Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
J Chromatogr A ; 1722: 464888, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38613932

RESUMO

Liquid-liquid chromatography (LLC) is a separation technique that utilizes a biphasic solvent system as the mobile and stationary phases. The components are separated solely due to their different distributions between the two liquid phases. Gradient change in the mobile phase composition during the chromatographic process is a powerful method for improving the resolution of separation or shortening the process time. Gradient elution readily applies to LLC with biphasic solvent systems in which the stationary phase composition remains nearly constant when the mobile phase composition changes. This work proposes a model-based approach to optimize gradients in LLC and circumvent tedious trial-and-error experiments. The solutes' distribution constant depends on the mobile phase composition. Thus, the distribution constants were described as a function of the content of one of the solvents (= modifier) in the mobile phase. The dispersive and mass-transfer effects in the tubing and the column are modeled with a stage model. Only a few experiments are required to determine the model parameters. After the validation of the model and its parameters, the model can be used for LLC gradient optimization. The proposed approach was demonstrated for a gradient LLC separation of a mixture of four cannabinoids. Two different gradient shapes, one-step and linear gradient, were considered. For a pre-selected minimal purity requirement, the gradient was optimized for maximum process efficiency, defined as the product of productivity and yield. An experiment conducted with the optimized gradient conditions was in good agreement with the simulation, showing the potential of the proposed method.


Assuntos
Canabinoides , Canabinoides/isolamento & purificação , Canabinoides/química , Canabinoides/análise , Cromatografia Líquida/métodos , Solventes/química , Modelos Químicos
2.
J Nat Prod ; 87(4): 722-732, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408345

RESUMO

The first detailed phytochemical analysis of the cannabigerol (CBG)-rich chemotype IV of Cannabis sativa L. resulted in the isolation of the expected cannabigerolic acid/cannabigerol (CBGA/CBG) and cannabidiolic acid/cannabidiol (CBDA/CBD) and of nine new phytocannabinoids (5-13), which were fully characterized by HR-ESIMS and 1D and 2D NMR. These included mono- or dihydroxylated CBGA/CBG analogues, a congener with a truncated side chain (10), cyclocannabigerol B (11), and the CBD derivatives named cannabifuranols (12 and 13). Cyclocannabigerol B and cannabifuranols are characterized by a novel phytocannabinoid structural architecture. The isolated phytocannabinoids were assayed on the receptor channels TRPA1 and TRPM8, unveiling a potent dual TRPA1 agonist/TRPM8 antagonist profile for compounds 6, 7, and 14. Chiral separation of the two enantiomers of 5 resulted in the discovery of a synergistic effect of the two enantiomers on TRPA1.


Assuntos
Canabinoides , Cannabis , Canal de Cátion TRPA1 , Canais de Cátion TRPM , Canais de Potencial de Receptor Transitório , Cannabis/química , Canal de Cátion TRPA1/antagonistas & inibidores , Canabinoides/farmacologia , Canabinoides/química , Canabinoides/isolamento & purificação , Canais de Cátion TRPM/antagonistas & inibidores , Estrutura Molecular , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/química , Humanos , Canabidiol/farmacologia , Canabidiol/química , Canais de Cálcio/metabolismo
3.
Molecules ; 27(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35163863

RESUMO

Cannabis is well-known for its numerous therapeutic activities, as demonstrated in pre-clinical and clinical studies primarily due to its bioactive compounds. The Cannabis industry is rapidly growing; therefore, product development and extraction methods have become crucial aspects of Cannabis research. The evaluation of the current extraction methods implemented in the Cannabis industry and scientific literature to produce consistent, reliable, and potent medicinal Cannabis extracts is prudent. Furthermore, these processes must be subjected to higher levels of scientific stringency, as Cannabis has been increasingly used for various ailments, and the Cannabis industry is receiving acceptance in different countries. We comprehensively analysed the current literature and drew a critical summary of the extraction methods implemented thus far to recover bioactive compounds from medicinal Cannabis. Moreover, this review outlines the major bioactive compounds in Cannabis, discusses critical factors affecting extraction yields, and proposes future considerations for the effective extraction of bioactive compounds from Cannabis. Overall, research on medicinal marijuana is limited, with most reports on the industrial hemp variety of Cannabis or pure isolates. We also propose the development of sustainable Cannabis extraction methods through the implementation of mathematical prediction models in future studies.


