Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124266, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38599024

RESUMO

To efficiently detect the maturity stages of Camellia oleifera fruits, this study proposed a non-invasive method based on hyperspectral imaging technology. First, a portable hyperspectral imager was used for the in-field image acquisition of Camellia oleifera fruits at three maturity stages, and ten quality indexes were measured as reference standards. Then, factor analysis was performed to obtain the comprehensive maturity index (CMI) by analyzing the change trends and correlations of different indexes. To reduce the high dimensionality of spectral data, the successive projection algorithm (SPA) was employed to select effective feature wavelengths. The prediction models for CMI, including partial least squares regression (PLSR), support vector regression (SVR), extreme learning machine (ELM), and convolutional neural network regression (CNNR), were constructed based on full spectra and feature wavelengths; for CNNR, only the raw spectra were used as input. The SPA-CNNR model exhibited more promising performance (RP = 0.839, RMSEP = 0.261, and RPD = 1.849). Furthermore, PLS-DA models for maturity discrimination of Camellia oleifera fruits were developed using full wavelength, characteristic wavelengths and their fusion CMI, respectively. The PLS-DA model using the fused dataset achieved the highest maturity classification accuracy, with the best simplified model achieving 88.6 % accuracy in prediction set. This study indicated that a portable hyperspectral imager can be used for in-field determination of the internal quality and maturity stages of Camellia oleifera fruits. It provides strong support for non-destructive quality inspection and timely harvesting of Camellia oleifera fruits in the field.


Assuntos
Camellia , Frutas , Camellia/química , Camellia/crescimento & desenvolvimento , Frutas/química , Frutas/crescimento & desenvolvimento , Análise dos Mínimos Quadrados , Imageamento Hiperespectral/métodos , Algoritmos , Redes Neurais de Computação , Máquina de Vetores de Suporte
2.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360902

RESUMO

Acyl-CoA:lysophosphatidylethanolamine acyltransferases (LPEATs) are known as enzymes utilizing acyl-CoAs and lysophospholipids to produce phosphatidylethanolamine. Recently, it has been discovered that they are also involved in the growth regulation of Arabidopsis thaliana. In our study we investigated expression of each Camelina sativa LPEAT isoform and their behavior in response to temperature changes. In order to conduct a more extensive biochemical evaluation we focused both on LPEAT enzymes present in microsomal fractions from C. sativa plant tissues, and on cloned CsLPEAT isoforms expressed in yeast system. Phylogenetic analyses revealed that CsLPEAT1c and CsLPEAT2c originated from Camelina hispida, whereas other isoforms originated from Camelina neglecta. The expression ratio of all CsLPEAT1 isoforms to all CsLPEAT2 isoforms was higher in seeds than in other tissues. The isoforms also displayed divergent substrate specificities in utilization of LPE; CsLPEAT1 preferred 18:1-LPE, whereas CsLPEAT2 preferred 18:2-LPE. Unlike CsLPEAT1, CsLPEAT2 isoforms were specific towards very-long-chain fatty acids. Above all, we discovered that temperature strongly regulates LPEATs activity and substrate specificity towards different acyl donors, making LPEATs sort of a sensor of external thermal changes. We observed the presented findings not only for LPEAT activity in plant-derived microsomal fractions, but also for yeast-expressed individual CsLPEAT isoforms.


Assuntos
Aciltransferases/metabolismo , Camellia/enzimologia , Camellia/genética , Fosfatidiletanolaminas/metabolismo , Proteínas de Plantas/metabolismo , Sementes/enzimologia , Temperatura , Acil Coenzima A/metabolismo , Aciltransferases/genética , Camellia/classificação , Camellia/crescimento & desenvolvimento , Resposta ao Choque Frio , DNA de Plantas/genética , Ativação Enzimática , Resposta ao Choque Térmico , Isoenzimas/genética , Microssomos/enzimologia , Filogenia , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Especificidade por Substrato
3.
BMC Plant Biol ; 21(1): 348, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301189

