sarcoplasmático/metabolismo , Animais , Cálcio/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Humanos , Modelos Biológicos , Retículo Sarcoplasmático/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
7.
IUBMB Life ; 63(10): 847-55, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21901815

RESUMO

The cytosolic calcium concentration ([Ca(2+)](c)) is key for the regulation of many cellular processes, such cell signaling and proliferation, metabolism, and muscle contraction. In cardiomyocytes, Ca(2+) is an important regulator in many cellular functions such electrophysiological processes, excitation-contraction coupling, regulation of contractile proteins activity, energy metabolism, cell death, and transcriptional regulation by the activation of Ca(2+)-dependent transcriptional pathways. In cardiomyocytes, the two main Ca(2+) -dependent pathways are the Ca(2+)/calmodulin-calcineurin-NFAT and the Ca(2+) /calmodulin-dependent kinases-MEF2. Both pathways are involved in the transcriptional control of many cardiac genes. Cardiac hypertrophy (CH) and heart failure (HF) are characterized by alterations in calcium handling such a low sarcoplasmic reticulum Ca(2+) content, decreased rate of Ca(2+) removal from the sarcoplasm, increased diastolic [Ca(2+)](c), and decreased systolic [Ca(2+)](c), all of them contributing to diminished contractibility and force generation in failing heart. At gene expression level, there are also many changes such decreased levels of SERCA2a and activation of a fetal gene expression program in cardiomyocytes. A variety of Ca(2+)-dependent signaling pathways have been implicated in CH and HF, but whether these pathways are interrelated and whether there is specificity among them are still unclear and under investigation. The focus of this review is to make an analysis of the current knowledge about the role of Ca(2+) signaling pathways in the regulation of cardiac gene expression making special emphasis in novel strategies to correct Ca(2+) handling alterations by means of SERCA2a gene therapy.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Metabolismo Energético/fisiologia , Regulação da Expressão Gênica/fisiologia , Contração Miocárdica/fisiologia , Miócitos Cardíacos/fisiologia , Calcineurina/metabolismo , Calsequestrina/metabolismo , Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , Humanos , Proteínas de Domínio MADS/metabolismo , Fatores de Transcrição MEF2 , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Fatores de Regulação Miogênica/metabolismo , Fatores de Transcrição NFATC/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
8.
Arq. bras. cardiol ; Arq. bras. cardiol;97(1): 46-52, jul. 2011. tab
Artigo em Português | LILACS | ID: lil-597664

RESUMO

FUNDAMENTO: Treinamento físico (TF) aumenta a sensibilidade dos hormônios tireoidianos (HT) e a expressão gênica de estruturas moleculares envolvidas no movimento intracelular de cálcio do miocárdio, enquanto a restrição alimentar (RIA) promove efeitos contrários ao TF. OBJETIVO: Avaliar os efeitos da associação TF e RIA sobre os níveis plasmáticos dos HT e a produção de mRNA dos receptores HT e estruturas moleculares do movimento de cálcio do miocárdio de ratos. MÉTODOS: Utilizaram-se ratos Wistar Kyoto divididos em: controle (C, n = 7), RIA (R50, n = 7), exercício físico (EX, n = 7) e exercício físico + RIA (EX50, n = 7). A RIA foi de 50 por cento e o TF foi natação (1 hora/dia, cinco sessões/semana, 12 semanas consecutivas). Avaliaram-se as concentrações séricas de triiodotironina (T3), tiroxina (T4) e hormônio tireotrófico (TSH). O mRNA da bomba de cálcio do retículo sarcoplasmático (SERCA2a), fosfolamban (PLB), trocador Na+/Ca+2 (NCX), canal lento de cálcio (canal-L), rianodina (RYR), calsequestrina (CQS) e receptor de HT (TRα1 e TRβ1) do miocárdio foram avaliados por reação em cadeia da polimerase (PCR) em tempo real. RESULTADOS: RIA reduziu o T4, TSH e mRNA do TRα1 e aumentou a expressão da PLB, NCX e canal-L. TF aumentou a expressão do TRβ1, canal-L e NCX. A associação TF e RIA reduziu T4 e TSH e aumentou o mRNA do TRβ1, SERCA2a, NCX, PLB e correlação do TRβ1 com a CQS e NCX. CONCLUSÃO: Associação TF e RIA aumentou o mRNA das estruturas moleculares cálcio transiente, porém o eixo HT-receptor não parece participar da transcrição gênica dessas estruturas.


