Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(2): e0280656, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36730356

RESUMO

Gemcitabine is an antineoplastic drug commonly used in the treatment of several types of cancers including pancreatic cancer and non-small cell lung cancer. Although gemcitabine-induced cardiotoxicity is widely recognized, the exact mechanism of cardiac dysfunction causing arrhythmias remains unclear. The objective of this study was to electrophysiologically evaluate the proarrhythmic cardiotoxicity of gemcitabine focusing on the human rapid delayed rectifier potassium channel, hERG channel. In heterologous hERG expressing HEK293 cells (hERG-HEK cells), hERG channel current (IhERG) was reduced by gemcitabine when applied for 24 h but not immediately after the application. Gemcitabine modified the activation gating properties of the hERG channel toward the hyperpolarization direction, while inactivation, deactivation or reactivation gating properties were unaffected by gemcitabine. When gemcitabine was applied to hERG-HEK cells in combined with tunicamycin, an inhibitor of N-acetylglucosamine phosphotransferase, gemcitabine was unable to reduce IhERG or shift the activation properties toward the hyperpolarization direction. While a mannosidase I inhibitor kifunensine alone reduced IhERG and the reduction was even larger in combined with gemcitabine, kifunensine was without effect on IhERG when hERG-HEK cells were pretreated with gemcitabine for 24 h. In addition, gemcitabine down-regulated fluorescence intensity for hERG potassium channel protein in rat neonatal cardiomyocyte, although hERG mRNA was unchanged. Our results suggest the possible mechanism of arrhythmias caused by gemcitabine revealing a down-regulation of IhERG through the post-translational glycosylation disruption possibly at the early phase of hERG channel glycosylation in the endoplasmic reticulum that alters the electrical excitability of cells.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Ratos , Gencitabina , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Regulação para Baixo , Cardiotoxicidade/etiologia , Células HEK293 , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/genética , Canais de Potássio de Retificação Tardia/genética , Canais de Potássio de Retificação Tardia/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo
2.
J Comput Neurosci ; 48(4): 377-386, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33063225

RESUMO

Channelopathies involving acquired or genetic modifications of the delayed rectifier K+ channel Kv1.1 include phenotypes characterized by enhanced neuronal excitability. Affected Kv1.1 channels exhibit combinations of altered expression, voltage sensitivity, and rates of activation and deactivation. Computational modeling and analysis can reveal the potential of particular channelopathies to alter neuronal excitability. A dynamical systems approach was taken to study the excitability and underlying dynamical structure of the Hodgkin-Huxley (HH) model of neural excitation as properties of the delayed rectifier K+ channel were altered. Bifurcation patterns of the HH model were determined as the amplitude of steady injection current was varied simultaneously with single parameters describing the delayed rectifier rates of activation and deactivation, maximal conductance, and voltage sensitivity. Relatively modest changes in the properties of the delayed rectifier K+ channel analogous to what is described for its channelopathies alter the bifurcation structure of the HH model and profoundly modify excitability of the HH model. Channelopathies associated with Kv1.1 can reduce the threshold for onset of neural activity. These studies also demonstrate how pathological delayed rectifier K+ channels could lead to the observation of the generalized Hopf bifurcation and, perhaps, other variants of the Hopf bifurcation. The observed bifurcation patterns collectively demonstrate that properties of the nominal delayed rectifier in the HH model appear optimized to permit activation of the HH model over the broadest possible range of input currents.


Assuntos
Canalopatias/fisiopatologia , Canais de Potássio de Retificação Tardia/genética , Potenciais da Membrana/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Animais , Canalopatias/genética , Simulação por Computador
3.
Eur J Pharmacol ; 883: 173378, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32710951

