Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 423
Filtrar
1.
Biomolecules ; 13(12)2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-38136565

RESUMO

Calsequestrin (CASQ) is a key intra-sarcoplasmic reticulum Ca2+-handling protein that plays a pivotal role in the contraction of cardiac and skeletal muscles. Its Ca2+-dependent polymerization dynamics shape the translation of electric excitation signals to the Ca2+-induced contraction of the actin-myosin architecture. Mutations in CASQ are linked to life-threatening pathological conditions, including tubular aggregate myopathy, malignant hyperthermia, and Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT). The variability in the penetrance of these phenotypes and the lack of a clear understanding of the disease mechanisms associated with CASQ mutations pose a major challenge to the development of effective therapeutic strategies. In vitro studies have mainly focused on the polymerization and Ca2+-buffering properties of CASQ but have provided little insight into the complex interplay of structural and functional changes that underlie disease. In this review, the biochemical and structural natures of CASQ are explored in-depth, while emphasizing their direct and indirect consequences for muscle Ca2+ physiology. We propose a novel functional classification of CASQ pathological missense mutations based on the structural stability of the monomer, dimer, or linear polymer conformation. We also highlight emerging similarities between polymeric CASQ and polyelectrolyte systems, emphasizing the potential for the use of this paradigm to guide further research.


Assuntos
Calsequestrina , Taquicardia Ventricular , Humanos , Calsequestrina/genética , Calsequestrina/metabolismo , Coração , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo , Retículo Sarcoplasmático/metabolismo , Mutação de Sentido Incorreto , Cálcio/metabolismo
2.
Cells ; 12(2)2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36672139

RESUMO

The brief opening mode of the mitochondrial permeability transition pore (mPTP) serves as a calcium (Ca2+) release valve to prevent mitochondrial Ca2+ (mCa2+) overload. Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a stress-induced arrhythmic syndrome due to mutations in the Ca2+ release channel complex of ryanodine receptor 2 (RyR2). We hypothesize that inhibiting the mPTP opening in CPVT exacerbates the disease phenotype. By crossbreeding a CPVT model of CASQ2 knockout (KO) with a mouse missing CypD, an activator of mPTP, a double KO model (DKO) was generated. Echocardiography, cardiac histology, and live-cell imaging were employed to assess the severity of cardiac pathology. Western blot and RNAseq were performed to evaluate the contribution of various signaling pathways. Although exacerbated arrhythmias were reported, the DKO model did not exhibit pathological remodeling. Myocyte Ca2+ handling was similar to that of the CASQ2 KO mouse at a low pacing frequency. However, increased ROS production, activation of the CaMKII pathway, and hyperphosphorylation of RyR2 were detected in DKO. Transcriptome analysis identified altered gene expression profiles associated with electrical instability in DKO. Our study provides evidence that genetic inhibition of mPTP exacerbates RyR2 dysfunction in CPVT by increasing activation of the CaMKII pathway and subsequent hyperphosphorylation of RyR2.


Assuntos
Canal de Liberação de Cálcio do Receptor de Rianodina , Taquicardia Ventricular , Camundongos , Animais , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Calsequestrina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Miócitos Cardíacos/metabolismo , Taquicardia Ventricular/genética , Taquicardia Ventricular/patologia , Camundongos Knockout
3.
Acta Histochem ; 125(2): 152001, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36669254

RESUMO

Cerebellum is devoted to motor coordination and cognitive functions. Endoplasmic reticulum is the largest intracellular calcium store involved in all neuronal functions. Intralumenal calcium binding proteins play a pivotal role in calcium storage and contribute to both calcium release and uptake. Calsequestrin, a key calcium binding protein of sarco-endoplasmic reticulum in skeletal and cardiac muscles, was identified in chicken and fish cerebellum Purkinje cells, but its expression in mammals and human counterpart has not been studied in depth. Aim of the present paper was to investigate expression and localization of Calsequestrin in mammalian cerebellum. Calsequestrin was found to be expressed at low level in cerebellum, but specifically concentrated in Calbindin D28- and zebrin- immunopositive-Purkinje cells. Two additional fundamental calcium store markers, sarco-endoplasmic calcium pump isoform 2, SERCA2, and Inositol-trisphosphate receptor isoform 1, IP3R1, were found to be co-expressed in the region, with some localization peculiarities. In conclusion, a new marker was identified for Purkinje cells in adult mammals, including humans. Such a marker might help in staminal neuronal cells specification and in dissection of still unknown neurodegeneration and physio-pathological effects of dysregulated calcium homeostasis.