BACKGROUND: Chronic exercise and food restriction (FR) have directionally opposite changes in transcription of molecular structures of calcium handling and thyroid hormone (TH) status. OBJECTIVE: Evaluate the association of chronic exercise and FR on serum thyroid hormones and gene transcription of molecular structures of intracellular calcium transients and thyroid receptors in myocardium of rats. METHODS: Male Wistar Kyoto rats, divided into two groups: control (C, n = 7), FR (R50, n = 7), chronic exercise (EX, n = 7) and chronic exercise + FR (EX50, n = 7). FR was of 50 percent and exercise was swimming (1 hour/day, 5 days/week, during 12 weeks). Serum concentrations of T3, T4 and TSH were determined. The mRNA gene expression of the sarcoplasmatic reticulum calcium pump (SERCA2a), phospholamban (PLB), Na+/Ca+2 exchanger (NCX), calcium channel L-type (L-channel), ryanodine (RYR), calsequestrin (CQS) and HT receptor (TRα1 and TRβ1) of the myocardium was performed by PCR real-time. RESULTS: FR reduced serum levels of T4 and TSH and TRα1 mRNA and increased the expression of PLB, NCX and L-channel. Exercise increased the TRβ1 receptor, L-channel and NCX. The association of exercise and FR reduced plasma T4 and TSH, TRβ1 mRNA increase, SERCA2a, NCX and PLB, and there was a significant correlation of TRβ1 with CQS and NXC. CONCLUSION: Chronic exercise and food restriction increased the mRNA of transient Ca2+ proteins; however, TH-receptor axis cannot participate in the transcription of mRNA of myocardial calcium transient proteins.


FUNDAMENTO: Entrenamiento físico (EF) aumenta la sensibilidad de las hormonas tiroideas (HT) y la expresión génica de estructuras moleculares envueltas en el movimiento intracelular de calcio del miocardio, mientras que la restricción alimenticia (RA) promueve efectos contrarios al EF. OBJETIVO: Evaluar los efectos de la asociación EF y RA sobre los niveles plasmáticos de los HT y la producción de ARNm de los receptores HT y estructuras moleculares del movimiento de calcio del miocardio de ratones. MÉTODOS: Se utilizaron ratones Wistar Kyoto divididos en: control (C, n = 7), RA (R50, n = 7), ejercicio físico (EX, n = 7) y ejercicio físico + RA (EX50, n = 7). La RA fue de 50 por ciento y el EF fue natación (1 hora/día, cinco sesiones/semana, 12 semanas consecutivas). Se evaluaron las concentraciones séricas de triyodotironina (T3), tiroxina (T4) y hormona tireotrófico (TSH). El ARNm de la bomba de calcio del retículo sarcoplasmático (SERCA2a), fosfolamban (PLB), intercambiador Na+/Ca+2 (NCX), canal lento de calcio (canal-L), rianodina (RYR), calsequestrina (CQS) y receptor de HT (TRα1 y TRβ1) del miocardio fueron evaluados por reacción en cadena de la polimerasa (PCR) en tiempo real. RESULTADOS: RA redujo el T4, TSH y ARNm del TRα1 y aumentó la expresión de la PLB, NCX y canal-L. EF aumentó la expresión del TRβ1, canal-L y NCX. La asociación EF y RA redujo T4 y TSH y aumentó el ARNm del TRβ1, SERCA2a, NCX, PLB y correlación del TRβ1 con la CQS y NCX. CONCLUSIÓN: Asociación EF y RA aumentó el ARNm de las estructuras moleculares calcio transiente, sin embargo el eje HT-receptor no parece participar de la transcripción génica de esas estructuras.