RESUMO

The slowly and rapidly activating delayed rectifier K+ channels (IKs and IKr, respectively) contribute to the repolarization of ventricular action potential in human heart and thereby determine QT interval on an electrocardiogram. Loss-of-function mutations in genes encoding IKs and IKr cause type 1 and type 2 long QT syndrome (LQT1 and LQT2, respectively), accompanied by a high risk of malignant ventricular arrhythmias and sudden cardiac death. This study was designed to investigate which cardiac electrophysiological conditions exaggerate QT-prolonging and arrhythmogenic effects of sevoflurane. We used the O'Hara-Rudy dynamic model to reconstruct human ventricular action potential and a pseudo-electrocardiogram, and simulated LQT1 and LQT2 phenotypes by decreasing conductances of IKs and IKr, respectively. Sevoflurane, but not propofol, prolonged ventricular action potential duration and QT interval in wild-type, LQT1 and LQT2 models. The QT-prolonging effect of sevoflurane was more profound in LQT2 than in wild-type and LQT1 models. The potent inhibitory effect of sevoflurane on IKs was primarily responsible for its QT-prolonging effect. In LQT2 model, IKs was considerably enhanced during excessive prolongation of ventricular action potential duration by reduction of IKr and relative contribution of IKs to ventricular repolarization was markedly elevated, which appears to underlie more pronounced QT-prolonging effect of sevoflurane in LQT2 model, compared with wild-type and LQT1 models. This simulation study clearly elucidates the electrophysiological basis underlying the difference in QT-prolonging effect of sevoflurane among wild-type, LQT1 and LQT2 models, and may provide important information for developing anesthetic strategies for patients with long QT syndrome in clinical settings.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Síndrome do QT Longo/induzido quimicamente , Modelos Cardiovasculares , Miócitos Cardíacos/efeitos dos fármacos , Síndrome de Romano-Ward/induzido quimicamente , Sevoflurano/toxicidade , Estudos de Casos e Controles , Simulação por Computador , Canais de Potássio de Retificação Tardia/genética , Canais de Potássio de Retificação Tardia/metabolismo , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Humanos , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Síndrome do QT Longo/fisiopatologia , Miócitos Cardíacos/metabolismo , Propofol/toxicidade , Medição de Risco , Fatores de Risco , Síndrome de Romano-Ward/genética , Síndrome de Romano-Ward/metabolismo , Síndrome de Romano-Ward/fisiopatologia , Fatores de Tempo
4.
Food Chem Toxicol ; 107(Pt A): 293-301, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28689918

RESUMO

Elephantopus scaber Linn and its major bioactive component, deoxyelephantopin are known for their medicinal properties and are often reported to have various cytotoxic and antitumor activities. This plant is widely used as folk medicine for a plethora of indications although its safety profile remains unknown. Human ether-a-go-go-related gene (hERG) encodes the cardiac IKr current which is a determinant of the duration of ventricular action potentials and QT interval. The hERG potassium channel is an important antitarget in cardiotoxicity evaluation. This study investigated the effects of deoxyelephantopin on the current, mRNA and protein expression of hERG channel in hERG-transfected HEK293 cells. The hERG tail currents following depolarization pulses were insignificantly affected by deoxyelephantopin in the transfected cell line. Current reduction was less than 40% as compared with baseline at the highest concentration of 50 µM. The results were consistent with the molecular docking simulation and hERG surface protein expression. Interestingly, it does not affect the hERG expression at both transcriptional and translational level at most concentrations, although higher concentration at 10 µM caused protein accumulation. In conclusion, deoxyelephantopin is unlikely a clinically significant hERG channel and Ikr blocker.


Assuntos
Asteraceae/química , Canais de Potássio de Retificação Tardia/genética , Canais de Potássio Éter-A-Go-Go/genética , Lactonas/farmacologia , Miocárdio/metabolismo , Extratos Vegetais/farmacologia , Potássio/metabolismo , Sesquiterpenos/farmacologia , Canais de Potássio de Retificação Tardia/metabolismo , Canais de Potássio Éter-A-Go-Go/metabolismo , Células HEK293 , Coração/efeitos dos fármacos , Humanos
5.
Card Electrophysiol Clin ; 8(2): 307-22, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27261823

RESUMO

Cardiac delayed rectifier potassium channels conduct outward potassium currents during the plateau phase of action potentials and play pivotal roles in cardiac repolarization. These include IKs, IKr and the atrial specific IKur channels. In this article, we will review their molecular identities and biophysical properties. Mutations in the genes encoding delayed rectifiers lead to loss- or gain-of-function phenotypes, disrupt normal cardiac repolarization and result in various cardiac rhythm disorders, including congenital Long QT Syndrome, Short QT Syndrome and familial atrial fibrillation. We will also discuss the prospect of using delayed rectifier channels as therapeutic targets to manage cardiac arrhythmia.