Assuntos
Canabinoides/isolamento & purificação , Fracionamento Químico/métodos , Cromatografia Líquida de Alta Pressão/métodos , Maconha Medicinal/química , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Humanos
4.
Sci Rep ; 11(1): 19890, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615971

RESUMO

Hemp (Cannabis sativa L.) synthesizes and accumulates a number of secondary metabolites such as terpenes and cannabinoids. They are mostly deposited as resin into the glandular trichomes occurring on the leaves and, to a major extent, on the flower bracts. In the last few years, hemp for production of high-value chemicals became a major commodity in the U.S. and across the world. The hypothesis was that hemp biomass valorization can be achieved through distillation and procurement of two high-value products: the essential oil (EO) and cannabinoids. Furthermore, the secondary hypothesis was that the distillation process will decarboxylate cannabinoids hence improving cannabinoid composition of extracted hemp biomass. Therefore, this study elucidated the effect of steam distillation on changes in the content and compositional profile of cannabinoids in the extracted biomass. Certified organic CBD-hemp strains (chemovars, varieties) Red Bordeaux, Cherry Wine and Umpqua (flowers and some upper leaves) and a T&H strain that included chopped whole-plant biomass, were subjected to steam distillation, and the EO and cannabinoids profile were analyzed by gas chromatography-mass spectrometry (GC-MS) and HPLC, respectively. The distillation of hemp resulted in apparent decarboxylation and conversion of cannabinoids in the distilled biomass. The study demonstrated a simple method for valorization of CBD-hemp through the production of two high-value chemicals, i.e. EO and cannabinoids with improved profile through the conversion of cannabidiolic acid (CBD-A) into cannabidiol (CBD), cannabichromenic acid (CBC-A) into cannabichromene (CBC), cannabidivarinic acid (CBDV-A) into cannabidivarin (CBDV), cannabigerolic acid (CBG-A) into cannabigerol (CBG), and δ-9-tetrahydrocannabinolic acid (THC-A) into δ-9-tetrahydrocannabinol (THC). In addition, the distilled biomass contained CBN while the non-distilled did not. Distillation improved the cannabinoids profile; e.g. the distilled hemp biomass had 3.4 times higher CBD in variety Red Bordeaux, 5.6 times in Cherry Wine, 9 times in variety Umpqua, and 6 times in T&H compared to the original non-distilled samples, respectively. Most of the cannabinoids remained in the distilled biomass and small amounts of CBD were transferred to the EO. The CBD concentration in the EO was as follows: 5.3% in the EO of Umpqua, 0.15% in the EO of Cherry Wine and Red Bordeaux and 0.06% in the EO of T&H. The main 3 EO constituents were similar but in different ratio; myrcene (23.2%), (E)-caryophyllene (16.7%) and selina-3,7(11)-diene (9.6%) in Cherry Wine; (E)-caryophyllene (~ 20%), myrcene (16.6%), selina-3,7(11)-diene (9.6%), α-humulene (8.0%) in Red Bordeaux; (E)-caryophyllene (18.2%) guaiol (7.0%), 10-epi-γ-eudesmol (6.9%) in Umpqua; and (E)-caryophyllene (30.5%), α-humulene (9.1%), and (E)-α-bisabolene (6.5%) in T&H. In addition, distillation reduced total THC in the distilled biomass. Scanning electron microscopy (SEM) analyses revealed that most of the glandular trichomes in the distilled biomass were not disturbed (remained intact); that suggest a possibility for terpenes evaporation through the epidermal membrane covering the glandular trichomes leaving the cannabinoids in the trichomes. This explained the fact that distillation resulted in terpene extraction while the cannabinoids remained in the distilled material.


Assuntos
Canabinoides/química , Canabinoides/isolamento & purificação , Cannabis/química , Destilação , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Biomassa , Cannabis/metabolismo , Cannabis/ultraestrutura , Cromatografia Líquida de Alta Pressão , Flores/química , Flores/metabolismo , Flores/ultraestrutura , Cromatografia Gasosa-Espectrometria de Massas , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Metabolismo Secundário
5.
J Am Soc Mass Spectrom ; 32(9): 2417-2424, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34399051

RESUMO

Novel psychoactive substances (NPS) are constantly emerging in the drug market, and synthetic cannabinoids (SCs) are included in this NPS family. Forensic laboratories often struggle with these continually emerging SCs, forcing them to develop an untargeted workflow to incorporate these psychoactive drugs in their procedures. Usually, forensic laboratories select analytical methods based on targeted mass spectrometry (MS) technologies for strictly tracking already known NPS. The appropriate way to tackle unknown substances is to develop pipelines for untargeted analysis that include LC-HRMS analytical methods and data analysis. Once established, this strategy would allow drug testing laboratories to be always one step ahead of the new trends concerning the "designer drugs" market. To address this challenge an untargeted workflow based on mass spectrometry data acquisition and data analysis was developed to detect SCs in oral fluid (OF) samples at a low concentration range. The samples were extracted by mixed-mode solid-phase extraction and analyzed by Liquid Chromatography - High-Resolution Mass Spectrometry (LC-HRMS). Tandem mass spectra (MS2) were recorded performing a variable isolation width across a mass range of all theoretical precursor ions (vDIA) after the chromatographic separation. After raw data processing with the MSDial software, the deconvoluted features were sent to GNPS for Feature-Based Molecular Networking (FBMN) construction for nontargeted data mining. The FBMN analysis created a unique integrated network for most of the SCs assessed in the OF at a low level (20 ng/mL). These results demonstrate the potential of an untargeted approach to detect different derivatives of SCs at trace levels for forensic applications.


Assuntos
Canabinoides/análise , Biologia Computacional/métodos , Mineração de Dados/métodos , Saliva/química , Medicamentos Sintéticos/análise , Canabinoides/química , Canabinoides/isolamento & purificação , Cromatografia Líquida/métodos , Humanos , Psicotrópicos/análise , Psicotrópicos/química , Psicotrópicos/isolamento & purificação , Extração em Fase Sólida/métodos , Medicamentos Sintéticos/química , Medicamentos Sintéticos/isolamento & purificação , Espectrometria de Massas em Tandem/métodos
6.
Molecules ; 26(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34361704

RESUMO

Significant growth of interest in cannabis (Cannabis sativa L.), especially its natural anti-inflammatory and antioxidative properties, has been observed recently. This narrative review aimed to present the state of the art of research concerning the anti-inflammatory activity of all classes of cannabinoids published in the last five years. Multimodal properties of cannabinoids include their involvement in immunological processes, anti-inflammatory, and antioxidative effects. Cannabinoids and non-cannabinoid compounds of cannabis proved their anti-inflammatory effects in numerous animal models. The research in humans is missing, and the results are unconvincing. Although preclinical evidence suggests cannabinoids are of value in treating chronic inflammatory diseases, the clinical evidence is scarce, and further well-designed clinical trials are essential to determine the prospects for using cannabinoids in inflammatory conditions.


Assuntos
Analgésicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Canabinoides/uso terapêutico , Cannabis/química , Analgésicos/química , Analgésicos/classificação , Analgésicos/isolamento & purificação , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/classificação , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/química , Antioxidantes/classificação , Antioxidantes/isolamento & purificação , Canabinoides/química , Canabinoides/classificação , Canabinoides/isolamento & purificação , Humanos , Inflamação/prevenção & controle , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Relação Estrutura-Atividade
7.
Molecules ; 26(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199346

RESUMO

Isolation of the therapeutic cannabinoid compounds from Cannabis Sativa L. (C. Sativa) is important for the development of cannabis-based pharmaceuticals for cancer treatment, among other ailments. The main pharmacological cannabinoids are THC and CBD. However, THC also induces undesirable psychoactive effects. The decarboxylation process converts the naturally occurring acidic forms of cannabinoids, such as cannabidiolic acid (CBDA) and tetrahydrocannabinolic acid (THCA), to their more active neutral forms, known as cannabidiol (CBD) and tetrahydrocannabinol (THC). The purpose of this study was to selectively extract cannabinoids using a novel in situ decarboxylation pressurized hot water extraction (PHWE) system. The decarboxylation step was evaluated at different temperature (80-150 °C) and time (5-60 min) settings to obtain the optimal conditions for the decarboxylation-PHWE system using response surface methodology (RSM). The system was optimized to produce cannabis extracts with high CBD content, while suppressing the THC and CBN content. The identification and quantification of cannabinoid compounds were determined using UHPLC-MS/MS with external calibration. As a result, the RSM has shown good predictive capability with a p-value < 0.05, and the chosen parameters revealed to have a significant effect on the CBD, CBN and THC content. The optimal decarboxylation conditions for an extract richer in CBD than THC were set at 149.9 °C and 42 min as decarboxylation temperature and decarboxylation time, respectively. The extraction recoveries ranged between 96.56 and 103.42%, 95.22 and 99.95%, 99.62 and 99.81% for CBD, CBN and THC, respectively.


Assuntos
Canabinoides/isolamento & purificação , Cannabis/química , Canabinoides/química , Cromatografia Líquida de Alta Pressão , Descarboxilação , Química Verde , Temperatura Alta , Espectrometria de Massas em Tandem
8.
Biomed Pharmacother ; 142: 111963, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34332376

RESUMO

Nowadays cardiovascular diseases (CVDs) are the major causes for the reduction of the quality of life. The endocannabinoid system is an attractive therapeutic target for the treatment of cardiovascular disorders due to its involvement in vasomotor control, cardiac contractility, blood pressure and vascular inflammation. Alteration in cannabinoid signalling can be often related to cardiotoxicity, circulatory shock, hypertension, and atherosclerosis. Plants have been the major sources of medicines until modern eras in which researchers are experiencing a rediscovery of natural compounds as novel therapeutics. One of the most versatile plant is Cannabis sativa L., containing phytocannabinoids that may play a role in the treatment of CVDs. The aim of this review is to collect and investigate several less studied plants rich in cannabinoid-like active compounds able to interact with cannabinoid system; these plants may play a pivotal role in the treatment of disorders related to the cardiovascular system.


Assuntos
Canabinoides/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Plantas/química , Animais , Canabinoides/isolamento & purificação , Cannabis/química , Doenças Cardiovasculares/fisiopatologia , Endocanabinoides/metabolismo , Humanos
9.
Molecules ; 26(9)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066753

RESUMO

Cannabis sativa is one of the oldest medicinal plants in the world. It was introduced into western medicine during the early 19th century. It contains a complex mixture of secondary metabolites, including cannabinoids and non-cannabinoid-type constituents. More than 500 compounds have been reported from C. sativa, of which 125 cannabinoids have been isolated and/or identified as cannabinoids. Cannabinoids are C21 terpeno-phenolic compounds specific to Cannabis. The non-cannabinoid constituents include: non-cannabinoid phenols, flavonoids, terpenes, alkaloids and others. This review discusses the chemistry of the cannabinoids and major non-cannabinoid constituents (terpenes, non-cannabinoid phenolics, and alkaloids) with special emphasis on their chemical structures, methods of isolation, and identification.


Assuntos
Alcaloides/química , Canabinoides/química , Cannabis/química , Fenóis/química , Alcaloides/isolamento & purificação , Canabinoides/isolamento & purificação , Flavonoides/química , Flavonoides/isolamento & purificação , Fenóis/isolamento & purificação , Plantas Medicinais/química
10.
J Chromatogr A ; 1651: 462277, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34091369

RESUMO

Cannabis is by far the most widely abused illicit drug globe wide. The analysis of its main psychoactive components in conventional and non-conventional biological matrices has recently gained a great attention in forensic toxicology. Literature states that its abuse causes neurocognitive impairment in the domains of attention and memory, possible macrostructural brain alterations and abnormalities of neural functioning. This suggests the necessity for the development of a sensitive and a reliable analytical method for the detection and quantification of cannabinoids in human biological specimens. In this review, we focus on a number of analytical methods that have, so far, been developed and validated, with particular attention to the new "golden standard" method of forensic analysis, liquid chromatography mass spectrometry or tandem mass spectrometry. In addition, this review provides an overview of the effective and selective methods used for the extraction and isolation of cannabinoids from (i) conventional matrices, such as blood, urine and oral fluid and (ii) alternative biological matrices, such as hair, cerumen and meconium.


Assuntos
Canabinoides/análise , Cromatografia Líquida/métodos , Espectrometria de Massas , Detecção do Abuso de Substâncias/métodos , Líquidos Corporais/química , Canabinoides/isolamento & purificação , Toxicologia Forense/métodos , Cabelo/química , Humanos , Espectrometria de Massas em Tandem
11.
Fitoterapia ; 152: 104915, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33964342

RESUMO

Positive effect of some cannabinoids in the treatment and prophylaxis of a wide variety of oxidation-associated diseases and growing popularity of supplements containing cannabinoids, mainly cannabinoid oils (e.g. CBD oil, CBG oil), in the self-medication of humans cause a growing interest in the antioxidant properties of these compounds, especially those not showing psychotropic effects. Herein, we report the antioxidant activity of cannabigerol (CBG), cannabidiol (CBD), Δ9-tetrahydrocannabinol (Δ9-THC), cannabinol (CBN), cannabigerolic acid (CBGA), cannabinolic acid (CBDA) and Δ9-tetrahydrocannabinolic acid (Δ9-THCA) estimated by spectrophotometric methods: ABTS, DPPH, ORAC, beta-carotene CUPRAC and FRAP. The presented data prove that all the examined cannabinoids exhibit antioxidant activity manifested in their ability to scavenge free radicals, to prevent the oxidation process and to reduce metal ions. Although the intensity of these activities is not the same for the individual cannabinoids it is comparable for all of them with that of E vitamin. As results from the research, the significance of the two types of electron sources presenting in examined cannabinoids, phenolic groups and double bonds transferring electrons, depends on the type of electron-accepting species - radicals/metal ions.


Assuntos
Antioxidantes/farmacologia , Canabinoides/farmacologia , Cannabis/química , Antioxidantes/isolamento & purificação , Benzoatos , Canabidiol , Canabinoides/isolamento & purificação , Canabinol/análogos & derivados , Estrutura Molecular
12.
Artigo em Inglês | MEDLINE | ID: mdl-33639334

RESUMO

The pharmaceutical importance of cannabis is growing due to the natural non-psychoactive and psychoactive cannabinoids. For medicinal and forensic purposes, the effective extraction and quantification are essential to fully utilise the natural cannabinoids. The supercritical fluid extraction (SFE) process has gained increasing interest due to its selective extraction, short processing time (partly due to the efficient solvent removal process - supercritical fluid to vapour - leaving a solvent free product), low running cost, and low impact on the environment, compared to that of most conventional extraction methods. In this review, the extraction of cannabinoids through SFE methods have been summarised. The advantages of SFE of cannabinoids over conventional extraction procedures; such as microwave-assisted extraction, solid phase microextraction, hard-cap espresso, soxhlet extraction, high-throughput homogenization, ultrasound-assisted extraction, vacuum distillation of lipid-based extract, and liquid-liquid extraction are discussed. Furthermore, this review examines the importance of the SFE of cannabinoids by coupling with various conventional extraction methods, separation techniques, selection of a suitable co-solvent/modifier, and appropriate sample preparation. Additionally, the applications of using SFE technology and cannabinoids are reviewed with a focus on industrial, pharmaceutical, waste by-products, and purification.


Assuntos
Canabinoides , Dióxido de Carbono/química , Cromatografia com Fluido Supercrítico/métodos , Canabinoides/análise , Canabinoides/química , Canabinoides/isolamento & purificação , Cannabis/química
13.
Toxins (Basel) ; 13(2)2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562446

RESUMO

For thousands of years, Cannabis sativa has been utilized as a medicine and for recreational and spiritual purposes. Phytocannabinoids are a family of compounds that are found in the cannabis plant, which is known for its psychotogenic and euphoric effects; the main psychotropic constituent of cannabis is Δ9-tetrahydrocannabinol (Δ9-THC). The pharmacological effects of cannabinoids are a result of interactions between those compounds and cannabinoid receptors, CB1 and CB2, located in many parts of the human body. Cannabis is used as a therapeutic agent for treating pain and emesis. Some cannabinoids are clinically applied for treating chronic pain, particularly cancer and multiple sclerosis-associated pain, for appetite stimulation and anti-emesis in HIV/AIDS and cancer patients, and for spasticity treatment in multiple sclerosis and epilepsy patients. Medical cannabis varies from recreational cannabis in the chemical content of THC and cannabidiol (CBD), modes of administration, and safety. Despite the therapeutic effects of cannabis, exposure to high concentrations of THC, the main compound that is responsible for most of the intoxicating effects experienced by users, could lead to psychological events and adverse effects that affect almost all body systems, such as neurological (dizziness, drowsiness, seizures, coma, and others), ophthalmological (mydriasis and conjunctival hyperemia), cardiovascular (tachycardia and arterial hypertension), and gastrointestinal (nausea, vomiting, and thirst), mainly associated with recreational use. Cannabis toxicity in children is more concerning and can cause serious adverse effects such as acute neurological symptoms (stupor), lethargy, seizures, and even coma. More countries are legalizing the commercial production and sale of cannabis for medicinal use, and some for recreational use as well. Liberalization of cannabis laws has led to increased incidence of toxicity, hyperemesis syndrome, lung disease cardiovascular disease, reduced fertility, tolerance, and dependence with chronic prolonged use. This review focuses on the potential therapeutic effects of cannabis and cannabinoids, as well as the acute and chronic toxic effects of cannabis use on various body systems.


Assuntos
Canabinoides/uso terapêutico , Cannabis , Maconha Medicinal/uso terapêutico , Sistema Nervoso/efeitos dos fármacos , Plantas Tóxicas , Animais , Canabinoides/efeitos adversos , Canabinoides/isolamento & purificação , Cannabis/efeitos adversos , Humanos , Abuso de Maconha/metabolismo , Abuso de Maconha/fisiopatologia , Abuso de Maconha/psicologia , Maconha Medicinal/efeitos adversos , Sistema Nervoso/metabolismo , Sistema Nervoso/fisiopatologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/fisiopatologia , Síndromes Neurotóxicas/psicologia , Plantas Tóxicas/efeitos adversos , Receptores de Canabinoides/efeitos dos fármacos , Receptores de Canabinoides/metabolismo , Transdução de Sinais
14.
Anal Sci ; 37(2): 329-335, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32921652

RESUMO

Legally regulated synthetic cannabinoids (SCs) are continuously being created by making minor positional modifications to pre-existing analogs; thus, compounds with minor structural differences must be isolated and identified accurately. For iodo-benzoylindole derivatives of SCs, only specific isomers are currently the target of legal control, and it is necessary to establish an analytical method for accurately identifying positional isomers. In this study, we synthesized a series of 57 designer drugs and developed a screening method for identifying halogen positional isomers on the phenyl ring of benzoylindole derivative SCs in serum. Analytical methods using the Discovery F5 pentafluorophenyl column gave the best selectivity and retention of the positional isomer analytes. Some of the meta and para iodo-substituted SCs were eluted at similar retention times and were difficult to separate by liquid chromatography (LC). However, they were identified via the relative abundance of the two product ions in the collision-induced dissociation reaction using LC-hybrid quadrupole/orbitrap high-resolution mass spectrometry. Our synthesized halogen-substituted positional isomer SC library and method for differentiating positional isomers of halogenated benzoylindole SC derivatives could provide an indispensable analysis tool for identifying illegal drugs in serum of drug users.


Assuntos
Canabinoides/sangue , Indóis/sangue , Canabinoides/química , Canabinoides/isolamento & purificação , Halogenação , Humanos , Indóis/química , Indóis/isolamento & purificação , Espectrometria de Massas , Estrutura Molecular
15.
Sci Rep ; 10(1): 20405, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230154

RESUMO

The Cannabis sativa plant contains more than 120 cannabinoids. With the exceptions of ∆9-tetrahydrocannabinol (∆9-THC) and cannabidiol (CBD), comparatively little is known about the pharmacology of the less-abundant plant-derived (phyto) cannabinoids. The best-studied transducers of cannabinoid-dependent effects are type 1 and type 2 cannabinoid receptors (CB1R, CB2R). Partial agonism of CB1R by ∆9-THC is known to bring about the 'high' associated with Cannabis use, as well as the pain-, appetite-, and anxiety-modulating effects that are potentially therapeutic. CB2R activation by certain cannabinoids has been associated with anti-inflammatory activities. We assessed the activity of 8 phytocannabinoids at human CB1R, and CB2R in Chinese hamster ovary (CHO) cells stably expressing these receptors and in C57BL/6 mice in an attempt to better understand their pharmacodynamics. Specifically, ∆9-THC, ∆9-tetrahydrocannabinolic acid (∆9-THCa), ∆9-tetrahydrocannabivarin (THCV), CBD, cannabidiolic acid (CBDa), cannabidivarin (CBDV), cannabigerol (CBG), and cannabichromene (CBC) were evaluated. Compounds were assessed for their affinity to receptors, ability to inhibit cAMP accumulation, ßarrestin2 recruitment, receptor selectivity, and ligand bias in cell culture; and cataleptic, hypothermic, anti-nociceptive, hypolocomotive, and anxiolytic effects in mice. Our data reveal partial agonist activity for many phytocannabinoids tested at CB1R and/or CB2R, as well as in vivo responses often associated with activation of CB1R. These data build on the growing body of literature showing cannabinoid receptor-dependent pharmacology for these less-abundant phytocannabinoids and are critical in understanding the complex and interactive pharmacology of Cannabis-derived molecules.


Assuntos
Analgésicos/farmacologia , Ansiolíticos/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Cannabis/química , Psicotrópicos/farmacologia , Receptor CB1 de Canabinoide/genética , Receptor CB2 de Canabinoide/genética , Analgésicos/isolamento & purificação , Animais , Ansiolíticos/isolamento & purificação , Células CHO , Canabidiol/isolamento & purificação , Canabidiol/farmacologia , Agonistas de Receptores de Canabinoides/isolamento & purificação , Canabinoides/isolamento & purificação , Canabinoides/farmacologia , Cricetulus , Dronabinol/análogos & derivados , Dronabinol/isolamento & purificação , Dronabinol/farmacologia , Expressão Gênica , Humanos , Camundongos Endogâmicos C57BL , Extratos Vegetais/química , Psicotrópicos/isolamento & purificação , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/metabolismo , Transgenes , beta-Arrestina 2/genética , beta-Arrestina 2/metabolismo
16.
Biomed Pharmacother ; 132: 110889, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33113429

RESUMO

The endocannabinoid system (ECS) is natural physiological system in the humans. The presence of the ECS system involves different roles in body. The endocannabinoid system involves regulation of most of the centers, which regulates the hunger and leads to changes in the weight. In the present article, we reviewed the role of natural cannabinoid compounds in metabolic disorders and related complications. We studied variety of a plant-derived cannabinoids in treating the metabolic syndrome including stoutness, fatty acid liver diseases, insulin obstruction, dementia, hypertension, lipid abnormalities, non-alcoholic steatohepatitis, endothelial damage, and polycystic ovarian syndrome and so on. The activation of cannabinoid receptors demonstrates a significant number of beneficial approaches concerning metabolic syndrome and reduces the pro-inflammatory cytokines on account of aggravation, decreased oxidative stress and uneasiness, diminishes liver fibrosis, with reduces adiponectin. Pre-clinical investigations of plant-derived cannabinoids resulted in promising outcomes. The different distinctive plant-derived cannabinoids were discovered like cannabidiol (CBD), cannabinol (CBN), cannabichromene (CBC), and cannabidiol (CBG). It has been observed that endogenous cannabinoids and plant-derived cannabinoids have an advantageous impact on limiting the metabolic disorder arising due to lifestyle changes.


Assuntos
Agonistas de Receptores de Canabinoides/uso terapêutico , Antagonistas de Receptores de Canabinoides/uso terapêutico , Canabinoides/uso terapêutico , Endocanabinoides/metabolismo , Síndrome Metabólica/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Receptores de Canabinoides/efeitos dos fármacos , Animais , Agonistas de Receptores de Canabinoides/efeitos adversos , Agonistas de Receptores de Canabinoides/isolamento & purificação , Antagonistas de Receptores de Canabinoides/efeitos adversos , Antagonistas de Receptores de Canabinoides/isolamento & purificação , Canabinoides/efeitos adversos , Canabinoides/isolamento & purificação , Agonismo Parcial de Drogas , Humanos , Síndrome Metabólica/metabolismo , Extratos Vegetais/efeitos adversos , Extratos Vegetais/isolamento & purificação , Plantas Medicinais , Receptores de Canabinoides/metabolismo , Transdução de Sinais
17.
Artigo em Inglês | MEDLINE | ID: mdl-33038866

RESUMO

Herein a method was develop and validated for the detection and quantification of five new psychoactive substances (NPS) belonging to three categories: synthetic cathinones (mephedrone, 3,4-MDPV), opioids (AH-7921) and cannabinoids (JWH-018, AM-2201) by EI GC-MS. Target analytes were quantified in whole blood; in urine the same compounds plus methylone were detected. Liquid-liquid extraction by MTBE - butyl acetate (1:1, v/v) in blood and butyl acetate in urine was applied for the recovery of analytes, while no derivatization was necessary for their sensitive detection and quantification. The method showed good linearity for all analytes within a concentration range from 0.25 to 2 µg/mL for mephedrone, from 0.02 to 0.16 µg/mL for 3,4-MDPV and AH-7921 and from 0.005 to 0.04 µg/mL for JWH-018 and AM-2201. LOD ranged from 0.002 µg/mL (JWH-018 and AM-2201 in blood and urine), to 0.08 µg/mL (mephedrone in urine). LOQ in blood ranged from 0.005 µg/mL for JWH-018 and AM-2201 to 0.25 µg/mL for mephedrone. Accuracy was within acceptable limits with % bias ranging from +20% to -17.98% for intra-assay study and from +18.87% to -11.16% for inter-assay study. Precision was found to be between 2.60% and 17.17% (CV%) for intra-assay study and from 6.03% to 13.72% (CV%) for inter-assay study. An intra laboratory comparison provided proof of the method robustness. The developed method can be used for the reliable and fast quantification of five NPS in blood and the detection of six NPS in urine within the practice of a clinical or forensic toxicology laboratory.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Psicotrópicos , Alcaloides/sangue , Alcaloides/isolamento & purificação , Alcaloides/urina , Analgésicos Opioides/sangue , Analgésicos Opioides/isolamento & purificação , Analgésicos Opioides/urina , Canabinoides/sangue , Canabinoides/isolamento & purificação , Canabinoides/urina , Toxicologia Forense , Humanos , Limite de Detecção , Modelos Lineares , Psicotrópicos/sangue , Psicotrópicos/isolamento & purificação , Psicotrópicos/urina , Reprodutibilidade dos Testes
18.
Pharmacol Biochem Behav ; 199: 173059, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33086126

RESUMO

The phytocannabinoid Δ9-tetrahydrocannabinol (THC) was isolated and synthesized in the 1960s. Since then, two synthetic cannabinoids (SCBs) targeting the cannabinoid 1 (CB1R) and 2 (CB2R) receptors were approved for medical use based on clinical safety and efficacy data: dronabinol (synthetic THC) and nabilone (synthetic THC analog). To probe the function of the endocannabinoid system further, hundreds of investigational compounds were developed; in particular, agonists with (1) greater CB1/2R affinity relative to THC and (2) full CB1/2R agonist activity. This pharmacological profile may pose greater risks for misuse and adverse effects relative to THC, and these SCBs proliferated in retail markets as legal alternatives to cannabis (e.g., novel psychoactive substances [NPS], "Spice," "K2"). These SCBs were largely outlawed in the U.S., but blanket policies that placed all SCB chemicals into restrictive control categories impeded research progress into novel mechanisms for SCB therapeutic development. There is a concerted effort to develop new, therapeutically useful SCBs that target novel pharmacological mechanisms. This review highlights the potential therapeutic efficacy and safety considerations for unique SCBs, including CB1R partial and full agonists, peripherally-restricted CB1R agonists, selective CB2R agonists, selective CB1R antagonists/inverse agonists, CB1R allosteric modulators, endocannabinoid-degrading enzyme inhibitors, and cannabidiol. We propose promising directions for SCB research that may optimize therapeutic efficacy and diminish potential for adverse events, for example, peripherally-restricted CB1R antagonists/inverse agonists and biased CB1/2R agonists. Together, these strategies could lead to the discovery of new, therapeutically useful SCBs with reduced negative public health impact.


Assuntos
Canabinoides/uso terapêutico , Segurança do Paciente , Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/efeitos adversos , Canabinoides/síntese química , Canabinoides/isolamento & purificação , Cannabis/química , Desenvolvimento de Medicamentos , Humanos , Transtornos Relacionados ao Uso de Substâncias/prevenção & controle
19.
J Chromatogr Sci ; 58(10): 985-991, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-32945334

RESUMO

The aim of this work was to investigate the applicability of a mathematical model developed for the description of supercritical fluid extraction (SFE) of cannabinoids from marijuana and hashish for liquid extraction of other substances. The mentioned model is applicable for dynamic SFE whose implementation is analogous to liquid-solid extraction in quasi-counter current mode. According to this model, quasi-counter current liquid-solid extractions were designed by calculation of component transport constants for extractions of psilocin from hallucinogenic mushroom, mescaline from hallucinogenic cactus, harmine from tropical lyan and salvinorin A from hallucinogenic sage. The mentioned model was found to be suitable for the determination of extraction time needed to reach a predefined extraction recovery for quasi-counter current liquid-solid extractions, as well, which allows the elimination of systematic error caused by the non-extracted part. The calculated component transport constants predict the expectable velocity of the extraction, i.e., the higher the component transport constant is, the higher the extraction velocity is. For mushrooms, it could be stated that preliminary treatment of mushrooms with liquid nitrogen significantly increases the extractability of psilocin.


Assuntos
Agaricales/química , Cromatografia com Fluido Supercrítico/métodos , Substâncias Controladas/isolamento & purificação , Alucinógenos/isolamento & purificação , Plantas/química , Alcaloides/análise , Alcaloides/isolamento & purificação , Canabinoides/análise , Canabinoides/isolamento & purificação , Cannabis/química , Substâncias Controladas/análise , Alucinógenos/análise , Modelos Químicos , Psilocibina/análogos & derivados , Psilocibina/análise , Psilocibina/isolamento & purificação
20.
Nat Chem Biol ; 16(12): 1427-1433, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32839605

RESUMO

Moving cannabinoid production away from the vagaries of plant extraction and into engineered microbes could provide a consistent, purer, cheaper and environmentally benign source of these important therapeutic molecules, but microbial production faces notable challenges. An alternative to microbes and plants is to remove the complexity of cellular systems by employing enzymatic biosynthesis. Here we design and implement a new cell-free system for cannabinoid production with the following features: (1) only low-cost inputs are needed; (2) only 12 enzymes are employed; (3) the system does not require oxygen and (4) we use a nonnatural enzyme system to reduce ATP requirements that is generally applicable to malonyl-CoA-dependent pathways such as polyketide biosynthesis. The system produces ~0.5 g l-1 cannabigerolic acid (CBGA) or cannabigerovarinic acid (CBGVA) from low-cost inputs, nearly two orders of magnitude higher than yeast-based production. Cell-free systems such as this may provide a new route to reliable cannabinoid production.


Assuntos
Canabinoides/biossíntese , Sistema Livre de Células/metabolismo , Malonil Coenzima A/metabolismo , Engenharia Metabólica/métodos , Policetídeos/metabolismo , Terpenos/metabolismo , Trifosfato de Adenosina/biossíntese , Benzoatos/isolamento & purificação , Benzoatos/metabolismo , Canabinoides/isolamento & purificação , Sistema Livre de Células/química , Escherichia coli/enzimologia , Escherichia coli/genética , Expressão Gênica , Humanos , Cinética , Engenharia Metabólica/economia , Organofosfatos/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Policetídeos/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Terpenos/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...