Assuntos
Animais , Masculino , Ratos , Restrição Calórica , Miocárdio/metabolismo , Condicionamento Físico Animal/fisiologia , RNA Mensageiro/metabolismo , Canais de Cálcio Tipo L/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Calsequestrina/metabolismo , Expressão Gênica , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Receptores dos Hormônios Tireóideos/metabolismo , Rianodina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Fatores de Tempo , Hormônios Tireóideos/sangue , Regulação para Cima
9.
Arq Bras Cardiol ; 97(1): 46-52, 2011 Jul.
Artigo em Inglês, Português, Espanhol | MEDLINE | ID: mdl-21625820

RESUMO

BACKGROUND: Chronic exercise and food restriction (FR) have directionally opposite changes in transcription of molecular structures of calcium handling and thyroid hormone (TH) status. OBJECTIVE: Evaluate the association of chronic exercise and FR on serum thyroid hormones and gene transcription of molecular structures of intracellular calcium transients and thyroid receptors in myocardium of rats. METHODS: Male Wistar Kyoto rats, divided into two groups: control (C, n = 7), FR (R50, n = 7), chronic exercise (EX, n = 7) and chronic exercise + FR (EX50, n = 7). FR was of 50% and exercise was swimming (1 hour/day, 5 days/week, during 12 weeks). Serum concentrations of T3, T4 and TSH were determined. The mRNA gene expression of the sarcoplasmatic reticulum calcium pump (SERCA2a), phospholamban (PLB), Na+/Ca+2 exchanger (NCX), calcium channel L-type (L-channel), ryanodine (RYR), calsequestrin (CQS) and HT receptor (TRα1 and TRß1) of the myocardium was performed by PCR real-time. RESULTS: FR reduced serum levels of T4 and TSH and TRα1 mRNA and increased the expression of PLB, NCX and L-channel. Exercise increased the TRß1 receptor, L-channel and NCX. The association of exercise and FR reduced plasma T4 and TSH, TRß1 mRNA increase, SERCA2a, NCX and PLB, and there was a significant correlation of TRß1 with CQS and NXC. CONCLUSION: Chronic exercise and food restriction increased the mRNA of transient Ca2+ proteins; however, TH-receptor axis cannot participate in the transcription of mRNA of myocardial calcium transient proteins.


Assuntos
Restrição Calórica , Miocárdio/metabolismo , Condicionamento Físico Animal/fisiologia , RNA Mensageiro/metabolismo , Animais , Canais de Cálcio Tipo L/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Calsequestrina/metabolismo , Expressão Gênica , Masculino , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Receptores dos Hormônios Tireóideos/metabolismo , Rianodina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Hormônios Tireóideos/sangue , Fatores de Tempo , Regulação para Cima
10.
Int J Exp Pathol ; 91(1): 63-71, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20002835

RESUMO

Duchenne muscular dystrophy is one of the most common hereditary diseases. Abnormal ion handling renders dystrophic muscle fibers more susceptible to necrosis and a rise in intracellular calcium is an important initiating event in dystrophic muscle pathogenesis. In the mdx mice, muscles are affected with different intensities and some muscles are spared. We investigated the levels of the calcium-binding proteins calsequestrin and calmodulin in the non-spared axial (sternomastoid and diaphragm), limb (tibialis anterior and soleus), cardiac and in the spared extraocular muscles (EOM) of control and mdx mice. Immunoblotting analysis showed a significant increase of the proteins in the spared mdx EOM and a significant decrease in the most affected diaphragm. Both proteins were comparable to the cardiac muscle controls. In limb and sternomastoid muscles, calmodulin and calsequestrin were affected differently. These results suggest that differential levels of the calcium-handling proteins may be involved in the pathogenesis of myonecrosis in mdx muscles. Understanding the signaling mechanisms involving Ca(2+)-calmodulin activation and calsequestrin expression may be a valuable way to develop new therapeutic approaches to the dystrophinopaties.