Assuntos
Calsequestrina , Células de Purkinje , Animais , Humanos , Células de Purkinje/metabolismo , Calsequestrina/metabolismo , Cálcio/metabolismo , Cerebelo/metabolismo , Proteínas de Ligação ao Cálcio , Mamíferos/metabolismo
4.
Circ Res ; 131(8): 673-686, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36102198

RESUMO

BACKGROUND: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a potentially lethal cardiac arrhythmia syndrome triggered by catecholamines released during exercise, stress, or sudden emotion. Variants in the calsequestrin-2 gene (CASQ2), encoding the major calcium (Ca) binding protein in the sarcoplasmic reticulum (SR), are the second most common cause of CPVT. Recently, several CASQ2 gene variants, such as CASQ2-K180R, have been linked to an autosomal dominant form of Casq2-linked CPVT (CPVT2), but the underlying mechanism is not known. METHODS: A K180R mouse model was generated using CRIPSR/Cas9. Heterozygous and homozygous K180R mice were studied using telemetry ECG recordings in vivo. Ventricular cardiomyocytes were isolated and studied using fluorescent Ca indicators and patch clamp. Expression levels and localization of SR Ca-handling proteins were evaluated using Western blotting and immunostaining. Intra-SR Ca kinetics were quantified using low-affinity Ca indicators. RESULTS: K180R mice exhibit an autosomal dominant CPVT phenotype following exercise or catecholamine stress. Upon catecholamine stress, K180R ventricular cardiomyocytes exhibit increased spontaneous SR Ca release events, triggering delayed afterdepolarizations and spontaneous beats. K180R had no effect on levels of Casq2, Casq2 polymers, or other SR Ca-handling proteins. Intra-SR Ca measurements revealed that K180R impaired dynamic intra-SR Ca buffering, resulting in a more rapid rise of free Ca in the SR during diastole. Steady-state SR Ca buffering and total SR Ca content were not changed. Consistent with the reduced dynamic intra-SR buffering, K180R causes reduced SR Ca release refractoriness. CONCLUSIONS: CASQ2-K180R causes CPVT2 via a heretofore unknown mechanism that differs from CASQ2 variants associated with autosomal recessive CPVT2. Unlike autosomal recessive CASQ2 variants, K180R impairs the dynamic buffering of Ca within the SR without affecting total SR Ca content or Casq2 protein levels. Our data provide insight into the molecular mechanism underlying autosomal dominant CPVT2.


Assuntos
Retículo Sarcoplasmático , Taquicardia Ventricular , Animais , Camundongos , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Calsequestrina/genética , Calsequestrina/metabolismo , Catecolaminas/metabolismo , Miócitos Cardíacos/metabolismo , Polímeros , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
5.
Cells ; 11(16)2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-36010545

RESUMO

Calsequestrin 1 (CASQ1) and Ryanodine receptor 1 (RYR1) are two of the main players in excitation-contraction (EC) coupling. CASQ1-knockout mice and mice carrying a mutation in RYR1 (Y522S) linked to human malignant hyperthermia susceptibility (MHS) both suffer lethal hypermetabolic episodes when exposed to halothane (MHS crises) and to environmental heat (heat stroke, HS). The phenotype of Y522S is more severe than that of CASQ1-null mice. As MHS and HS are hypermetabolic responses, we studied the metabolism of adult CASQ1-null and Y522S mice using wild-type (WT) mice as controls. We found that CASQ1-null and Y522S mice have increased food consumption and higher core temperature at rest. By indirect calorimetry, we then verified that CASQ1-null and Y522S mice show an increased oxygen consumption and a lower respiratory quotient (RQ). The accelerated metabolism of CASQ1-null and Y522S mice was also accompanied with a reduction in body fat. Moreover, both mouse models displayed increased oxygen consumption and a higher core temperature during heat stress. The results collected suggest that metabolic rate, oxygen consumption, and body temperature at rest, all more elevated in Y522S than in CASQ1-null mice, could possibly be used as predictors of the level of susceptibility to hyperthermic crises of mice (and possibly humans).