Assuntos
Arritmias Cardíacas , Canais de Potássio de Retificação Tardia , Síndrome do QT Longo , Canais de Potássio de Retificação Tardia/antagonistas & inibidores , Canais de Potássio de Retificação Tardia/genética , Eletrocardiografia , Humanos , Mutação , Bloqueadores dos Canais de Potássio
6.
Card Electrophysiol Clin ; 8(2): 275-84, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27261821

RESUMO

Human cardiomyocytes express 3 distinct types of delayed rectifier potassium channels. Human ether-a-go-go-related gene (hERG) channels conduct the rapidly activating current IKr; KCNQ1/KCNE1 channels conduct the slowly activating current IKs; and Kv1.5 channels conduct an ultrarapid activating current IKur. Here the authors provide a general overview of the mechanistic and structural basis of ion selectivity, gating, and pharmacology of the 3 types of cardiac delayed rectifier potassium ion channels. Most blockers bind to S6 residues that line the central cavity of the channel, whereas activators interact with the channel at 4 symmetric binding sites outside the cavity.


Assuntos
Canais de Potássio de Retificação Tardia , Bloqueadores dos Canais de Potássio , Canais de Potássio de Retificação Tardia/química , Canais de Potássio de Retificação Tardia/efeitos dos fármacos , Canais de Potássio de Retificação Tardia/genética , Canais de Potássio de Retificação Tardia/metabolismo , Humanos , Modelos Moleculares , Mutação , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-26215639

RESUMO

Fishes are increasingly used as models for human cardiac diseases, creating a need for a better understanding of the molecular basis of fish cardiac ion currents. To this end we cloned KCNH6 channel of the crucian carp (Carassius carassius) that produces the rapid component of the delayed rectifier K(+) current (IKr), the main repolarising current of the fish heart. KCNH6 (ccErg2) was the main isoform of the Kv11 potassium channel family with relative transcript levels of 98.9% and 99.6% in crucian carp atrium and ventricle, respectively. KCNH2 (ccErg1), an orthologue to human cardiac Erg (Herg) channel, was only slightly expressed in the crucian carp heart. The native atrial IKr and the cloned ccErg2 were inhibited by similar concentrations of verapamil, terfenadine and KB-R7943 (P>0.05), while the atrial IKr was about an order of magnitude more sensitive to E-4031 than ccErg2 (P<0.05) suggesting that some accessory ß-subunits may be involved. Sensitivity of the crucian carp atrial IKr to E-4031, terfenadine and KB-R7943 was similar to what has been reported for the Herg channel. In contrast, the sensitivity of the crucian carp IKr to verapamil was approximately 30 times higher than the previously reported values for the Herg current. In conclusion, the cardiac IKr is produced by non-orthologous gene products in fish (Erg2) and mammalian hearts (Erg1) and some marked differences exist in drug sensitivity between fish and mammalian Erg1/2 which need to be taken into account when using fish heart as a model for human heart.


Assuntos
Carpas/metabolismo , Canais de Potássio de Retificação Tardia/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Proteínas de Peixes/antagonistas & inibidores , Coração/efeitos dos fármacos , Miocárdio/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Sequência de Aminoácidos , Animais , Células CHO , Carpas/genética , Clonagem Molecular , Cricetulus , Canais de Potássio de Retificação Tardia/genética , Canais de Potássio de Retificação Tardia/metabolismo , Relação Dose-Resposta a Droga , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Feminino , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Masculino , Potenciais da Membrana , Modelos Animais , Dados de Sequência Molecular , Potássio/metabolismo , RNA Mensageiro/metabolismo , Especificidade da Espécie , Transfecção
8.
Biophys J ; 108(1): 62-75, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25564853

RESUMO

The slow delayed rectifier (IKs) channel is composed of the KCNQ1 channel and KCNE1 auxiliary subunit, and functions to repolarize action potentials in the human heart. IKs activators may provide therapeutic efficacy for treating long QT syndromes. Here, we show that a new KCNQ1 activator, ML277, can enhance IKs amplitude in adult guinea pig and canine ventricular myocytes. We probe its binding site and mechanism of action by computational analysis based on our recently reported KCNQ1 and KCNQ1/KCNE1 3D models, followed by experimental validation. Results from a pocket analysis and docking exercise suggest that ML277 binds to a side pocket in KCNQ1 and the KCNE1-free side pocket of KCNQ1/KCNE1. Molecular-dynamics (MD) simulations based on the most favorable channel/ML277 docking configurations reveal a well-defined ML277 binding space surrounded by the S2-S3 loop and S4-S5 helix on the intracellular side, and by S4-S6 transmembrane helices on the lateral sides. A detailed analysis of MD trajectories suggests two mechanisms of ML277 action. First, ML277 restricts the conformational dynamics of the KCNQ1 pore, optimizing K(+) ion coordination in the selectivity filter and increasing current amplitudes. Second, ML277 binding induces global motions in the channel, including regions critical for KCNQ1 gating transitions. We conclude that ML277 activates IKs by binding to an intersubunit space and allosterically influencing pore conductance and gating transitions. KCNE1 association protects KCNQ1 from an arrhythmogenic (constitutive current-inducing) effect of ML277, but does not preclude its current-enhancing effect.


Assuntos
Canais de Potássio de Retificação Tardia/metabolismo , Neurotransmissores/farmacologia , Animais , Sítios de Ligação , Células COS , Células Cultivadas , Chlorocebus aethiops , Canais de Potássio de Retificação Tardia/genética , Cães , Cobaias , Íons/metabolismo , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Técnicas de Patch-Clamp , Potássio/metabolismo , Estrutura Secundária de Proteína , Transfecção
9.
Biochim Biophys Acta ; 1848(10 Pt B): 2685-702, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25542783

RESUMO

Cancer is a disease with marked heterogeneity in both response to therapy and survival. Clinical and histopathological characteristics have long determined prognosis and therapy. The introduction of molecular diagnostics has heralded an explosion in new prognostic factors. Overall, histopathology, immunohistochemistry and molecular biology techniques have described important new prognostic subgroups in the different cancer categories. Ion channels and transporters (ICT) are a new class of membrane proteins which are aberrantly expressed in several types of human cancers. Besides regulating different aspect of cancer cell behavior, ICT can now represent novel cancer biomarkers. A summary of the data obtained so far and relative to breast, prostate, lung, colorectal, esophagus, pancreatic and gastric cancers are reported. Special emphasis is given to those studies aimed at relating specific ICT or a peculiar ICT profile with current diagnostic methods. Overall, we are close to exploit ICTs for diagnostic, prognostic or predictive purposes in cancer. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.


Assuntos
Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias/diagnóstico , Neoplasias/genética , Aquaporinas/genética , Aquaporinas/metabolismo , Biomarcadores Tumorais/metabolismo , Canais de Cálcio Tipo T/genética , Canais de Cálcio Tipo T/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Canais de Potássio de Retificação Tardia/genética , Canais de Potássio de Retificação Tardia/metabolismo , Feminino , Humanos , Masculino , Neoplasias/metabolismo , Neoplasias/patologia , Especificidade de Órgãos , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Prognóstico , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Canais de Ânion Dependentes de Voltagem/genética , Canais de Ânion Dependentes de Voltagem/metabolismo , Canais de Sódio Disparados por Voltagem/genética , Canais de Sódio Disparados por Voltagem/metabolismo
10.
PLoS One ; 9(8): e103556, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25136824

RESUMO

Cutaneous pain sensations are mediated largely by C-nociceptors consisting of both mechano-sensitive (CM) and mechano-insensitive (CMi) fibres that can be distinguished from one another according to their characteristic axonal properties. In healthy skin and relative to CMi fibres, CM fibres show a higher initial conduction velocity, less activity-dependent conduction velocity slowing, and less prominent post-spike supernormality. However, after sensitization with nerve growth factor, the electrical signature of CMi fibres changes towards a profile similar to that of CM fibres. Here we take a combined experimental and modelling approach to examine the molecular basis of such alterations to the excitation thresholds. Changes in electrical activation thresholds and activity-dependent slowing were examined in vivo using single-fibre recordings of CM and CMi fibres in domestic pigs following NGF application. Using computational modelling, we investigated which axonal mechanisms contribute most to the electrophysiological differences between the fibre classes. Simulations of axonal conduction suggest that the differences between CMi and CM fibres are strongly influenced by the densities of the delayed rectifier potassium channel (Kdr), the voltage-gated sodium channels NaV1.7 and NaV1.8, and the Na+/K+-ATPase. Specifically, the CM fibre profile required less Kdr and NaV1.8 in combination with more NaV1.7 and Na+/K+-ATPase. The difference between CM and CMi fibres is thus likely to reflect a relative rather than an absolute difference in protein expression. In support of this, it was possible to replicate the experimental reduction of the ADS pattern of CMi nociceptors towards a CM-like pattern following intradermal injection of nerve growth factor by decreasing the contribution of Kdr (by 50%), increasing the Na+/K+-ATPase (by 10%), and reducing the branch length from 2 cm to 1 cm. The findings highlight key molecules that potentially contribute to the NGF-induced switch in nociceptors phenotype, in particular NaV1.7 which has already been identified clinically as a principal contributor to chronic pain states such as inherited erythromelalgia.


Assuntos
Nervo Femoral/fisiologia , Mecanorreceptores/metabolismo , Fibras Nervosas Amielínicas/fisiologia , Nociceptividade/fisiologia , Nociceptores/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Axônios/efeitos dos fármacos , Axônios/fisiologia , Canais de Potássio de Retificação Tardia/genética , Canais de Potássio de Retificação Tardia/metabolismo , Estimulação Elétrica , Nervo Femoral/efeitos dos fármacos , Expressão Gênica , Injeções Intradérmicas , Mecanorreceptores/efeitos dos fármacos , Mecanotransdução Celular , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Fibras Nervosas Amielínicas/efeitos dos fármacos , Fator de Crescimento Neural/administração & dosagem , Condução Nervosa/efeitos dos fármacos , Condução Nervosa/fisiologia , Nociceptividade/efeitos dos fármacos , Nociceptores/efeitos dos fármacos , Pele/inervação , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Suínos
14.
Heart Rhythm ; 10(8): 1220-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23608591

RESUMO

BACKGROUND: Slow delayed-rectifier potassium current (IKs) channels, made of the pore-forming KCNQ1 and auxiliary KCNE1 subunits, play a key role in determining action potential duration (APD) in cardiac myocytes. The consequences of drug-induced KCNQ1 splice alteration remain unknown. OBJECTIVE: To study the modulation of KCNQ1 alternative splicing by amiloride and the consequent changes in IKs and action potentials (APs) in ventricular myocytes. METHODS: Canine endocardial, midmyocardial, and epicardial ventricular myocytes were isolated. Levels of KCNQ1a and KCNQ1b as well as a series of splicing factors were quantified by using the reverse transcriptase-polymerase chain reaction and Western blot. The effect of amiloride-induced changes in the KCNQ1b/total KCNQ1 ratio on AP was measured by using whole-cell patch clamp with and without isoproterenol. RESULTS: With 50 µmol/L of amiloride for 6 hours, KCNQ1a at transcriptional and translational levels increased in midmyocardial myocytes but decreased in endo- and epicardial myocytes. Likewise, changes in splicing factors in midmyocardial were opposite to that in endo- and epicardial myocytes. In midmyocardial myocytes amiloride shortened APD and decreased isoproterenol-induced early afterdepolarizations significantly. The same amiloride-induced effects were demonstrated by using human ventricular myocyte model for AP simulations under beta-adrenergic stimulation. Moreover, amiloride reduced the transmural dispersion of repolarization in pseudo-electrocardiogram. CONCLUSIONS: Amiloride regulates IKs and APs with transmural differences and reduces arrhythmogenicity through the modulation of KCNQ1 splicing. We suggested that the modulation of KCNQ1 splicing may help prevent arrhythmia.


Assuntos
Potenciais de Ação/fisiologia , Processamento Alternativo/genética , Amilorida/farmacologia , Canais de Potássio de Retificação Tardia/genética , Diuréticos/farmacologia , Canal de Potássio KCNQ1/genética , Miócitos Cardíacos/efeitos dos fármacos , Animais , Western Blotting , Canais de Potássio de Retificação Tardia/metabolismo , Cães , Ventrículos do Coração , Isoproterenol/farmacologia , Canal de Potássio KCNQ1/metabolismo , Miócitos Cardíacos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Brain Struct Funct ; 218(1): 239-54, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22383041

RESUMO

The rodent granular retrosplenial cortex (GRS) is reciprocally connected with the hippocampus. It is part of several networks implicated in spatial learning and memory, and is known to contain head-direction cells. There are, however, few specifics concerning the mechanisms and microcircuitry underlying its involvement in spatial and mnemonic functions. In this report, we set out to characterize intrinsic properties of a distinctive population of small pyramidal neurons in layer 2 of rat GRS. These neurons, as well as those in adjoining layer 3, were found to exhibit a late-spiking (LS) firing property. We established by multiple criteria that the LS property is a consequence of delayed rectifier and A-type potassium channels. These were identified as Kv1.1, Kv1.4 and Kv4.3 by Genechip analysis, in situ hybridization, single-cell reverse transcriptase-polymerase chain reaction, and pharmacological blockade. The LS property might facilitate comparison or integration of synaptic inputs during an interval delay, consistent with the proposed role of the GRS in memory-related processes.


Assuntos
Córtex Cerebral/metabolismo , Canais de Potássio de Retificação Tardia/metabolismo , Células Piramidais/metabolismo , Potenciais de Ação , Animais , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Canais de Potássio de Retificação Tardia/antagonistas & inibidores , Canais de Potássio de Retificação Tardia/genética , Hibridização In Situ , Cinética , Canal de Potássio Kv1.1/genética , Canal de Potássio Kv1.4/metabolismo , Aprendizagem , Memória , Rede Nervosa/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Potássio/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Células Piramidais/efeitos dos fármacos , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Canais de Potássio Shal/metabolismo , Transmissão Sináptica
16.
Curr Med Chem ; 19(9): 1405-20, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22360488

RESUMO

The slow delayed rectifier current (I(Ks)) is the slow component of cardiac delayed rectifier current and is critical for the late phase repolarization of cardiac action potential. This current is also an important target for Sympathetic Nervous System (SNS) to regulate the cardiac electivity to accommodate to heart rate alterations in response to exercise or emotional stress and can be up-regulated by ß- adrenergic or other signal molecules. I(Ks) channel is originated by the co-assembly of pore-forming KCNQ1 α-subunit and accessory KCNE1 ß-subunit. Mutations in any subunit can bring about severe long QT syndrome (LQT-1, LQT-5) as characterized by deliquium, seizures and sudden death. This review summarizes the normal physiological functions and molecular basis of I(Ks) channels, as well as illustrates up-to-date development on its blockers and activators. Therefore, the current extensive survey should generate fundamental understanding of the role of I(Ks) channel in modulating cardiac function and donate some instructions to the progression of I(Ks) blockers and activators as potential antiarrhythmic agents or pharmacological tools to determine the physiological and pathological function of I(Ks).


Assuntos
Antiarrítmicos/uso terapêutico , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/metabolismo , Canais de Potássio de Retificação Tardia/metabolismo , Animais , Antiarrítmicos/química , Antiarrítmicos/farmacologia , Arritmias Cardíacas/genética , Canais de Potássio de Retificação Tardia/agonistas , Canais de Potássio de Retificação Tardia/antagonistas & inibidores , Canais de Potássio de Retificação Tardia/genética , Coração/efeitos dos fármacos , Humanos , Mutação , Miocárdio/metabolismo , Potássio/metabolismo
17.
Surg Today ; 41(3): 382-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21365420

RESUMO

PURPOSE: The augmenter of liver regeneration (ALR) might promote better renal function after orthotopic liver transplantation (OLT). Using a rat allogeneic OLT model, we investigated if ALR can mediate renal protection and its potential mechanisms. METHODS: Orthotopic liver transplant recipients were assigned to a cyclosporine A (CsA)-treated group (CsA group) and an ALR+CsA group (ALR group). Transplanted liver, kidneys, and serum were harvested on post-transplantation days 1, 3, and 7 for histological examination, and hepatic function and renal function analysis. We also measured the expression of hypoxiainducible factor-1 (HIF-1α) and O(2)-sensitive K(+) cannels (KV1.5 and KV2.1), and free Ca(2+) in the smooth muscle cells (SMCs) of intrarenal arterioles in the kidneys. RESULTS: All transplanted livers suffered mild acute rejection after OLT. Recipient kidney damage was more severe in the CsA group, characterized by increased serum creatinine, tubular epithelial apoptosis and necrosis, and the formation of casts. In the ALR group, HIF-1α, KV1.5, and KV2.1 were upregulated, accompanied by lower Ca(2+) concentration, in the SMCs shortly after OLT. CONCLUSION: Augmenter of liver regeneration might increase the expression of HIF-1α and K(+) channels and decrease intracellular free Ca(2+), thereby inhibiting arterial contraction and promoting kidney perfusion immediately after OLT.


Assuntos
Canais de Potássio de Retificação Tardia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Nefropatias/prevenção & controle , Regeneração Hepática/genética , Transplante de Fígado/fisiologia , RNA Mensageiro/genética , Regulação para Cima , Animais , Cálcio/metabolismo , Canais de Potássio de Retificação Tardia/biossíntese , Modelos Animais de Doenças , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Immunoblotting , Rim/metabolismo , Rim/patologia , Nefropatias/genética , Nefropatias/metabolismo , Canal de Potássio Kv1.5/biossíntese , Canal de Potássio Kv1.5/genética , Masculino , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos Lew , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Canais de Potássio Shab/biossíntese , Canais de Potássio Shab/genética
18.
Heart Rhythm ; 8(3): 463-70, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21109023

RESUMO

BACKGROUND: Long QT syndrome (LQTS) is characterized by a prolonged QT interval that can lead to severe ventricular arrhythmias (torsades de pointes) and sudden death. Congenital LQTS type 2 (LQT2) is due to loss-of-function mutations in the KCNH2 gene encoding Kv11.1 channels responsible for the rapid component of the delayed rectifier current. OBJECTIVE: The purpose of this study was to determine the functional properties of the LQT2-associated mutation p.E637G found in a Spanish family. METHODS: Wild-type (WT) and p.E637G Kv11.1 channels were transiently transfected in Chinese hamster ovary cells, and currents were recorded using the patch-clamp technique. RESULTS: The p.E637G channels lost inward rectification and K(+) selectivity, generating small but measurable slowly activating, noninactivating currents. These important alterations were corrected neither by cotransfection with WT channels nor by incubation at low temperatures or with pharmacological chaperones. As a consequence of its effects on channel gating, the mutation significantly reduced the outward repolarizing current during the action potential (AP), resulting in a marked lengthening of the duration of a simulated human ventricular AP. CONCLUSION: We have identified and characterized an LQT2-associated mutation that through removal of C-type inactivation and reduction of K(+) selectivity causes the QT prolongation observed in the patients carrying the mutation. Moreover, the results obtained demonstrate the importance of the glutamic acid at position 637 for the inactivation process and K(+) selectivity of Kv11.1 channels.


Assuntos
Canais de Potássio Éter-A-Go-Go/genética , Síndrome do QT Longo/genética , Mutação de Sentido Incorreto/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Animais , Cricetinae , Cricetulus , Canais de Potássio de Retificação Tardia/genética , Canal de Potássio ERG1 , Ácido Glutâmico/genética , Humanos , Técnicas de Patch-Clamp , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Transporte Proteico
19.
Am J Physiol Cell Physiol ; 298(3): C486-95, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19955484

RESUMO

Human embryonic stem cells (hESCs) can self-renew while maintaining their pluripotency. Direct reprogramming of adult somatic cells to induced pluripotent stem cells (iPSCs) has been reported. Although hESCs and human iPSCs have been shown to share a number of similarities, such basic properties as the electrophysiology of iPSCs have not been explored. Previously, we reported that several specialized ion channels are functionally expressed in hESCs. Using transcriptomic analyses as a guide, we observed tetraethylammonium (TEA)-sensitive (IC(50) = 3.3 +/- 2.7 mM) delayed rectifier K(+) currents (I(KDR)) in 105 of 110 single iPSCs (15.4 +/- 0.9 pF). I(KDR) in iPSCs displayed a current density of 7.6 +/- 3.8 pA/pF at +40 mV. The voltage for 50% activation (V(1/2)) was -7.9 +/- 2.0 mV, slope factor k = 9.1 +/- 1.5. However, Ca(2+)-activated K(+) current (I(KCa)), hyperpolarization-activated pacemaker current (I(f)), and voltage-gated sodium channel (Na(V)) and voltage-gated calcium channel (Ca(V)) currents could not be measured. TEA inhibited iPSC proliferation (EC(50) = 7.8 +/- 1.2 mM) and viability (EC(50) = 5.5 +/- 1.0 mM). By contrast, 4-aminopyridine (4-AP) inhibited viability (EC(50) = 4.5 +/- 0.5 mM) but had less effect on proliferation (EC(50) = 0.9 +/- 0.5 mM). Cell cycle analysis further revealed that K(+) channel blockers inhibited proliferation primarily by arresting the mitotic phase. TEA and 4-AP had no effect on iPSC differentiation as gauged by ability to form embryoid bodies and expression of germ layer markers after induction of differentiation. Neither iberiotoxin nor apamin had any function effects, consistent with the lack of I(KCa) in iPSCs. Our results reveal further differences and similarities between human iPSCs and hESCs. A better understanding of the basic biology of iPSCs may facilitate their ultimate clinical application.


Assuntos
Canais de Potássio de Retificação Tardia/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Potássio/metabolismo , Canais de Cálcio/metabolismo , Ciclo Celular , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Canais de Potássio de Retificação Tardia/antagonistas & inibidores , Canais de Potássio de Retificação Tardia/genética , Relação Dose-Resposta a Droga , Células-Tronco Embrionárias/metabolismo , Perfilação da Expressão Gênica , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Cinética , Potenciais da Membrana , Células-Tronco Mesenquimais/metabolismo , Proteínas Musculares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio , Canais de Potássio Cálcio-Ativados/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Canais de Sódio/metabolismo
20.
J Neurophysiol ; 100(4): 2125-36, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18684900

RESUMO

Whereas Kvbeta2 subunits modulate potassium current properties carried by Kv1 channel complexes in heterologous systems, little is known about the contributions of Kvbeta2 subunits to native potassium channel function. Using antisense approaches and in situ recordings from Xenopus embryo spinal cord neurons, we tested the in vivo roles of Kvbeta2 subunits in modulation of voltage-dependent potassium current (IKv). We focused on 1) two different populations of dorsal spinal neurons that express both Kvbeta2 and Kv1 alpha-subunit genes and 2) the 24- and 48-h developmental period, during which IKv undergoes developmental regulation. At both 24 and 48 h, antisense methods produced efficient knock-down of both Kvbeta2 protein and IKv. At both times, dominant negative suppression of Kv1 channels also eliminated IKv, indicating that Kv1 channels require Kvbeta2 subunits to function in dorsal spinal neurons. Even though Kv1 channels determined the IKv values of both dorsal neuron types, comparisons of their IKv properties revealed important differences at both developmental stages. The latter results support the notion that different Kv1 alpha-subunits and/or posttranslational modifications underlie the IKv values of the two dorsal neuron types. Overall, the results demonstrate that Kvbeta2 subunits function in vivo as obligatory subunits of Kv1 channels in at least two neuron types and two different developmental stages.


Assuntos
Canais de Potássio de Retificação Tardia/metabolismo , Neurônios/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Raízes Nervosas Espinhais/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Western Blotting , Interpretação Estatística de Dados , Canais de Potássio de Retificação Tardia/genética , Relação Dose-Resposta a Droga , Eletrofisiologia , Potenciais da Membrana/efeitos dos fármacos , Microinjeções , Neurônios/efeitos dos fármacos , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/farmacologia , Técnicas de Patch-Clamp , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , RNA/biossíntese , RNA/genética , Raízes Nervosas Espinhais/citologia , Raízes Nervosas Espinhais/efeitos dos fármacos , Proteínas de Xenopus/genética , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...