Assuntos
Calmodulina/metabolismo , Calsequestrina/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Animais , Western Blotting , Diafragma/metabolismo , Modelos Animais de Doenças , Imunofluorescência , Masculino , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Miocárdio/metabolismo , Necrose , Fenótipo
11.
Muscle Nerve ; 39(5): 609-15, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19301368

RESUMO

In the mdx mouse model of Duchenne muscular dystrophy, the lack of dystrophin is associated with increased calcium levels and skeletal muscle myonecrosis. The intrinsic laryngeal muscles (ILM) are protected and do not undergo myonecrosis. We investigated whether this protection is related to an increased expression of calcium-binding proteins, which may protect against the elevated calcium levels seen in dystrophic fibers. The expression of sarcoplasmic-endoplasmic-reticulum Ca(2+)-ATPase and calsequestrin was examined in ILM and in nonspared limb muscles of control and mdx mice using immunofluorescence and immunoblotting. Dystrophic ILM presented a significant increase in the proteins studied when compared to controls. The increase of Ca(2+)-handling proteins in dystrophic ILM may permit better maintenance of calcium homeostasis, with the consequent absence of myonecrosis. The results further support the concept that abnormal Ca(2+)-handling is involved in dystrophinopathies. Muscle Nerve, 2009.


Assuntos
Calsequestrina/metabolismo , Distrofina/deficiência , Regulação da Expressão Gênica/genética , Músculos Laríngeos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx
12.
Muscle Nerve ; 39(2): 167-76, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19145649

RESUMO

The lack of dystrophin in mdx mice and in Duchenne muscular dystrophy causes sarcolemmal breakdown and increased calcium influx followed by myonecrosis. We examined whether the calcium channel blockers diltiazem and verapamil protect dystrophic muscles from degeneration. Mdx mice received daily intraperitoneal injections of diltiazem or verapamil for 18 days, followed by removal of the sternomastoid, diaphragm, tibialis anterior, and cardiac muscles. Control mdx mice were injected with saline. Both drugs significantly decreased blood creatine kinase levels. Total calcium content was significantly higher in mdx muscles than in control C57Bl/10. Verapamil and diltiazem reduced total calcium content only in diaphragm and cardiac muscle. Histological analysis showed that diltiazem significantly attenuated myonecrosis in diaphragm. Immunoblots showed a significant increase of calsequestrin and beta-dystroglycan levels in some diltiazem- and verapamil-treated muscles. Possible interactions of these drugs with the sarcoplasmic reticulum and sarcolemma may also contribute to the improvement of the dystrophic phenotype.


Assuntos
Bloqueadores dos Canais de Cálcio/uso terapêutico , Diltiazem/uso terapêutico , Distrofia Muscular Animal/patologia , Distrofia Muscular Animal/prevenção & controle , Sarcolema/efeitos dos fármacos , Verapamil/uso terapêutico , Animais , Cálcio/metabolismo , Calsequestrina/metabolismo , Creatina Quinase/sangue , Modelos Animais de Doenças , Distroglicanas/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestrutura , Sarcolema/metabolismo
14.
Arch. cardiol. Méx ; Arch. cardiol. Méx;76(supl.4): S18-S32, oct.-dic. 2006.
Artigo em Espanhol | LILACS | ID: lil-568135

RESUMO

The sarcoplasmic reticulum (SR) constitutes the main intracellular calcium store in striated muscle and plays an important role in the regulation of excitation-contraction-coupling (ECC) and of intracellular calcium concentrations during contraction and relaxation. The regulation of ECC occurs due to the interaction among the main proteins of the SR that are the calcium release channel or ryanodine receptor, the Ca2+-ATPase, phospholamban and calsequestrin. Due to the importance of ECC in the physiopathology of a number of cardiac diseases, the role of the SR and its components has been widely investigated in some pathologies, specifically cardiac hypertrophy, heart failure, and hereditary arrhythmias. Therefore, the SR proteins constitute an area of research of great interest for the development of new genetic and pharmacologic therapies; from this derives the importance of understanding the function of the SR. This review analyzes the expression, structure, and function of the main SR proteins, their role on myocardial contraction and relaxation and in the changes that occur in cardiac pathologies.