RESUMO

BACKGROUND: The oil-tea tree (Camellia oleifera Abel.) is a woody tree species that produces edible oil in the seed. C. oleifera oil has high nutritional value and is also an important raw material for medicine and cosmetics. In China, due to the uncertainty on maturity period and oil synthesis mechanism of many C. oleifera cultivars, growers may harvest fruits prematurely, which could not maximize fruit and oil yields. In this study, our objective was to explore the mechanism and differences of oil synthesis between two Camellia oleifera cultivars for a precise definition of the fruit ripening period and the selection of appropriate cultivars. RESULTS: The results showed that 'Huashuo' had smaller fruits and seeds, lower dry seed weight and lower expression levels of fatty acid biosynthesis genes in July. We could not detect the presence of oil and oil bodies in 'Huashuo' seeds until August, and oil and oil bodies were detected in 'Huajin' seeds in July. Moreover, 'Huashuo' seeds were not completely blackened in October with up to 60.38% of water and approximately 37.98% of oil in seed kernels whose oil content was much lower than normal mature seed kernels. The oil bodies in seed endosperm cells of 'Huajin' were always higher than those of 'Huashuo' from July to October. CONCLUSION: Our results confirmed that C. oleifera 'Huashuo' fruits matured at a lower rate compared to 'Huajin' fruits and that 'Huajin' seeds entered the oil synthesis period earlier than 'Huashuo' seeds. Moreover, 'Huashuo' fruits did not mature during the Frost's Descent period (October 23-24 each year).


Assuntos
Camellia/crescimento & desenvolvimento , Camellia/genética , Camellia/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/genética , Frutas/metabolismo , Óleos de Plantas/metabolismo , China , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Ácidos Graxos/metabolismo , Variação Genética , Genótipo , Melhoramento Vegetal , Plantas Medicinais/genética , Plantas Medicinais/crescimento & desenvolvimento , Plantas Medicinais/metabolismo , Transcriptoma
4.
Can J Microbiol ; 67(5): 349-357, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33769090

RESUMO

Arbuscular mycorrhizal (AM) fungi play an important role in the acquisition of phosphorus (P) by plants. The external hyphae of AM fungi function as an extension of plant roots and may downregulate related functions in the roots. It is not clear whether the ability of AM fungi to mineralize organic P affects root phosphatase activities. A pot experiment was conducted to investigate the effect of Funneliformis mosseae on soil organic P mineralization under phytate application and to explore root phosphatase activities, P uptake, and growth in Camellia oleifera Abel. The plants and their growth substrates were harvested 4 and 8 months after planting. The results showed that organic P application had no effect on the total dry mass of nonmycorrhizal plants, but differences in dry mass under P application were observed in mycorrhizal plants in both harvests. Inoculation with F. mosseae increased soil acid phosphatase, phytase, and alkaline phosphatase activities and reduced the soil organic P content. Mycorrhizal plants had higher root activity, shoot and root P contents and root acid phosphatase and phytase activities than nonmycorrhizal plants irrespective of organic P application. In conclusion, AM fungi enhanced the mineralization of soil organic P and positively affect root phosphatase activities.


Assuntos
Camellia/metabolismo , Camellia/microbiologia , Fungos/enzimologia , Organofosfatos/análise , Fósforo/análise , Microbiologia do Solo , Camellia/crescimento & desenvolvimento , Interações entre Hospedeiro e Microrganismos , Micorrizas/enzimologia , Organofosfatos/metabolismo , Fósforo/metabolismo , Raízes de Plantas/microbiologia , Solo/química , Simbiose
5.
Cells ; 11(1)2021 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-35011633