Assuntos
Golpe de Calor , Hipertermia Maligna , Animais , Metabolismo Basal , Proteínas de Ligação ao Cálcio/metabolismo , Calsequestrina/genética , Calsequestrina/metabolismo , Golpe de Calor/genética , Humanos , Hipertermia Maligna/genética , Hipertermia Maligna/metabolismo , Camundongos , Camundongos Knockout , Consumo de Oxigênio , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
6.
Methods Mol Biol ; 2573: 115-132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36040590

RESUMO

Cardiac gene therapy has been hampered by off-target expression of gene of interest irrespective of variety of delivery methods. To overcome this issue, cardiac-specific promoters provide target tissue specificity, although expression is often debilitated compared to that of ubiquitous promoters. We have previously shown that sarcolipin promoter with an enhancer calsequestrin cis-regulatory module 4 (CRM4) combination has an improved atrial specificity. Moreover, it showed a minimal extra-atrial expression, which is a significant advantage for AAV9-mediated cardiac gene therapy. Therefore, it can be a useful tool to study and treat atrial-specific diseases such as atrial fibrillation. In this chapter, we introduce practical and simple methodology for atrial-specific gene therapy using sarcolipin promoter with an enhancer CRM4.


Assuntos
Calsequestrina , Proteolipídeos , Calsequestrina/genética , Calsequestrina/metabolismo , Elementos Facilitadores Genéticos , Átrios do Coração/metabolismo , Proteínas Musculares/genética , Proteolipídeos/metabolismo
7.
Anal Chem ; 94(15): 5875-5882, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35389207

RESUMO

Affinity chromatography utilizing specific interactions between therapeutic proteins and bead-immobilized capturing agents is a standard method for protein purification, but its scalability is limited by long purification times, activity loss by the capturing molecules and/or purified protein, and high costs. Here, we report a platform for purifying therapeutic antibodies via affinity precipitation using the endogenous calcium ion-binding protein, calsequestrin (CSQ), which undergoes a calcium ion-dependent phase transition. In this method, ZZ-CSQ fusion proteins with CSQ and an affinity protein (Z domain of protein A) capture antibodies and undergo multimerization and subsequent aggregation in response to calcium ions, enabling the antibody to be collected by affinity precipitation. After robustly validating and optimizing the performance of the platform, the ZZ-CSQ platform can rapidly purify therapeutic antibodies from industrial harvest feedstock with high purity (>97%) and recovery yield (95% ± 3%). In addition, the ZZ-CSQ platform outperforms protein A-based affinity chromatography (PAC) in removing impurities, yielding ∼20-fold less DNA and ∼4.8-fold less host cell protein (HCP) contamination. Taken together, this platform is rapid, recyclable, scalable, and cost-effective, and it shows antibody-purification performance superior or comparable to that of the standard affinity chromatography method.


Assuntos
Cálcio , Calsequestrina , Anticorpos/metabolismo , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio , Calsequestrina/química , Calsequestrina/genética , Calsequestrina/metabolismo , Cromatografia de Afinidade/métodos , Proteína Estafilocócica A/metabolismo
8.
Mol Cell Biochem ; 477(6): 1789-1801, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35312907

RESUMO

Calsequestrin (CSQ2) is the main Ca2+-binding protein in the sarcoplasmic reticulum of the mammalian heart. In order to understand the function of calsequestrin better, we compared two age groups (young: 4-5 months of age versus adult: 18 months of age) of CSQ2 knock-out mice (CSQ2(-/-)) and littermate wild-type mice (CSQ2(+/+)). Using echocardiography, in adult mice, the basal left ventricular ejection fraction and the spontaneous beating rate were lower in CSQ2(-/-) compared to CSQ2(+/+). The increase in ejection fraction by ß-adrenergic stimulation (intraperitoneal injection of isoproterenol) was lower in adult CSQ2(-/-) versus adult CSQ2(+/+). After hypoxia in vitro (isolated atrial preparations) by gassing the organ bath buffer with 95% N2, force of contraction in electrically driven left atria increased to lower values in young CSQ2(-/-) than in young CSQ2(+/+). In addition, after global ischemia and reperfusion (buffer-perfused hearts according to Langendorff; 20-min ischemia and 15-min reperfusion), the rate of tension development was higher in young CSQ2(-/-) compared to young CSQ2(+/+). Finally, we evaluated signs of inflammation (immune cells, autoantibodies, and fibrosis). However, whereas no immunological alterations were found between all investigated groups, pronounced fibrosis was found in the ventricles of adult CSQ2(-/-) compared to all other groups. We suggest that in young mice, CSQ2 is important for cardiac performance especially in isolated cardiac preparations under conditions of impaired oxygen supply, but with differences between atrium and ventricle. Lack of CSQ2 leads age dependently to fibrosis and depressed cardiac performance in echocardiographic studies.


Assuntos
Cálcio , Calsequestrina , Animais , Cálcio/metabolismo , Calsequestrina/genética , Calsequestrina/metabolismo , Fibrose , Átrios do Coração/metabolismo , Hipóxia/metabolismo , Isquemia/metabolismo , Mamíferos/metabolismo , Camundongos , Camundongos Knockout , Contração Miocárdica , Retículo Sarcoplasmático/metabolismo , Volume Sistólico , Função Ventricular Esquerda
9.
Mol Cell Biochem ; 477(5): 1621-1628, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35220548

RESUMO

Increased concentration of plasma homocysteine (Hcy) is an independent risk factor of cardiovascular disease, yet the mechanism by which hyperhomocysteinemia (HHcy) causes cardiac dysfunction is largely unknown. The aim of present study was to investigate the contribution of sarcoplasmic reticulum to impaired cardiac contractile function in HHCy. HHcy-induced by subcutaneous injection of Hcy (0.45 µmol/g of body weight) twice a day for a period of 2 weeks resulted in significant decrease in developed left ventricular pressure and maximum rate of ventricular relaxation. Our results show that abundances of SR Ca2+-handling proteins, Ca2+-ATPase (SERCA2), calsequestrin and histidine-rich calcium-binding protein are significantly reduced while the content of phospholamban is unchanged. Moreover, we found that increased PLN:SERCA2 ratio results in the inhibition of SERCA2 activity at low free Ca2+ concentrations. We further discovered that HHcy is not associated with increased oxidative stress in SR. Taken together, these findings suggest that disturbances in SR Ca2+ handling, caused by altered protein contents but not oxidative damage, may contribute to impaired cardiac contractility in HHcy.


Assuntos
Hiper-Homocisteinemia , Retículo Sarcoplasmático , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Calsequestrina/metabolismo , Coração/fisiologia , Hiper-Homocisteinemia/induzido quimicamente , Contração Miocárdica , Miocárdio/metabolismo , Ratos , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático
10.
Genes (Basel) ; 14(1)2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36672764

RESUMO

Calsequestrin Type 2 (CASQ2) is a high-capacity, low-affinity, Ca2+-binding protein expressed in the sarcoplasmic reticulum (SR) of the cardiac myocyte. Mutations in CASQ2 have been linked to the arrhythmia catecholaminergic polymorphic ventricular tachycardia (CPVT2) that occurs with acute emotional stress or exercise can result in sudden cardiac death (SCD). CASQ2G112+5X is a 16 bp (339-354) deletion CASQ2 mutation that prevents the protein expression due to premature stop codon. Understanding the subcellular mechanisms of CPVT2 is experimentally challenging because the occurrence of arrhythmia is rare. To obtain an insight into the characteristics of this rare disease, simulation studies using a local control stochastic computational model of the Guinea pig ventricular myocyte investigated how the mutant CASQ2s may be responsible for the development of an arrhythmogenic episode under the condition of ß-adrenergic stimulation or in the slowing of heart rate afterward once ß-adrenergic stimulation ceases. Adjustment of the computational model parameters based upon recent experiments explore the functional changes caused by the CASQ2 mutation. In the simulation studies under rapid pacing (6 Hz), electromechanically concordant cellular alternans appeared under ß-adrenergic stimulation in the CPVT mutant but not in the wild-type nor in the non-ß-stimulated mutant. Similarly, the simulations of accelerating pacing from slow to rapid and back to the slow pacing did not display alternans but did generate early afterdepolarizations (EADs) during the period of second slow pacing subsequent acceleration of rapid pacing.


Assuntos
Calsequestrina , Miócitos Cardíacos , Animais , Cobaias , Miócitos Cardíacos/metabolismo , Calsequestrina/genética , Calsequestrina/metabolismo , Mutação , Arritmias Cardíacas/genética , Adrenérgicos/metabolismo
11.
Bull Exp Biol Med ; 172(2): 117-120, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34855078

RESUMO

We compared the expression of Са2+-ATPase (SERCA2a), calsequestrin (CASQ2), ryanodine receptors (RyR2) proteins and their genes (ATP2A2, CASQ2, and RYR2) in coronary heart disease (CHD) patients with and without comorbid type 2 diabetes mellitus. All studies were performed on the right atrial appendages resected during coronary bypass surgeries. Expression of SERCA2a and RyR2 proteins and their ATP2A2 (p=0.046) and RYR2 genes in comorbid pathology was significantly (p=0.042) higher (by 1.2 and 2 times; p=0.025). The expression of CASQ2 protein and its gene did not differ significantly between the groups (p=0.82 and p=0.066, respectively). It was concluded that the expression of SERCA2a and RyR2 proteins and their genes (but not CASQ2 and its gene) is elevated in CHD associated with type 2 diabetes mellitus. Expression of the studied proteins correlated with the expression of their genes. Increased expression of CASQ2 protein and its gene can probably prevent imbalance of the Ca2+-transporting systems in cardiomyocytes and contractile dysfunction of the myocardium, even in CHD associated with type 2 diabetes mellitus.


Assuntos
Sinalização do Cálcio/genética , Doença das Coronárias , Diabetes Mellitus Tipo 2 , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Idoso , Transporte Biológico/genética , Biópsia , Cálcio/metabolismo , Calsequestrina/genética , Calsequestrina/metabolismo , Estudos de Casos e Controles , Doença das Coronárias/complicações , Doença das Coronárias/genética , Doença das Coronárias/metabolismo , Doença das Coronárias/patologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Expressão Gênica , Humanos , Pessoa de Meia-Idade , Miocárdio/metabolismo , Miócitos Cardíacos/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/patologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
12.
Cells ; 10(11)2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34831044

RESUMO

Calsequestrin 1 (CASQ1) in skeletal muscle buffers and senses Ca2+ in the sarcoplasmic reticulum (SR). CASQ1 also regulates store-operated Ca2+ entry (SOCE) by binding to stromal interaction molecule 1 (STIM1). Abnormal SOCE and/or abnormal expression or mutations in CASQ1, STIM1, or STIM2 are associated with human skeletal, cardiac, or smooth muscle diseases. However, the functional relevance of CASQ1 along with STIM2 has not been studied in any tissue, including skeletal muscle. First, in the present study, it was found by biochemical approaches that CASQ1 is bound to STIM2 via its 92 N-terminal amino acids (C1 region). Next, to examine the functional relevance of the CASQ1-STIM2 interaction in skeletal muscle, the full-length wild-type CASQ1 or the C1 region was expressed in mouse primary skeletal myotubes, and the myotubes were examined using single-myotube Ca2+ imaging experiments and transmission electron microscopy observations. The CASQ1-STIM2 interaction via the C1 region decreased SOCE, increased intracellular Ca2+ release for skeletal muscle contraction, and changed intracellular Ca2+ distributions (high Ca2+ in the SR and low Ca2+ in the cytosol were observed). Furthermore, the C1 region itself (which lacks Ca2+-buffering ability but has STIM2-binding ability) decreased the expression of Ca2+-related proteins (canonical-type transient receptor potential cation channel type 6 and calmodulin 1) and induced mitochondrial shape abnormalities. Therefore, in skeletal muscle, CASQ1 plays active roles in Ca2+ movement and distribution by interacting with STIM2 as well as Ca2+ sensing and buffering.


Assuntos
Calsequestrina/metabolismo , Músculo Esquelético/metabolismo , Molécula 2 de Interação Estromal/metabolismo , Animais , Cálcio/metabolismo , Calsequestrina/química , Citosol/metabolismo , Dinaminas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Humanos , Espaço Intracelular/metabolismo , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Modelos Moleculares , Contração Muscular , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/ultraestrutura , Ligação Proteica , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
13.
Circ Res ; 128(3): 321-331, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33297863

RESUMO

RATIONALE: The class Ic antiarrhythmic drug flecainide prevents ventricular tachyarrhythmia in patients with catecholaminergic polymorphic ventricular tachycardia (CPVT), a disease caused by hyperactive RyR2 (cardiac ryanodine receptor) mediated calcium (Ca) release. Although flecainide inhibits single RyR2 channels in vitro, reports have claimed that RyR2 inhibition by flecainide is not relevant for its mechanism of antiarrhythmic action and concluded that sodium channel block alone is responsible for flecainide's efficacy in CPVT. OBJECTIVE: To determine whether RyR2 block independently contributes to flecainide's efficacy for suppressing spontaneous sarcoplasmic reticulum Ca release and for preventing ventricular tachycardia in vivo. METHODS AND RESULTS: We synthesized N-methylated flecainide analogues (QX-flecainide and N-methyl flecainide) and showed that N-methylation reduces flecainide's inhibitory potency on RyR2 channels incorporated into artificial lipid bilayers. N-methylation did not alter flecainide's inhibitory activity on human cardiac sodium channels expressed in HEK293T cells. Antiarrhythmic efficacy was tested utilizing a Casq2 (cardiac calsequestrin) knockout (Casq2-/-) CPVT mouse model. In membrane-permeabilized Casq2-/- cardiomyocytes-lacking intact sarcolemma and devoid of sodium channel contribution-flecainide, but not its analogues, suppressed RyR2-mediated Ca release at clinically relevant concentrations. In voltage-clamped, intact Casq2-/- cardiomyocytes pretreated with tetrodotoxin to inhibit sodium channels and isolate the effect of flecainide on RyR2, flecainide significantly reduced the frequency of spontaneous sarcoplasmic reticulum Ca release, while QX-flecainide and N-methyl flecainide did not. In vivo, flecainide effectively suppressed catecholamine-induced ventricular tachyarrhythmias in Casq2-/- mice, whereas N-methyl flecainide had no significant effect on arrhythmia burden, despite comparable sodium channel block. CONCLUSIONS: Flecainide remains an effective inhibitor of RyR2-mediated arrhythmogenic Ca release even when cardiac sodium channels are blocked. In mice with CPVT, sodium channel block alone did not prevent ventricular tachycardia. Hence, RyR2 channel inhibition likely constitutes the principal mechanism of antiarrhythmic action of flecainide in CPVT.


Assuntos
Antiarrítmicos/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Flecainida/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Retículo Sarcoplasmático/efeitos dos fármacos , Taquicardia Ventricular/prevenção & controle , Potenciais de Ação , Animais , Sinalização do Cálcio , Calsequestrina/genética , Calsequestrina/metabolismo , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Masculino , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Fosforilação , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Carneiro Doméstico , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
14.
Exp Mol Med ; 52(12): 1908-1925, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33288873

RESUMO

Calsequestrin (CASQ) was discovered in rabbit skeletal muscle tissues in 1971 and has been considered simply a passive Ca2+-buffering protein in the sarcoplasmic reticulum (SR) that provides Ca2+ ions for various Ca2+ signals. For the past three decades, physiologists, biochemists, and structural biologists have examined the roles of the skeletal muscle type of CASQ (CASQ1) in skeletal muscle and revealed that CASQ1 has various important functions as (1) a major Ca2+-buffering protein to maintain the SR with a suitable amount of Ca2+ at each moment, (2) a dynamic Ca2+ sensor in the SR that regulates Ca2+ release from the SR to the cytosol, (3) a structural regulator for the proper formation of terminal cisternae, (4) a reverse-directional regulator of extracellular Ca2+ entries, and (5) a cause of human skeletal muscle diseases. This review is focused on understanding these functions of CASQ1 in the physiological or pathophysiological status of skeletal muscle.


Assuntos
Calsequestrina/metabolismo , Músculo Esquelético/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/metabolismo , Calsequestrina/química , Calsequestrina/genética , Suscetibilidade a Doenças , Acoplamento Excitação-Contração , Regulação da Expressão Gênica , Humanos , Fosforilação , Isoformas de Proteínas , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade
15.
Sci Rep ; 10(1): 18115, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093545

RESUMO

Calsequestrin is among the most abundant proteins in muscle sarcoplasmic reticulum and displays a high capacity but a low affinity for Ca2+ binding. In mammals, calsequestrin is encoded by two genes, CASQ1 and CASQ2, which are expressed almost exclusively in skeletal and cardiac muscles, respectively. Phylogenetic analysis indicates that calsequestrin is an ancient gene in metazoans, and that the duplication of the ancestral calsequestrin gene took place after the emergence of the lancelet. CASQ2 gene variants associated with catecholaminergic polymorphic ventricular tachycardia (CPVT) in humans are positively correlated with a high degree of evolutionary conservation across all calsequestrin homologues. The mutations are distributed in diverse locations of the calsequestrin protein and impart functional diversity but remarkably manifest in a similar phenotype in humans.


Assuntos
Cálcio/metabolismo , Calsequestrina/genética , Calsequestrina/metabolismo , Cardiopatias/patologia , Mutação , Filogenia , Sequência de Aminoácidos , Animais , Sinalização do Cálcio , Calsequestrina/química , Cardiopatias/genética , Cardiopatias/metabolismo , Humanos , Fenótipo , Conformação Proteica , Homologia de Sequência de Aminoácidos
16.
Nat Struct Mol Biol ; 27(12): 1142-1151, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046906

RESUMO

Mutations in the calcium-binding protein calsequestrin cause the highly lethal familial arrhythmia catecholaminergic polymorphic ventricular tachycardia (CPVT). In vivo, calsequestrin multimerizes into filaments, but there is not yet an atomic-resolution structure of a calsequestrin filament. We report a crystal structure of a human cardiac calsequestrin filament with supporting mutational analysis and in vitro filamentation assays. We identify and characterize a new disease-associated calsequestrin mutation, S173I, that is located at the filament-forming interface, and further show that a previously reported dominant disease mutation, K180R, maps to the same surface. Both mutations disrupt filamentation, suggesting that disease pathology is due to defects in multimer formation. An ytterbium-derivatized structure pinpoints multiple credible calcium sites at filament-forming interfaces, explaining the atomic basis of calsequestrin filamentation in the presence of calcium. Our study thus provides a unifying molecular mechanism through which dominant-acting calsequestrin mutations provoke lethal arrhythmias.


Assuntos
Cálcio/química , Calsequestrina/química , Miocárdio/metabolismo , Taquicardia Ventricular/genética , Adulto , Sítios de Ligação , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Calsequestrina/genética , Calsequestrina/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Expressão Gênica , Genes Dominantes , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Masculino , Pessoa de Meia-Idade , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Mutação , Miocárdio/patologia , Linhagem , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/patologia
17.
PLoS Comput Biol ; 16(9): e1007728, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32970668

RESUMO

Calcium oscillations and waves induce depolarization in cardiac cells which are believed to cause life-threathening arrhythimas. In this work, we study the conditions for the appearance of calcium oscillations in both a detailed subcellular model of calcium dynamics and a minimal model that takes into account just the minimal ingredients of the calcium toolkit. To avoid the effects of homeostatic changes and the interaction with the action potential we consider the somewhat artificial condition of a cell without pacing and with no calcium exchange with the extracellular medium. Both the full subcellular model and the minimal model present the same scenarios depending on the calcium load: two stationary states, one with closed ryanodine receptors (RyR) and most calcium in the cell stored in the sarcoplasmic reticulum (SR), and another, with open RyRs and a depleted SR. In between, calcium oscillations may appear. The robustness of these oscillations is determined by the amount of calsequestrin (CSQ). The lack of this buffer in the SR enhances the appearance of oscillations. The minimal model allows us to relate the stability of the oscillating state to the nullcline structure of the system, and find that its range of existence is bounded by a homoclinic and a Hopf bifurcation, resulting in a sudden transition to the oscillatory regime as the cell calcium load is increased. Adding a small amount of noise to the RyR behavior increases the parameter region where oscillations appear and provides a gradual transition from the resting state to the oscillatory regime, as observed in the subcellular model and experimentally.


Assuntos
Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Calsequestrina/metabolismo , Modelos Biológicos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Processos Estocásticos , Frações Subcelulares/metabolismo
18.
Cell Calcium ; 90: 102242, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32574906

RESUMO

Calsequestrin is the major Ca2+ binding protein in the sarcoplasmic reticulum (SR), serves as the main Ca2+ storage and buffering protein and is an important regulator of Ca2+ release channels in both skeletal and cardiac muscle. It is anchored at the junctional SR membrane through interactions with membrane proteins and undergoes reversible polymerization with increasing Ca2+ concentration. Calsequestrin provides high local Ca2+ at the junctional SR and communicates changes in luminal Ca2+ concentration to Ca2+ release channels, thus it is an essential component of excitation-contraction coupling. Recent studies reveal new insights on calsequestrin trafficking, Ca2+ binding, protein evolution, protein-protein interactions, stress responses and the molecular basis of related human muscle disease, including catecholaminergic polymorphic ventricular tachycardia (CPVT). Here we provide a comprehensive overview of calsequestrin, with recent advances in structure, diverse functions, phylogenetic analysis, and its role in muscle physiology, stress responses and human pathology.


Assuntos
Calsequestrina/química , Calsequestrina/genética , Sequência de Aminoácidos , Animais , Calsequestrina/metabolismo , Humanos , Íons , Modelos Biológicos , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Retículo Sarcoplasmático/metabolismo
19.
Mol Ther ; 28(1): 171-179, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31607542

RESUMO

Recessive forms of catecholaminergic polymorphic ventricular tachycardia (CPVT) are induced by mutations in genes encoding triadin or calsequestrin, two proteins that belong to the Ca2+ release complex, responsible for intracellular Ca2+ release triggering cardiac contractions. To better understand the mechanisms of triadin-induced CPVT and to assay multiple therapeutic interventions, we used a triadin knockout mouse model presenting a CPVT-like phenotype associated with a decrease in calsequestrin protein level. We assessed different approaches to rescue protein expression and to correct intracellular Ca2+ release and cardiac function: pharmacological treatment with kifunensine or a viral gene transfer-based approach, using adeno-associated virus serotype 2/9 (AAV2/9) encoding the triadin or calsequestrin. We observed that the levels of triadin and calsequestrin are intimately linked, and that reduction of both proteins contributes to the CPVT phenotype. Different combinations of triadin and calsequestrin expression level were obtained using these therapeutic approaches. A full expression of each is not necessary to correct the phenotype; a fine-tuning of the relative re-expression of both triadin and calsequestrin is required to correct the CPVT phenotype and rescue the cardiac function. AAV-mediated gene delivery of calsequestrin or triadin and treatment with kifunensine are potential treatments for recessive forms of CPVT due to triadin mutations.


Assuntos
Calsequestrina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Musculares/metabolismo , Taquicardia Ventricular/metabolismo , Alcaloides/uso terapêutico , Animais , Arritmias Cardíacas/tratamento farmacológico , Cálcio/metabolismo , Sinalização do Cálcio/genética , Calsequestrina/genética , Dependovirus , Modelos Animais de Doenças , Terapia Genética/métodos , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/genética , Miócitos Cardíacos/metabolismo , Parvovirinae/genética , Fenótipo , Ratos , Taquicardia Ventricular/tratamento farmacológico , Taquicardia Ventricular/patologia , Transdução Genética , Transfecção
20.
J Theor Biol ; 482: 109986, 2019 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-31465729

RESUMO

Reported experimental results, in which transient elevations of sarcoplasmic calcium levels are induced by caffeine in smooth muscle cells, apparently contradict the principle of mass conservation. The commonly accepted model assumes that the total number of Ca2+ binding sites is fixed. A former work dealing with this problem proved that assuming the presence within the reticulum of calcium sequestering proteins whose total number of calcium binding sites increases as the existent sites get occupied, is enough to explain the above referred counter-intuitive experimental results. However, no chemical explanation was given to account for this binding-site count increase. In the present work, we propose a chemical-kinetics scheme for the binding of calcium to calsequestrin (a protein found within the reticulum) and the polymerization of this protein. On the one hand, this scheme is in agreement with reported results on calsequestrin binding kinetics, but it is also fully capable of explaining the observed intriguing performance of the sarcoplasmic reticulum. We further explore the behavior of the resulting nonlinear dynamic system and discuss possible physiological implications of the proposed scheme.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Multimerização Proteica/fisiologia , Retículo Sarcoplasmático/metabolismo , Animais , Cafeína/farmacologia , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Calsequestrina/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Cinética , Modelos Teóricos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Polimerização/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Retículo Sarcoplasmático/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...