Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci Res ; 99(3): 914-926, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33393091

RESUMO

Activation of transient receptor potential vanilloid 4 (TRPV4) can increase hippocampal neuronal excitability. TRPV4 has been reported to be involved in the pathogenesis of epilepsy. Voltage-gated potassium channels (VGPCs) play an important role in regulating neuronal excitability and abnormal VGPCs expression or function is related to epilepsy. Here, we examined the effect of TRPV4 activation on the delayed rectifier potassium current (IK ) in hippocampal pyramidal neurons and on the Kv subunits expression in male mice. We also explored the role of TRPV4 in changes in Kv subunits expression in male mice following pilocarpine-induced status epilepticus (PISE). Application of TRPV4 agonists, GSK1016790A and 5,6-EET, markedly reduced IK in hippocampal pyramidal neurons and shifted the voltage-dependent inactivation curve to the hyperpolarizing direction. GSK1016790A- and 5,6-EET-induced inhibition of IK was blocked by TRPV4 specific antagonists, HC-067047 and RN1734. GSK1016790A-induced inhibition of IK was markedly attenuated by calcium/calmodulin-dependent kinase II (CaMKII) antagonist. Application of GSK1016790A for up to 1 hr did not change the hippocampal protein levels of Kv1.1, Kv1.2, or Kv2.1. Intracerebroventricular injection of GSK1016790A for 3 d reduced the hippocampal protein levels of Kv1.2 and Kv2.1, leaving that of Kv1.1 unchanged. Kv1.2 and Kv2.1 protein levels as well as IK reduced markedly in hippocampi on day 3 post PISE, which was significantly reversed by HC-067047. We conclude that activation of TRPV4 inhibits IK in hippocampal pyramidal neurons, possibly by activating CaMKII. TRPV4-induced decrease in Kv1.2 and Kv2.1 expression and IK may be involved in the pathological changes following PISE.


Assuntos
Canais de Potássio de Retificação Tardia/metabolismo , Células Piramidais/fisiologia , Estado Epiléptico/fisiopatologia , Canais de Cátion TRPV/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Canais de Potássio de Retificação Tardia/farmacologia , Hipocampo/metabolismo , Hipocampo/fisiologia , Leucina/análogos & derivados , Leucina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Morfolinas/farmacologia , Pilocarpina , Células Piramidais/metabolismo , Pirróis/farmacologia , Estado Epiléptico/induzido quimicamente , Sulfonamidas/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores
2.
Neurochem Res ; 37(10): 2143-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22814879

RESUMO

In order to observe antinociceptive effect of Oxymatrine (OMT) and its effect on voltage-activated K(+) channel, the acetic acid-induced abdominal contraction model of mouse was used to test the antinociceptive effect in vivo, and in vitro, the delayed rectifier K(+) currents (Ik) in PC12 cells (rat pheochromocytoma cells) was recorded using the automated patch-clamp method. The results indicated that after application of OMT, the number of acetic acid-induced animal abdominal contraction was significantly decreased, Ik in PC12 cells was significantly decreased, and showed a concentration-dependent manner. After application of OMT, both the activation and inactivation curves of Ik of PC12 cells were shifted to negative potentials. This study revealed that OMT showed antinociceptive effect in mice. The inhibition of voltage-activated K(+) channel might be one of mechanisms in which the enhanced both activation and inactivation of K(+) channel were involved and might play important roles.


Assuntos
Alcaloides/farmacologia , Analgésicos/farmacologia , Canais de Potássio de Retificação Tardia/farmacologia , Quinolizinas/farmacologia , Animais , Cinética , Camundongos , Células PC12 , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...