RESUMO

Tea oil camellia (Camellia oleifera), an important woody oil tree, is a source of seed oil of high nutritional and medicinal value that is widely planted in southern China. However, there is no report on the identification of the miRNAs involved in lipid metabolism and seed development in the high- and low-oil cultivars of tea oil camellia. Thus, we explored the roles of miRNAs in the key periods of oil formation and accumulation in the seeds of tea oil camellia and identified miRNA-mRNA regulatory modules involved in lipid metabolism and seed development. Sixteen small RNA libraries for four development stages of seed oil biosynthesis in high- and low-oil cultivars were constructed. A total of 196 miRNAs, including 156 known miRNAs from 35 families, and 40 novel miRNAs were identified, and 55 significantly differentially expressed miRNAs were found, which included 34 upregulated miRNAs, and 21 downregulated miRNAs. An integrated analysis of the miRNA and mRNA transcriptome sequence data revealed that 10 miRNA-mRNA regulatory modules were related to lipid metabolism; for example, the regulatory modules of ath-miR858b-MYB82/MYB3/MYB44 repressed seed oil biosynthesis, and a regulation module of csi-miR166e-5p-S-ACP-DES6 was involved in the formation and accumulation of oleic acid. A total of 23 miRNA-mRNA regulatory modules were involved in the regulation of the seed size, such as the regulatory module of hpe-miR162a_L-2-ARF19, involved in early seed development. A total of 12 miRNA-mRNA regulatory modules regulating growth and development were identified, such as the regulatory modules of han-miR156a_L+1-SPL4/SBP2, promoting early seed development. The expression changes of six miRNAs and their target genes were validated using quantitative real-time PCR, and the targeting relationship of the cpa-miR393_R-1-AFB2 regulatory module was verified by luciferase assays. These data provide important theoretical values and a scientific basis for the genetic improvement of new cultivars of tea oil camellia in the future.


Assuntos
Camellia/genética , Camellia/metabolismo , Redes Reguladoras de Genes , Metabolismo dos Lipídeos/genética , MicroRNAs/genética , Óleos de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Árvores/genética , Sequência de Bases , Camellia/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , MicroRNAs/metabolismo , Nucleotídeos/genética , Tamanho do Órgão/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Sementes/anatomia & histologia
6.
Sci Rep ; 10(1): 20676, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33244073

RESUMO

To assess the adaptability of Camellia oleifera for introduction in new growth locations, this study evaluated 10 representative C. oleifera cultivars from the main areas in China where this oil-producing evergreen crop is grown. Cluster analysis, correlation analysis, and membership function analysis were used to evaluate various indices of the selected C. oleifera cultivars, including flowering phenology, cold tolerance, leaf structure, pollen characteristics, and pollen viability. The correlation analysis identified the full blossoming time, leaf palisade and spongy tissue thickness, pollen deformity rate, and pollen activity as key indices for determining the adaptability of the cultivars to new areas. The membership function analysis of the 10 C. oleifera cultivars revealed the following order of adaptability: 'XLC25' > 'Changlin4hao' > 'Ganzhouyou8hao' > 'Ganzhouyou6hao' > 'Tiechengyihao' > 'Eyou465' > 'XLC10' > 'Changlin3hao' > 'Changlin18hao' > 'QY235.' When introducing C. oleifera cultivars to new regions, the higher-ranked cultivars are more likely to be successful. The results of this study may provide a new direction for the comprehensive assessment of plant introduction and domestication potential, i.e., the assessment of the vegetative and reproductive growth, adversity resistance, and blossoming time of plants.


Assuntos
Camellia/crescimento & desenvolvimento , China , Flores/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Pólen/crescimento & desenvolvimento
7.
PLoS One ; 15(9): e0238227, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32886691

RESUMO

Intensive management of C. oleifera has produced many pure C. oleifera plantations. The transmission of C. oleifera plantation will potentially affect soil C, N, and P pools as well as their stoichiometric characteristics both in top soil layer and vertical soil profile due to the intensive management. To understand changes in vertical pools and stoichiometric characteristics of soil C, N, and P as affected by intensive management of C. oleifera plantations, both mixed and pure C. oleifera plantations were studied. We conducted studies in five locations in Jiangxi, China with both pure and mixed C. oleifera plantations, to compare changes in vertical pools and stoichiometry of C, N, and P. Both C and N pools were significantly different between mixed and pure plantation types of C. oleifera. However, the ratio of C:N, C:P, and N:P was consistently higher in mixed plantations with C:P and N:P altered but C:N ratio did not change with soil depth. The intensive management significantly impact both C and N pools and the stoichiometry of C, N, and P. Intensive management of C. oleifera plantations decreased both C and N pools, especially at the depth of 30-50 cm soil layer. C. oleifera plantation alteration from mixed to pure should be considered in future forest management practice considering the substantial effects on soil element cycling and distribution along vertical soil profile.