Assuntos
Humanos , Cardiopatias , Contração Miocárdica/fisiologia , Retículo Sarcoplasmático/fisiologia , Arritmias Cardíacas , Arritmias Cardíacas , Canais de Cálcio , Proteínas de Ligação ao Cálcio , ATPases Transportadoras de Cálcio , Cálcio , Calsequestrina , Cardiomegalia , Cardiomegalia , Cardiopatias , Insuficiência Cardíaca , Insuficiência Cardíaca , Miocárdio , Pesquisa , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Retículo Sarcoplasmático
15.
Biol Res ; 39(3): 493-503, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17106581

RESUMO

We measured the kinetics of calcium dissociation from calsequestrin in solution or forming part of isolated junctional sarcoplasmic reticulum membranes by mixing calsequestrin equilibrated with calcium with calcium-free solutions in a stopped-flow system. In parallel, we measured the kinetics of the intrinsic fluorescence changes that take place following calcium dissociation from calsequestrin. We found that at 25 degrees C calcium dissociation was 10-fold faster for calsequestrin attached to junctional membranes (k = 109 s(-1)) than in solution. These results imply that calcium dissociation from calsequestrin in vivo is not rate limiting during excitation-contraction coupling. In addition, we found that the intrinsic fluorescence decrease for calsequestrin in solution or forming part of junctional membranes was significantly slower than the rates of calcium dissociation. The kinetics of intrinsic fluorescence changes had two components for calsequestrin associated to junctional membranes and only one for calsequestrin in solution; the faster component was 8-fold faster (k = 54.1 s(-1)) than the slower component (k = 6.9 s(-1)), which had the same k value as for calsequestrin in solution. These combined results suggest that the presence of calsequestrin at high concentrations in a restricted space, such as when bound to the junctional membrane, accelerates calcium dissociation and the resulting structural changes, presumably as a result of cooperative molecular interactions.


Assuntos
Cálcio/metabolismo , Calsequestrina/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Eletroforese em Gel de Poliacrilamida , Membranas Intracelulares/metabolismo , Coelhos
16.
Arch Cardiol Mex ; 76 Suppl 4: S18-32, 2006.
Artigo em Espanhol | MEDLINE | ID: mdl-17469332

RESUMO

The sarcoplasmic reticulum (SR) constitutes the main intracellular calcium store in striated muscle and plays an important role in the regulation of excitation-contraction-coupling (ECC) and of intracellular calcium concentrations during contraction and relaxation. The regulation of ECC occurs due to the interaction among the main proteins of the SR that are the calcium release channel or ryanodine receptor, the Ca2+-ATPase, phospholamban and calsequestrin. Due to the importance of ECC in the physiopathology of a number of cardiac diseases, the role of the SR and its components has been widely investigated in some pathologies, specifically cardiac hypertrophy, heart failure, and hereditary arrhythmias. Therefore, the SR proteins constitute an area of research of great interest for the development of new genetic and pharmacologic therapies; from this derives the importance of understanding the function of the SR. This review analyzes the expression, structure, and function of the main SR proteins, their role on myocardial contraction and relaxation and in the changes that occur in cardiac pathologies.


Assuntos
Cardiopatias/fisiopatologia , Contração Miocárdica/fisiologia , Retículo Sarcoplasmático/fisiologia , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Calsequestrina/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Cardiopatias/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Humanos , Miocárdio/metabolismo , Pesquisa , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
17.
Biol. Res ; 39(3): 493-503, 2006. ilus, graf
Artigo em Inglês | LILACS | ID: lil-437382