Assuntos
Agricultura/métodos , Camellia/crescimento & desenvolvimento , Camellia/metabolismo , Carbono/análise , Nitrogênio/análise , Fósforo/análise , Solo/química
8.
Transgenic Res ; 29(4): 409-418, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32748170

RESUMO

Seedling stand establishment is a critical factor affecting crop yield in low-precipitation agricultural regions. This is especially true for small seeded crops, such as Camelina (Camelina sativa) and canola (Brassica napus), that need to be planted shallow. Deeper planting would be desirable so that seeds can access soil moisture and bigger seeds could improve emergence and stand establishment by providing the energy necessary for seedling elongation. AHL (AT-Hook Containing, Nuclear Localized) genes play an important role in seedling growth and development. AHL proteins contain two structural units, the DNA-binding AT-hook motif and the Plant and Prokaryote Conserved (PPC) domain, required for protein-protein interactions. Our previous studies demonstrate that AtAHL29/SOB3 (Suppressor of phytochrome B-4 #3) regulates seedling development in Arabidopsis (Arabidopsis thaliana). Activation-tagged overexpression of AtSOB3 (Atsob3-D) represses the long-hypocotyl phenotype of an Arabidopsis phytochrome B mutant. In contrast, overexpression of the Atsob3-6 variant (Atsob3-6-OX), with a non-functional AT-hook, confers a long-hypocotyl phenotype. In this study, we demonstrate the role of Atsob3-D and Atsob3-6-OX in modulating seed size and hypocotyl length in the brassicas Arabidopsis and Camelina. In Arabidopsis, Atsob3-D reduces seed weight whereas Atsob3-6-OX increases seed weight and size when compared to the wild type. Similarly, Atsob3-6-OX transgenic Camelina seedlings are taller than the wild type, and produce larger and heavier seeds. These larger Atsob3-6-OX Camelina seeds also confer better emergence in deep-soil planting when compared to the wild type. Taken together, Atsob3-6-OX increases seed size, seed weight, seedling hypocotyl length and stand establishment in the oilseed crop Camelina.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Camellia/anatomia & histologia , Camellia/crescimento & desenvolvimento , Variação Genética , Sementes/anatomia & histologia , Sementes/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Camellia/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Sementes/genética
9.
PLoS One ; 15(7): e0235795, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32645115

RESUMO

To investigate the growth, physiological changes and mechanism of drought resistance of Camellia oleifera GWu-2 under drought stress conditions, changes in the main growth and physiological indices of GWu-2 under different water gradients were studied. Factor analysis was used to study the differences between indicators under different water gradients, and correlation analysis was implemented to analyze the relationship between different factors. We observed that the growth state, enzyme secretion, stomatal morphology and leaf osmotic adjustment substances were significantly affected by drought stress. In particular, increases in leaf abscisic acid (ABA), indole acetic acid (IAA) and methyl jasmonate (MeJA) contents under drought stress were negatively correlated with the stomatal opening degree, and the ratio of ZR/GA3 was significantly correlated with the growth and physiological indicators of GWu-2, indicating that different hormones respond differently to drought stress and have different functions in the growth regulation and drought resistance of GWu-2. We concluded that the drought resistance mechanism of GWu-2 was controlled by maintaining root growth to obtain the necessary water, increasing the contents of osmotic substances of leaves to maintain water holding capacity, reducing the transpiration of water by increasing leaf ABA, IAA and MeJA content to close stomata and reducing the damage caused by drought by increasing the activity of superoxide dismutase (SOD).


Assuntos
Aclimatação , Camellia/fisiologia , Ácido Abscísico/metabolismo , Acetatos/metabolismo , Camellia/crescimento & desenvolvimento , Ciclopentanos/metabolismo , Secas , Ácidos Indolacéticos/metabolismo , Oxilipinas/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/fisiologia , Estresse Fisiológico , Água/metabolismo
10.
Planta ; 252(1): 4, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32524208

RESUMO

MAIN CONCLUSIONS: The main source of polyunsaturated acyl-CoA in cytoplasmic acyl-CoA pool of Camelina sativa seeds are fatty acids derived from phosphatidylcholine followed by phosphatidic acid. Contribution of phosphatidylethanolamine is negligible. While phosphatidylethanolamine (PE) is the second most abundant phospholipid, phosphatidic acid (PA) only constitutes a small fraction of C. sativa seeds' polar lipids. In spite of this, the relative contribution of PA in providing fatty acids for the synthesis of acyl-CoA, supplying cytosolic acyl-CoA pool seems to be much higher than the contribution of PE. Our data indicate that up to 5% of fatty acids present in mature C. sativa seeds are first esterified with PA, in comparison to 2% first esterified with PE, before being transferred into acyl-CoA pool via backward reactions of either acyl-CoA:lysophosphatidic acid acyltransferases (CsLPAATs) or acyl-CoA:lysophoshatidylethanolamine acyltransferases (CsLPEATs). Those acyl-CoAs are later reused for lipid biosynthesis or remodelling. In the forward reactions both aforementioned acyltransferases display the highest activity at 30 °C. The spectrum of optimal pH differs for both enzymes with CsLPAATs most active between pH 7.5-9.0 and CsLPEATs between pH 9.0 to 10.0. Whereas addition of magnesium ions stimulates CsLPAATs, calcium and potassium ions inhibit them in concentrations of 0.05-2.0 mM. All three types of ions inhibit CsLPEATs activity. Both tested acyltransferases present the highest preferences towards 16:0-CoA and unsaturated 18-carbon acyl-CoAs in forward reactions. However, CsLPAATs preferentially utilise 18:1-CoA and CsLPEATs preferentially utilise 18:2-CoA while catalysing fatty acid remodelling of PA and PE, respectively.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Camellia/enzimologia , Ácidos Fosfatídicos/metabolismo , Fosfatidiletanolaminas/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Acil Coenzima A/metabolismo , Camellia/genética , Camellia/crescimento & desenvolvimento , Ácidos Graxos/metabolismo , Lisofosfolipídeos/metabolismo , Fosfatidilcolinas/metabolismo , Sementes/enzimologia , Sementes/genética , Sementes/crescimento & desenvolvimento
11.
PLoS One ; 15(4): e0232096, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32339210

RESUMO

Endophytic bacteria, which are common in plant tissues, may help to control plant pathogens and enhance plant growth. Camellia oleifera, an oil-producing plant, is widely grown in warm, subtropical, hilly regions in China. However, C. oleifera is strongly negatively affected by C. oleifera anthracnose, which is caused by Colletetrichum fructicola. To find a suitable biocontrol agent for C. oleifera anthracnose, 41 endophytes were isolated from the stems, leaves, and roots of C. oleifera. Bacterial cultures were identified based on analyses of 16S rDNA sequences; most strains belonged to the genus Bacillus. The antagonistic effects of these strains on C. fructicola were tested in vitro. In total, 16 strains inhibited C. fructicola growth, with B. subtilis strain 1-L-29 being the most efficient. Strain 1-L-29 demonstrated antagonistic activity against C. siamense, C. asianum, Fusarium proliferatum, Agaricodochium camellia, and Pseudomonas syringae. In addition, this strain produced indole acetic acid, solubilized phosphate, grew on N-free media, and produced siderophores. To facilitate further microecological studies of this strain, a rifampicin-resistant, green fluorescent protein (GFP)-labeled strain, 1-L-29gfpr, was created using protoplast transformation. This plasmid had good segregational stability. Strain 1-L-29gfpr was re-introduced into C. oleifera and successfully colonized root, stem, and leaf tissues. This strain remained at a stable concentration in the root more than 20 d after inoculation. Fluorescence microscopic analysis showed that strain 1-L-29gfpr thoroughly colonized the root surfaces of C. fructicola as well as the root vascular tissues of Arabidopsis thaliana.


Assuntos
Antibacterianos/metabolismo , Bacillus subtilis/metabolismo , Camellia/crescimento & desenvolvimento , Endófitos/metabolismo , Doenças das Plantas/prevenção & controle , Raízes de Plantas/crescimento & desenvolvimento , Bacillus subtilis/classificação , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/isolamento & purificação , Camellia/metabolismo , Camellia/microbiologia , Endófitos/crescimento & desenvolvimento , Endófitos/isolamento & purificação , Controle Biológico de Vetores , Desenvolvimento Vegetal , Doenças das Plantas/microbiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia
12.
PLoS One ; 15(3): e0230602, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210466

RESUMO

This study investigated the co-compost product of the shell and seed cake of Camellia oleifera Abel, which is a small evergreen tree in the family Theaceae. Tannin and saponin contents in compost samples at different time-points and their compositional changes, as well as their relationships with nutrients and compost maturity, were analyzed using an UPLC-triple-TOF/MS system. Our results showed that tannins in the compost samples mainly consisted of 11 phenolic acid compounds, of which four small-molecule phenolic acid compounds were found in low contents. Saponins mainly consisted of five saponin aglycones (A, B, C, D, E) and four of their derivatives in C. oleifera. Microbially secreted enzymes converted the large-molecule phenolic acid compounds into small-molecule compounds and their derivatives, while saponins were decomposed into saponin aglycones. Contents of tannin and saponin had correlations with the C/N ratio, germination index (GI), and the Solvita maturity index. After composting, the content of tannin was reduced to less than 1%, and the content of saponin was not more than 2%. And compost products were safe.


Assuntos
Camellia/metabolismo , Compostagem/métodos , Saponinas/metabolismo , Taninos/metabolismo , Camellia/química , Camellia/crescimento & desenvolvimento , Carbono/química , Cromatografia Líquida de Alta Pressão , Germinação , Hidroxibenzoatos/análise , Espectrometria de Massas , Nitrogênio/química , Saponinas/análise , Taninos/análise
13.
Ecotoxicol Environ Saf ; 184: 109603, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31473561

RESUMO

Manganese (Mn) pollution in soil, especially around the mining areas, is a severe problem in China. Seeking for effective remediation methods for Mn-contaminated soil is therefore urgent and necessary. Camellia oleifera (C. oleifera) is one of the world's four major woody oil plants, which is widely cultivated in subtropical acidic soils for oil production and has become an important economic and ecological resource in Guangxi Province. Nitrogen (N) is one of the most common limiting factors for plant growth and development in soils. We carried out this study to evaluate the effects of different N fertilization levels (0, 100, 300 and 500 mg kg-1) on the morphological and physiological characteristics of C. oleifera in two soils with different Mn-contamination degrees. The results indicate that N fertilization affected the plant growth and the content of photosynthetic pigments, while C. oleifera accumulated great amounts of Mn in both soils. However, the plant biomass reduced significantly at the high-level N fertilization (≥300 mg kg-1), and the oxidative stress was stimulated under Mn contamination. As a comparison, the plant biomass remained unaffected at the low-level N fertilization (100 mg kg-1), and the ascorbate peroxidase (APX) activity in C. oleifera leaves were enhanced to alleviate the oxidative stress and therefore protecting the plant from Mn contamination. Meanwhile, plants supplemented with a low-level of N fertilizer (100 mg kg-1) had appropriate antioxidant enzyme and nonenzymatic antioxidant activities, which indicates that this was favorable growth conditions for C. oleifera. Thus, the recommended N fertilization level for maintaining plant biomass and increasing Mn accumulation in plant is 100 mg kg-1 N; at which level the efficiency of Mn phytoremediation by C. oleifera can be further enhanced.


Assuntos
Camellia/efeitos dos fármacos , Fertilizantes , Manganês/metabolismo , Nitrogênio/farmacologia , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Biomassa , Camellia/crescimento & desenvolvimento , Camellia/metabolismo , Camellia/fisiologia , China , Fertilizantes/análise , Nitrogênio/análise , Estresse Oxidativo , Solo/química
14.
Cryobiology ; 89: 14-20, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31276669

RESUMO

This study determined the changes in pollen viability of 102 species/cultivars of ornamental plants (affiliated to 32 genera of 14 families) following long-term liquid nitrogen storage in a cryopreservation pollen bank. The goal was to provide information on the safety and stability of pollen cryopreservation technology. Fresh pollen at the time of storage was used as the control, and the study examined the pollen viability of ornamental plants cryopreserved for 8, 9, or 10 years. The results show that pollen of the 102 species/cultivars in the cryopreservation pollen bank retained viability ranging from 1% to 58%, After long-term storage there were changes in viability: 11.76% (12 species/cultivars) had increased viability, 16.67% (17 species/cultivars) had stable viability, and the viability of 71.57% (73 species/cultivars) showed a decreasing trend.


Assuntos
Conservação dos Recursos Naturais/métodos , Criopreservação/métodos , Pólen/crescimento & desenvolvimento , Camellia/crescimento & desenvolvimento , Sobrevivência Celular/fisiologia , Paeonia/crescimento & desenvolvimento , Prunus/crescimento & desenvolvimento
15.
J Exp Bot ; 70(12): 3153-3164, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-30949672

RESUMO

Fruit patterning involves the cooperation of multiple processes, including metabolic change, cell differentiation, and cell expansion. The FRUITFUL (FUL) and SHATTERPROOF1/2 (SHPs) MADS-box genes are master regulators directing fruit patterning in several eudicots. However, the regulatory mechanisms of the FUL-SHP network in different fruit types remain unclear. Here, we characterized the functions of an ortholog (CjPLE) of SHPs from Camellia japonica. We showed that CjPLE was predominantly expressed in stamen and carpel tissues during the early stage of floral development and that transcripts were abundant in the pericarp tissues during fruit development. The ectopic expression of CjPLE in Arabidopsis caused enhanced development of the carpels, whereas no defects in floral identity were observed. To investigate the downstream targets of CjPLE, overexpression transformants were analysed through a callus transformation system in Camellia azalea. We examined the expression levels of potential downstream target genes and found that two previously identified APETALA1-like genes (CjAPL1/2) were significantly up-regulated. We showed that CjPLE directly bound to the CArG motifs in the promoter region of CjAPL1 (the FUL ortholog). Taken together, our results reveal a possible positive regulation of FUL by SHP in the control of fruit development in Camellia.


Assuntos
Camellia/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Camellia/crescimento & desenvolvimento , Camellia/metabolismo , Frutas/genética , Proteínas de Domínio MADS/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Alinhamento de Sequência
16.
Comput Biol Chem ; 79: 1-5, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30684864

RESUMO

Bacillus megaterium strain JX285, isolated from rhizosphere red soil sample, can solubilize inorganic phosphorus, which increases the amount of available phosphorus and promotes plant growth. To investigate the mechanisms underlying phosphate solubilization, we sequenced the entire genome of B. megaterium strain JX285 (CGMCC 1.1621), which comprises a circular chromosome of 5,066,463 bp and seven plasmids of 167,030, 128,297, 60,905, 134,795, 9,598, 37,455, and 6332 bp, respectively. The whole genome sequence includes 5948 protein-coding genes, 124 tRNAs, and 29 rRNAs, and has been deposited at Genbank/EMBL/DDBJ with accession numbers CP018874-CP018881. We detected genes associated with organic acid production, which may be vital for phosphate conversion. Furthermore, phosphatase-encoding genes were also detected. The information embedded in the genome will assist in studying the mechanisms of phosphate solubilization. In conclusion, analysis of the JX285 genome will further our knowledge regarding this strain and may contribute to its biotechnological application.


Assuntos
Bacillus megaterium/genética , Bacillus megaterium/isolamento & purificação , Camellia/microbiologia , Camellia/crescimento & desenvolvimento
17.
PLoS One ; 13(8): e0201896, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30092088

RESUMO

Camellia japonica (Naidong), a Tertiary relict species with a unique biological and cultural characteristic, is a special ecotype of C. japonica and is the northernmost distributed populations of C. japonica in the world. This study investigated the interactive responses of C. japonica (Naidong) to shade and nitrogen deposition focusing on seedling growth, leaf morphology and leaf physiology under two light regimes (15% and 65% of full sunlight to represent deep shade and slight shade respectively) and three nitrogen deposition regimes (0, 6 and 12 g N m-2 year-1) in a greenhouse. After 123 d of treatment, the results showed that the deep shade reduced the growth of seedlings significantly compared to slight shade, but improved the specific leaf area, leaf water content, chlorophyll content and Fv/Fm of plants. Moderate nitrogen (6 g N m-2 year-1) supply increased the crown area, specific leaf area, leaf water content, chlorophyll content and water use efficiency of seedlings. However, high nitrogen (12 g N m-2 year-1) supply reduced the basal diameter, crown area, specific leaf area and leaf water content. No significant interaction of shade and nitrogen deposition on C. japonica (Naidong) was found. There is a threshold of nitrogen deposition for the growth of C. japonica (Naidong). Camellia japonica (Naidong) populations should be protected by collecting of germplasm resources and carrying out the ex situ conservation.


Assuntos
Camellia/crescimento & desenvolvimento , Nitrogênio , Plântula/crescimento & desenvolvimento , Estresse Fisiológico , Luz Solar , Camellia/anatomia & histologia , Camellia/metabolismo , Clorofila/metabolismo , Ambiente Controlado , Nitrogênio/administração & dosagem , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plântula/anatomia & histologia , Plântula/metabolismo , Estresse Fisiológico/fisiologia , Água/metabolismo
18.
Funct Integr Genomics ; 18(6): 659-671, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29948459

RESUMO

Yellow-flowering species are unique in the genus Camellia not only for their bright yellow pigments but also the health-improving substances in petals. However, little is known regarding the biosynthesis pathways of pigments and secondary metabolites. Here, we performed comparative genomics studies in two yellow-flowered species of the genus Camellia with distinctive flowering periods. We obtained 112,190 and 89,609 unigenes from Camellia nitidissima and Camellia chuongtsoensis, respectively, and identified 9547 gene family clusters shared with various plant species and 3414 single-copy gene families. Global gene expression analysis revealed six comparisons of differentially expressed gene sets in different developmental stages of floral bud. Through the identification of orthologous pairs, conserved and specific differentially expressed genes (DEGs) between species were compared. Functional enrichment analysis suggested that the gibberellin (GA) biosynthesis pathway might be related to the alteration of flowering responses. Furthermore, the expression patterns of secondary metabolism pathway genes were analyzed between yellow- and red-flowered Camellias. We showed that the key enzymes involved in glycosylation of flavonoids displayed differential expression patterns, indicating that the direct glycosylation of flavonols rather than anthocyanins was pivotal to coloration and health-improving metabolites in the yellow Camellia petals. Finally, the gene family analysis of UDP-glycosyltransferases revealed an expansion of group C members in C. nitidissima. Through comparative genomics analysis, we demonstrate that changes of gene expression and gene family members are critical to the variation of natural traits. This work provides valuable insights into the molecular regulation of trait adaptations of floral pigmentation and flowering timing.


Assuntos
Camellia/genética , Flores/genética , Família Multigênica/genética , Metabolismo Secundário/genética , Adaptação Fisiológica/genética , Camellia/crescimento & desenvolvimento , Camellia/metabolismo , Flavonoides/genética , Flavonoides/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Genômica , Transcriptoma/genética
19.
Sci Rep ; 8(1): 6637, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29703942

RESUMO

Fruit yield is an important trait for horticultural crops. However, the limited fruit yield of Camellia chekiangoleosa, a novel promising oil tree, restricts the production of oil. The breeding improvement is little due to its long generation time and lack of available genomic sequence. We identified distinct fruit count phenotypes, high-yield (HY) and low-yield (LY). To understand the underlying genetic basis, we focused on global gene discovery and expression levels in floral buds, which affect fruit count. A total of 140,299 de novo assembled unigenes were obtained using RNA-seq technology, and more genes were expressed in HY than in LY. 2395 differentially expressed genes (DEGs) were identified and enriched in membrane, energy metabolism, secondary metabolism, fatty acid biosynthesis and metabolism, and 18 other metabolic pathways. Of the DEGs, twelve identified transcription factors, including AP2, mostly involve in inflorescence and flower development and in hormone networks. Key DEGs in fatty acid biosynthesis (Fab) FabB, FabF, FabZ, and AccD were highly expressed in floral buds and associated with high oil yield in fruits. We hypothesized that a potential link exists between fruit count and its oil yield. These findings help to elucidate the molecular cues affecting fruit count and oil yield.


Assuntos
Camellia/genética , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Estudos de Associação Genética , Óleos de Plantas/metabolismo , Camellia/crescimento & desenvolvimento , Camellia/metabolismo , Redes Reguladoras de Genes , Redes e Vias Metabólicas/genética , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...