RESUMO

We measured the kinetics of calcium dissociation from calsequestrin in solution or forming part of isolated junctional sarcoplasmic reticulum membranes by mixing calsequestrin equilibrated with calcium with calcium-free solutions in a stopped-flow system. In parallel, we measured the kinetics of the intrinsic fluorescence changes that take place following calcium dissociation from calsequestrin. We found that at 25°C calcium dissociation was 10-fold faster for calsequestrin attached to junctional membranes (k = 109 s-1) than in solution. These results imply that calcium dissociation from calsequestrin in vivo is not rate limiting during excitation-contraction coupling. In addition, we found that the intrinsic fluorescence decrease for calsequestrin in solution or forming part of junctional membranes was significantly slower than the rates of calcium dissociation. The kinetics of intrinsic fluorescence changes had two components for calsequestrin associated to junctional membranes and only one for calsequestrin in solution; the faster component was 8-fold faster (k = 54.1 s-1) than the slower component (k = 6.9 s-1), which had the same k value as for calsequestrin in solution. These combined results suggest that the presence of calsequestrin at high concentrations in a restricted space, such as when bound to the junctional membrane, accelerates calcium dissociation and the resulting structural changes, presumably as a result of cooperative molecular interactions.


Assuntos
Animais , Coelhos , Cálcio/metabolismo , Calsequestrina/metabolismo , Retículo Sarcoplasmático/metabolismo , Eletroforese em Gel de Poliacrilamida , Membranas Intracelulares/metabolismo
18.
Biol Res ; 37(4): 603-7, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15709687

RESUMO

Calsequestrin (CASQ2) is a high capacity Ca-binding protein expressed inside the sarcoplasmic reticulum (SR). Mutations in the cardiac calsequestrin gene (CASQ2) have been linked to arrhythmias and sudden death induced by exercise and emotional stress. We have studied the function of CASQ2 and the consequences of arrhythmogenic CASQ2 mutations on intracellular Ca signalling using a combination of approaches of reverse genetics and cellular physiology in adult cardiac myocytes. We have found that CASQ2 is an essential determinant of the ability of the SR to store and release Ca2+ in cardiac muscle. CASQ2 serves as a reservoir for Ca2+ that is readily accessible for Ca(2+)-induced Ca2+ release (CICR) and also as an active Ca2+ buffer that modulates the local luminal Ca-dependent closure of the SR Ca2+ release channels. At the same time, CASQ2 stabilizes the CICR process by slowing the functional recharging of SR Ca2+ stores. Abnormal restitution of the Ca2+ release channels from a luminal Ca-dependent refractory state could account for ventricular arrhythmias associated with mutations in the CASQ2 gene.


Assuntos
Arritmias Cardíacas/fisiopatologia , Cálcio/metabolismo , Calsequestrina/fisiologia , Miócitos Cardíacos/química , Retículo Sarcoplasmático/metabolismo , Animais , Arritmias Cardíacas/genética , Sinalização do Cálcio , Calsequestrina/genética , Mutação/fisiologia , Contração Miocárdica , Miocárdio/citologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Ratos
19.
Biochemistry ; 35(41): 13419-25, 1996 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-8873610

RESUMO

Calcium binding to triads isolated from rabbit skeletal muscle followed a single hyperbolic function in the pH range 5.5-8.0. Maximal binding was obtained at pH 8.0; decreasing the pH decreased the binding capacity and, at pH < or = 6.0, increased Kd 2-fold. These results indicate that lowering the pH diminished calcium binding to calsequestrin, since this protein is the primary source of calcium binding sites in triads. Luminal pH had a marked effect on calcium release induced by 2 mM ATP, at pCa 5.0, pH 6.8. At a constant luminal [Ca2+] of 0.1 mM, release rate constants (k) and initial rates of release increased steadily as a function of decreasing luminal pH; at luminal pH 7.5, values of k < 0.4 s-1 were found, whereas at pH 5.5 values of k approximately 10 S-1 were obtained. Increasing luminal [Ca2+] from 0.05 mM to 0.7 mM had no effect on the k values measured at luminal pH 5.5. In contrast, at pH 6.8, increasing luminal [Ca2+] produced a marked increase in k values, that reached maximal values of k approximately 10 S-1 at 0.7 mM luminal [Ca2+]. Control experiments using fluorescent pH indicators showed that luminal pH did not change significantly during calcium release. It is proposed that luminal protons or calcium induces conformational changes in calsequestrin that in turn promote activation of the calcium release channels.


Assuntos
Cálcio/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Canais de Cálcio/metabolismo , Calsequestrina/química , Calsequestrina/metabolismo , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Cinética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Conformação Proteica , Prótons , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA