Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell Biol Int ; 45(7): 1448-1458, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33675282

RESUMO

Ischemia/reperfusion (I/R) is a well-known injury to the myocardium, but the mechanism involved remains elusive. In addition to the well-accepted apoptosis theory, autophagy was recently found to be involved in the process, exerting a dual role as protection in ischemia and detriment in reperfusion. Activation of autophagy is mediated by mitochondrial permeability transition pore (MPTP) opening during reperfusion. In our previous study, we showed that MPTP opening is regulated by VDAC1, a channel protein located in the outer membrane of mitochondria. Thus, upregulation of VDAC1 expression is a possible trigger to cardiomyocyte autophagy via an unclear pathway. Here, we established an anoxia/reoxygenation (A/R) model in vitro to simulate the I/R process in vivo. At the end of A/R treatment, VDAC1, Beclin 1, and LC3-II/I were upregulated, and autophagic vacuoles were increased in cardiomyocytes, which showed a connection of VDAC1 and autophagy development. These variations also led to ROS burst, mitochondrial dysfunction, and aggravated apoptosis. Knockdown of VDAC1 by RNAi could alleviate the above-mentioned cellular damages. Additionally, the expression of PINK1 and Parkin was enhanced after A/R injury. Furthermore, Parkin was recruited to mitochondria from the cytosol, which suggested that the PINK1/Parkin autophagic pathway was activated during A/R. Nevertheless, the PINK1/Parkin pathway was effectively inhibited when VDAC1 was knocked-down. Taken together, the A/R-induced cardiomyocyte injury was mediated by VDAC1 upregulation, which led to cell autophagy via the PINK1/Parkin pathway, and finally aggravated apoptosis.


Assuntos
Mitocôndrias/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Canal de Ânion 1 Dependente de Voltagem/fisiologia , Animais , Apoptose , Autofagia , Linhagem Celular , Potencial da Membrana Mitocondrial , Miócitos Cardíacos , Ratos
2.
Cell Biol Int ; 44(11): 2178-2181, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32716117

RESUMO

A recent study suggests that voltage-dependent anion channel (VDAC) oligomer pores promote mitochondrial outer membrane permeabilization and allow mitochondrial DNA (mtDNA) to be released into the cytosol in live cells. It challenges the notion that only occurs in apoptotic cells via BAX/BAK macropores. Cytosolic mtDNA activates cyclic GMP-AMP synthase (cGAS)-stimulator of IFN gene (STING) pathway and triggers type I interferon (IFN) response thereafter, which ultimately causes systemic lupus erythematosus. Mechanistically, mtDNA can interact with three positively charged residues (Lys12, Arg15, and Lys20) at the N-terminus of VDAC1, thereby strengthening VDAC1 oligomerization and facilitating mtDNA release. In addition, there are other pathways that can mediate mtDNA release, such as BAX/BAK macropores and virus-derived pores. The mtDNA released into the cytosol also triggers type I IFN response via the generally accepted cGAS-STING-TANK-binding kinase 1-IFN regulatory factor 3 axis. Collectively, VDAC oligomer pores provide us an attractive direction for us to understand mtDNA release-related diseases.


Assuntos
DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Apoptose , Citosol/metabolismo , DNA Mitocondrial/genética , Membranas Mitocondriais/metabolismo , Transdução de Sinais , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Canal de Ânion 1 Dependente de Voltagem/fisiologia , Canais de Ânion Dependentes de Voltagem/fisiologia , Proteína X Associada a bcl-2/metabolismo
3.
Theranostics ; 10(6): 2696-2713, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194829

RESUMO

Rationale: Renal cell carcinoma (RCC) accounts for about 2% of all adult cancers, and clear cell RCC (ccRCC) is the most common RCC histologic subtype. A hallmark of ccRCC is the loss of the primary cilium, a cellular antenna that senses a wide variety of signals. Loss of this key organelle in ccRCC is associated with the loss of the von Hippel-Lindau protein (VHL). However, not all mechanisms of ciliopathy have been clearly elucidated. Methods: By using RCC4 renal cancer cells and patient samples, we examined the regulation of ciliogenesis via the presence or absence of the hypoxic form of the voltage-dependent anion channel (VDAC1-ΔC) and its impact on tumor aggressiveness. Three independent cohorts were analyzed. Cohort A was from PREDIR and included 12 patients with hereditary pVHL mutations and 22 sporadic patients presenting tumors with wild-type pVHL or mutated pVHL; Cohort B included tissue samples from 43 patients with non-metastatic ccRCC who had undergone surgery; and Cohort C was composed of 375 non-metastatic ccRCC tumor samples from The Cancer Genome Atlas (TCGA) and was used for validation. The presence of VDAC1-ΔC and legumain was determined by immunoblot. Transcriptional regulation of IFT20/GLI1 expression was evaluated by qPCR. Ciliogenesis was detected using both mouse anti-acetylated α-tubulin and rabbit polyclonal ARL13B antibodies for immunofluorescence. Results: Our study defines, for the first time, a group of ccRCC patients in which the hypoxia-cleaved form of VDAC1 (VDAC1-ΔC) induces resorption of the primary cilium in a Hypoxia-Inducible Factor-1 (HIF-1)-dependent manner. An additional novel group, in which the primary cilium is re-expressed or maintained, lacked VDAC1-ΔC yet maintained glycolysis, a signature of epithelial-mesenchymal transition (EMT) and more aggressive tumor progression, but was independent to VHL. Moreover, these patients were less sensitive to sunitinib, the first-line treatment for ccRCC, but were potentially suitable for immunotherapy, as indicated by the immunophenoscore and the presence of PDL1 expression. Conclusion: This study provides a new way to classify ccRCC patients and proposes potential therapeutic targets linked to metabolism and immunotherapy.


Assuntos
Carcinoma de Células Renais , Cílios , Neoplasias Renais , Canal de Ânion 1 Dependente de Voltagem/fisiologia , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Cílios/metabolismo , Cílios/patologia , Estudos de Coortes , Transição Epitelial-Mesenquimal , Feminino , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
4.
Sci Rep ; 9(1): 14063, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575916

RESUMO

During the progression of the neurodegenerative process, mitochondria participates in several intercellular signaling pathways. Voltage-dependent anion-selective channel 1 (VDAC1) is a mitochondrial porin involved in the cellular metabolism and apoptosis intrinsic pathway in many neuropathological processes. In spinal cord injury (SCI), after the primary cell death, a secondary response that comprises the release of pro-inflammatory molecules triggers apoptosis, inflammation, and demyelination, often leading to the loss of motor functions. Here, we investigated the functional role of VDAC1 in the neurodegeneration triggered by SCI. We first determined that in vitro targeted ablation of VDAC1 by specific morpholino antisense nucleotides (MOs) clearly promotes neurite retraction, whereas a pharmacological blocker of VDAC1 oligomerization (4, 4'-diisothiocyanatostilbene-2, 2'-disulfonic acid, DIDS), does not cause this effect. We next determined that, after SCI, VDAC1 undergoes conformational changes, including oligomerization and N-terminal exposition, which are important steps in the triggering of apoptotic signaling. Considering this, we investigated the effects of DIDS in vivo application after SCI. Interestingly, blockade of VDAC1 oligomerization decreases the number of apoptotic cells without interfering in the neuroinflammatory response. DIDS attenuates the massive oligodendrocyte cell death, subserving undisputable motor function recovery. Taken together, our results suggest that the prevention of VDAC1 oligomerization might be beneficial for the clinical treatment of SCI.


Assuntos
Neuritos/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Medula Espinal/metabolismo , Canal de Ânion 1 Dependente de Voltagem/fisiologia , Animais , Western Blotting , Células Cultivadas , Feminino , Imunofluorescência , Masculino , Microscopia de Fluorescência , Ratos , Ratos Wistar , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo
5.
Cells ; 8(11)2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661894

RESUMO

Reprograming of the metabolism of cancer cells is an event recognized as a hallmark of the disease. The mitochondrial gatekeeper, voltage-dependent anion channel 1 (VDAC1), mediates transport of metabolites and ions in and out of mitochondria, and is involved in mitochondria-mediated apoptosis. Here, we compared the effects of reducing hVDAC1 expression in a glioblastoma xenograft using human-specific si-RNA (si-hVDAC1) for a short (19 days) and a long term (40 days). Tumors underwent reprograming, reflected in rewired metabolism, eradication of cancer stem cells (CSCs) and differentiation. Short- and long-term treatments of the tumors with si-hVDAC1 similarly reduced the expression of metabolism-related enzymes, and translocator protein (TSPO) and CSCs markers. In contrast, differentiation into cells expressing astrocyte or neuronal markers was noted only after a long period during which the tumor cells were hVDAC1-depleted. This suggests that tumor cell differentiation is a prolonged process that precedes metabolic reprograming and the "disappearance" of CSCs. Tumor proteomics analysis revealing global changes in the expression levels of proteins associated with signaling, synthesis and degradation of proteins, DNA structure and replication and epigenetic changes, all of which were highly altered after a long period of si-hVDAC1 tumor treatment. The depletion of hVDAC1 greatly reduced the levels of the multifunctional translocator protein TSPO, which is overexpressed in both the mitochondria and the nucleus of the tumor. The results thus show that VDAC1 depletion-mediated cancer cell metabolic reprograming involves a chain of events occurring in a sequential manner leading to a reversal of the unique properties of the tumor, indicative of the interplay between metabolism and oncogenic signaling networks.


Assuntos
Glioblastoma/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Animais , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Reprogramação Celular/fisiologia , Humanos , Masculino , Camundongos , Camundongos Nus , Mitocôndrias/metabolismo , Células-Tronco Neoplásicas/patologia , Estudo de Prova de Conceito , RNA Interferente Pequeno/metabolismo , Receptores de GABA/metabolismo , Transdução de Sinais , Canal de Ânion 1 Dependente de Voltagem/fisiologia
6.
J Proteome Res ; 17(1): 698-709, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29185755

RESUMO

Progesterone is a biphasic hormone whose confounding role in breast cancer cells involves an initial proliferative surge, followed by sustained growth arrest. Recently we reported that progesterone induces a time- and concentration-dependent release of reactive oxygen species and thus regulates the antiproliferative activity in the breast cancer cell line. Furthermore, the expression of p27, a crucial cell cycle control protein, was regulated by binding of progesterone on progesterone receptor B, thus leading to antiproliferative signaling via multiple signaling pathways including p53, PTEN, and antioxidant systems. Here, we performed an LC-MS/MS analysis of three different breast cancer cell lines. Bioinformatics data analysis and functional classification of proteins revealed a role of progesterone in calcium signaling in MCF-7 cells, and the major differentially expressed calcium regulators were S100A11, S100A10, calreticulin, VDAC1, SERCA3, and SERCA1. Later on we confirmed it by a cell-line-based system having a calcium cameleon sensor targeted at endoplasmic reticulum and found moderate calcium efflux from endoplasmic reticulum upon progesterone treatment. Real-time PCR, Western blot, and TMRM staining confirmed the role of calcium signaling regulators VDAC1 and SERCA3 in progesterone response. Taking together all of these results with our previous studies, we suggest that progesterone, by regulating important proteins involved in calcium signaling and transport, can modulate cell proliferation and cell death. Furthermore, our research may open new avenues for the hypothesis that surgery conducted during the luteal phase of the menstrual cycle might facilitate improved patient survival.


Assuntos
Neoplasias da Mama/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Progesterona/farmacologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/fisiologia , Canal de Ânion 1 Dependente de Voltagem/fisiologia , Neoplasias da Mama/patologia , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Células MCF-7 , Proteômica/métodos
7.
Hum Mol Genet ; 26(13): 2493-2506, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28431142

RESUMO

Despite considerable knowledge on the genetic basis of mitochondrial disorders, their pathophysiological consequences remain poorly understood. We previously used two-dimensional difference gel electrophoresis analyses to define a protein profile characteristic for respiratory chain complex III-deficiency that included a significant overexpression of cytosolic gelsolin (GSN), a cytoskeletal protein that regulates the severing and capping of the actin filaments. Biochemical and immunofluorescence assays confirmed a specific increase of GSN levels in the mitochondria from patients' fibroblasts and from transmitochondrial cybrids with complex III assembly defects. A similar effect was obtained in control cells upon treatment with antimycin A in a dose-dependent manner, showing that the enzymatic inhibition of complex III is sufficient to promote the mitochondrial localization of GSN. Mitochondrial subfractionation showed the localization of GSN to the mitochondrial outer membrane, where it interacts with the voltage-dependent anion channel protein 1 (VDAC1). In control cells, VDAC1 was present in five stable oligomeric complexes, which showed increased levels and a modified distribution pattern in the complex III-deficient cybrids. Downregulation of GSN expression induced cell death in both cell types, in parallel with the specific accumulation of VDAC1 dimers and the release of mitochondrial cytochrome c into the cytosol, indicating a role for GSN in the oligomerization of VDAC complexes and in the prevention of apoptosis. Our results demonstrate that respiratory chain complex III dysfunction induces the physiological upregulation and mitochondrial location of GSN, probably to promote cell survival responses through the modulation of the oligomeric state of the VDAC complexes.


Assuntos
Transporte de Elétrons/fisiologia , Gelsolina/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Antimicina A/metabolismo , Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Citocromos c/metabolismo , Fibroblastos/metabolismo , Gelsolina/genética , Células HeLa , Humanos , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Membranas Mitocondriais/metabolismo , Eletroforese em Gel Diferencial Bidimensional/métodos , Canal de Ânion 1 Dependente de Voltagem/fisiologia
8.
J Biol Chem ; 290(39): 23563-78, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26253170

RESUMO

The pro-apoptotic Bax and Bak proteins are considered central to apoptosis, yet apoptosis occurs in their absence. Here, we asked whether the mitochondrial protein VDAC1 mediates apoptosis independently of Bax/Bak. Upon screening a fungal secondary metabolite library for compounds inducing apoptosis in Bax/Bak-deficient mouse embryonic fibroblasts, we identified cyathin-R, a new cyathane diterpenoid compound able to activate apoptosis in the absence of Bax/Bak via promotion of the VDAC1 oligomerization that mediates cytochrome c release. Diphenylamine-2-carboxilic acid, an inhibitor of VDAC1 conductance and oligomerization, inhibited cyathin-R-induced VDAC1 oligomerization and apoptosis. Similarly, Bcl-2 overexpression conferred resistance to cyathin-R-induced apoptosis and VDAC1 oligomerization. Silencing of VDAC1 expression prevented cyathin-R-induced apoptosis. Finally, cyathin-R effectively attenuated tumor growth and induced apoptosis in Bax/Bak-deficient cells implanted into a xenograft mouse model. Hence, this study identified a new compound promoting VDAC1-dependent apoptosis as a potential therapeutic option for cancerous cells lacking or presenting inactivated Bax/Bak.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Diterpenos/farmacologia , Canal de Ânion 1 Dependente de Voltagem/fisiologia , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/genética , Animais , Linhagem Celular Tumoral , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Ratos
9.
J Biol Chem ; 290(14): 9150-61, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25681439

RESUMO

Excessive Ca(2+) fluxes from the endoplasmic reticulum to the mitochondria result in apoptotic cell death. Bcl-2 and Bcl-XL proteins exert part of their anti-apoptotic function by directly targeting Ca(2+)-transport systems, like the endoplasmic reticulum-localized inositol 1,4,5-trisphosphate receptors (IP3Rs) and the voltage-dependent anion channel 1 (VDAC1) at the outer mitochondrial membranes. We previously demonstrated that the Bcl-2 homology 4 (BH4) domain of Bcl-2 protects against Ca(2+)-dependent apoptosis by binding and inhibiting IP3Rs, although the BH4 domain of Bcl-XL was protective independently of binding IP3Rs. Here, we report that in contrast to the BH4 domain of Bcl-2, the BH4 domain of Bcl-XL binds and inhibits VDAC1. In intact cells, delivery of the BH4-Bcl-XL peptide via electroporation limits agonist-induced mitochondrial Ca(2+) uptake and protects against staurosporine-induced apoptosis, in line with the results obtained with VDAC1(-/-) cells. Moreover, the delivery of the N-terminal domain of VDAC1 as a synthetic peptide (VDAC1-NP) abolishes the ability of BH4-Bcl-XL to suppress mitochondrial Ca(2+) uptake and to protect against apoptosis. Importantly, VDAC1-NP did not affect the ability of BH4-Bcl-2 to suppress agonist-induced Ca(2+) release in the cytosol or to prevent apoptosis, as done instead by an IP3R-derived peptide. In conclusion, our data indicate that the BH4 domain of Bcl-XL, but not that of Bcl-2, selectively targets VDAC1 and inhibits apoptosis by decreasing VDAC1-mediated Ca(2+) uptake into the mitochondria.


Assuntos
Apoptose , Sinalização do Cálcio , Mitocôndrias/metabolismo , Canal de Ânion 1 Dependente de Voltagem/fisiologia , Proteína bcl-X/fisiologia , Sequência de Aminoácidos , Animais , Células Cultivadas , Camundongos , Dados de Sequência Molecular
10.
Clin Lab ; 61(12): 1855-63, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26882807

RESUMO

BACKGROUND: Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can selectively induce apoptosis in some non-small cell lung cancer (NSCLC) cells, some NSCLC cells exhibit TRAIL-resistance. The underlying mechanisms that regulate TRAIL sensitivity in NSCLC cells are not well understood. The objective of this study was to investigate molecular regulators of the TRAIL pathway in NSCLC cells. METHODS: The TRAIL-sensitive NSCLC cell line NCI-H358 and a TRAIL-resistant cell line A549 were treated with rmhTRAIL for 24 hours. Then cell viability were measured by MTT assay, meanwhile cell cycle and apoptosis were measured by flow cytometry. Furthermore, mass spectrometry (LC-MS/MS) was used to identify the difference in the protein expression profiles. Finally, real-time PCR was performed to detect the mRNA expression of TRAIL receptors and apoptotic related proteins. RESULTS: These results confirmed that NCI-H358 cells were sensitive to TRAIL, whereas A549 cells were resistant. Both mRNA and protein levels of voltage-dependent anion-selective channel proteinl (VDAC1), caspase9 (CASP9), and cytochrome c1 (CYC1) were upregulated in H358 cells but downregulated in A549 cells, whereas antiapoptotic protein BAG-2 was downregulated. In addition, TRAIL also causes DR5 low expression in A549 cells. CONCLUSIONS: These results indicate that rmhTRAIL had different anti-tumor activity in different NSCLC cell lines. Downregulation of VDAC1, CYC1, CASP9, and upregulation of BAG-2 might be associated with underlying TRAIL-resistance mechanisms. These findings motivated further studies to explore new therapeutic strategy overcoming TRAIL-resistance of NSCLC cells through modulating dysregulation of the proteins above.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/patologia , Ligante Indutor de Apoptose Relacionado a TNF/uso terapêutico , Espectrometria de Massas em Tandem , Canal de Ânion 1 Dependente de Voltagem/fisiologia
11.
PLoS One ; 9(9): e106941, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25192453

RESUMO

The voltage-dependent anion channels (VDACs), prominently localized in the outer mitochondrial membrane, play important roles in the metabolite exchange, energy metabolism and mitochondria-mediated apoptosis process in mammalian cells. However, relatively little is known about the functions of VDACs in plants. To further investigate the function of AtVDAC1 in Arabidopsis, we analyzed a T-DNA insertion line for the AtVDAC1 gene. The knock-out mutant atvdac1 showed reduced seed set due to a large number of undeveloped ovules in siliques. Genetic analyses indicated that the mutation of AtVDAC1 affected female fertility and belonged to a sporophytic mutation. Abnormal ovules in the process of female gametogenesis were observed using a confocal laser scanning microscope. Interestingly, both mitochondrial transmembrane potential (ΔΨ) and ATP synthesis rate were obviously reduced in the mitochondria isolated from atvdac1 plants.


Assuntos
Arabidopsis , Metabolismo Energético/genética , Mitocôndrias/fisiologia , Óvulo Vegetal/crescimento & desenvolvimento , Desenvolvimento Vegetal/genética , Canal de Ânion 1 Dependente de Voltagem/fisiologia , Trifosfato de Adenosina/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , DNA Bacteriano/genética , Gametogênese Vegetal/genética , Regulação da Expressão Gênica de Plantas , Potencial da Membrana Mitocondrial/genética , Mitocôndrias/genética , Óvulo Vegetal/genética , Plantas Geneticamente Modificadas , Canal de Ânion 1 Dependente de Voltagem/genética
12.
Nat Struct Mol Biol ; 21(7): 626-32, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24908397

RESUMO

The voltage-dependent anion channel (VDAC) mediates the flow of metabolites and ions across the outer mitochondrial membrane of all eukaryotic cells. The open channel passes millions of ATP molecules per second, whereas the closed state exhibits no detectable ATP flux. High-resolution structures of VDAC1 revealed a 19-stranded ß-barrel with an α-helix partially occupying the central pore. To understand ATP permeation through VDAC, we solved the crystal structure of mouse VDAC1 (mVDAC1) in the presence of ATP, revealing a low-affinity binding site. Guided by these coordinates, we initiated hundreds of molecular dynamics simulations to construct a Markov state model of ATP permeation. These simulations indicate that ATP flows through VDAC through multiple pathways, in agreement with our structural data and experimentally determined physiological rates.


Assuntos
Trifosfato de Adenosina/metabolismo , Canal de Ânion 1 Dependente de Voltagem/química , Trifosfato de Adenosina/química , Animais , Sítios de Ligação , Simulação por Computador , Cristalografia por Raios X , Cadeias de Markov , Camundongos , Membranas Mitocondriais/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Canal de Ânion 1 Dependente de Voltagem/fisiologia
13.
Adv Exp Med Biol ; 772: 101-10, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24272356

RESUMO

Finding new therapeutic targets to fight cancer is an ongoing quest. Because of insufficiencies in tumor vasculature, cells often are exposed to a hostile microenvironment that is low in oxygen (hypoxic) and nutrients. Thus, tumor cells face the challenge of finding new sources of energy and defying apoptosis, which allow them to survive, grow, and colonize other tissues. Eradicating specifically these hypoxic cells is one of the many goals of anticancer therapies. The mitochondrial voltage-dependent anion channel (VDAC) is a protein at the crossroads of metabolic and survival pathways. As its name suggests, VDAC is involved in ion transport as well as adenosine triphosphate and NAD(+) transport. We recently reported the presence in tumor cells of a novel hypoxia-induced form of VDAC. This form, a C-terminal truncated protein (VDAC1-ΔC), was associated in some cancer cell lines with a high output of adenosine triphosphate and a strong resistance to chemotherapy-induced apoptosis. Furthermore, VDAC1-ΔC was detected in tissues of 50 % of 46 patients with lung cancer. This review examines the significance of this new form of VDAC1 for anticancer therapy.


Assuntos
Biomarcadores Tumorais , Mitocôndrias/genética , Neoplasias/terapia , Canal de Ânion 1 Dependente de Voltagem/fisiologia , Animais , Apoptose/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Hipóxia Celular/genética , Humanos , Mitocôndrias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Isoformas de Proteínas/fisiologia
14.
Circulation ; 128(14): 1555-65, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23983249

RESUMO

BACKGROUND: Under physiological conditions, Ca(2+) transfer from the endoplasmic reticulum (ER) to mitochondria might occur at least in part at contact points between the 2 organelles and involves the VDAC1/Grp75/IP3R1 complex. Accumulation of Ca(2+) into the mitochondrial matrix may activate the mitochondrial chaperone cyclophilin D (CypD) and trigger permeability transition pore opening, whose role in ischemia/reperfusion injury is well recognized. We questioned here whether the transfer of Ca(2+) from ER to mitochondria might play a role in cardiomyocyte death after hypoxia-reoxygenation. METHODS AND RESULTS: We report that CypD interacts with the VDAC1/Grp75/IP3R1 complex in cardiomyocytes. Genetic or pharmacological inhibition of CypD in both H9c2 cardiomyoblasts and adult cardiomyocytes decreased the Ca(2+) transfer from ER to mitochondria through IP3R under normoxic conditions. During hypoxia-reoxygenation, the interaction between CypD and the IP3R1 Ca(2+) channeling complex increased concomitantly with mitochondrial Ca(2+) content. Inhibition of either CypD, IP3R1, or Grp75 decreased protein interaction within the complex, attenuated mitochondrial Ca(2+) overload, and protected cells from hypoxia-reoxygenation. Genetic or pharmacological inhibition of CypD provided a similar effect in adult mice cardiomyocytes. Disruption of ER-mitochondria interaction via the downregulation of Mfn2 similarly reduced the interaction between CypD and the IP3R1 complex and protected against hypoxia-reoxygenation injury. CONCLUSIONS: Our data (1) point to a new role of CypD at the ER-mitochondria interface and (2) suggest that decreasing ER-mitochondria interaction at reperfusion can protect cardiomyocytes against lethal reperfusion injury through the reduction of mitochondrial Ca(2+) overload via the CypD/VDAC1/Grp75/IP3R1 complex.


Assuntos
Sinalização do Cálcio/fisiologia , Hipóxia Celular/fisiologia , Retículo Endoplasmático/fisiologia , Mitocôndrias Cardíacas/fisiologia , Miócitos Cardíacos/patologia , Oxigênio/toxicidade , Animais , Linhagem Celular , Células Cultivadas/metabolismo , Peptidil-Prolil Isomerase F , Ciclofilinas/deficiência , Ciclofilinas/genética , Ciclofilinas/fisiologia , Proteínas de Choque Térmico HSP70/fisiologia , Técnicas In Vitro , Receptores de Inositol 1,4,5-Trifosfato/fisiologia , Membranas Intracelulares/fisiologia , Masculino , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexos Multiproteicos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Técnicas de Patch-Clamp , Distribuição Aleatória , Ratos , Canal de Ânion 1 Dependente de Voltagem/fisiologia
15.
Biochim Biophys Acta ; 1827(6): 793-805, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23541892

RESUMO

Voltage-dependent anion selective channel isoform1 maintains the permeability of the outer mitochondrial membrane. Its voltage-gating properties are relevant in bioenergetic metabolism and apoptosis. The N-terminal domain is suspected to be involved in voltage-gating, due to its peculiar localization. However this issue is still controversial. In this work we exchanged or deleted the ß-strands that take contact with the N-terminal domain. The exchange of the whole hVDAC1 ß-barrel with the homologous hVDAC3 ß-barrel produces a chimeric protein that, in reconstituted systems, loses completely voltage-dependence. hVDAC3 ß-barrel has most residues in common with hVDAC1, including V143 and L150 considered anchor points for the N-terminus. hVDAC1 mutants completely lacking either the ß-strand 9 or both ß-strands 9 and 10 were expressed, refolded and reconstituted in artificial bilayers. The mutants formed smaller pores. Molecular dynamics simulations of the mutant structure supported its ability to form smaller pores. The mutant lacking both ß-strands 9 and 10 showed a new voltage-dependence feature resulting in a fully asymmetric behavior. These data indicate that a network of ß-strands in the pore-walls, and not single residues, are required for voltage-gating in addition to the N-terminus.


Assuntos
Canal de Ânion 1 Dependente de Voltagem/química , Sequência de Aminoácidos , Potenciais da Membrana , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/química , Alinhamento de Sequência , Canal de Ânion 1 Dependente de Voltagem/fisiologia
16.
Circ Heart Fail ; 6(3): 572-83, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23508759

RESUMO

BACKGROUND: We have shown that BNIP3 expression is significantly increased in heart failure (HF). In this study, we tested the effects of BNIP3 manipulation in HF. METHODS AND RESULTS: In a rat model of pressure overload HF, BNIP3 knockdown significantly decreased left ventricular (LV) volumes with significant improvement in LV diastolic and systolic function. There were significant decreases in myocardial apoptosis and LV interstitial fibrosis. Ultrastructurally, BNIP3 knockdown attenuated mitochondrial fragmentation and restored mitochondrial morphology and integrity. On the molecular level, there were significant decreases in endoplasmic reticulum (ER) stress and mitochondrial apoptotic markers. One of the mechanisms by which BNIP3 mediates mitochondrial dysfunction is via the oligomerization of the voltage-dependent anion channels causing a shift of calcium from the ER to mitochondrial compartments, leading to the decrease in ER calcium content, mitochondrial damage, apoptosis, and LV interstitial fibrosis, and hence contributes to both systolic and diastolic myocardial dysfunction, respectively. In systolic HF, the downregulation of SERCA2a (sarcoplasmic-endoplasmic reticulum calcium ATPase), along with an increased BNIP3 expression, further worsen myocardial diastolic and systolic function and contribute to the major remodeling seen in systolic HF as compared with diastolic HF with normal SERCA2a expression. CONCLUSIONS: The increase in BNIP3 expression contributes mainly to myocardial diastolic dysfunction through mitochondrial apoptosis, LV interstitial fibrosis, and to some extent to myocardial systolic dysfunction attributable to the shift of calcium from the ER to the mitochondria and to the decrease in ER calcium content. However, SERCA2a downregulation remains a prerequisite for the major LV remodeling seen in systolic HF.


Assuntos
Cálcio/fisiologia , Insuficiência Cardíaca Diastólica/fisiopatologia , Insuficiência Cardíaca Sistólica/fisiopatologia , Proteínas de Membrana/fisiologia , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Retículo Sarcoplasmático/fisiologia , Adenoviridae/genética , Animais , Apoptose/fisiologia , Regulação da Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Homeostase , Masculino , Modelos Animais , Ratos , Ratos Sprague-Dawley , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Canal de Ânion 1 Dependente de Voltagem/fisiologia
17.
Biochim Biophys Acta ; 1828(4): 1284-92, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23313453

RESUMO

The voltage-dependent anion channel (VDAC) serves as the major pore for metabolites and electrolytes in the outer mitochondrial membrane. To refine our understanding of ion permeation through this channel we performed an extensive Brownian (BD) and molecular dynamics (MD) study on the mouse VDAC isoform 1 wild-type and mutants (K20E, D30K, K61E, E158K and K252E). The selectivity and the conductance of the wild-type and of the variant channels computed from the BD trajectories are in agreement with experimental data. The calculated selectivity is shown to be very sensitive to slight conformational changes which may have some bearing on the variability of the selectivity values measured on the VDAC open state. The MD and BD free energy profiles of the ion permeation suggest that the pore region comprising the N-terminal helix and the barrel band encircling it predominantly controls the ion transport across the channel. The overall 12µs BD and 0.9µs MD trajectories of the mouse VDAC isoform 1 wild-type and mutants feature no distinct pathways for ion diffusion and no long-lived ion-protein interactions. The dependence of ion distribution in the wild-type channel with the salt concentration can be explained by an ionic screening of the permanent charges of the protein arising from the pore. Altogether these results bolster the role of electrostatic features of the pore as the main determinant of VDAC selectivity towards inorganic anions.


Assuntos
Canais de Ânion Dependentes de Voltagem/química , Canais de Ânion Dependentes de Voltagem/fisiologia , Animais , Condutividade Elétrica , Camundongos , Modelos Moleculares , Simulação de Dinâmica Molecular , Cloreto de Potássio/farmacologia , Estrutura Terciária de Proteína , Eletricidade Estática , Canal de Ânion 1 Dependente de Voltagem/química , Canal de Ânion 1 Dependente de Voltagem/fisiologia
18.
Curr Med Chem ; 19(5): 714-35, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22204343

RESUMO

Found at the outer mitochondrial membrane, the voltage-dependent anion channel, VDAC, assumes a crucial position in the cell, serving as the main interface between mitochondrial and cellular metabolisms by mediating transport of ions and metabolites. VDAC thus functions as a gatekeeper, controlling cross-talk between mitochondria and the rest of the cell. Moreover, its location at the boundary between the mitochondria and the cytosol enables VDAC to interact with proteins that mediate and regulate the integration of mitochondrial functions with other cellular activities. Here, we review current knowledge related to the roles played by VDAC in the regulation of cell life and cell death, with relation to cancer. The current concepts of altered metabolism in cancer cells are presented with specific emphasis on mitochondrial, more specifically VDAC1-bound hexokinase (HK), facilitating and promoting the high glycolytic tumor phenotype. In this respect, the up-regulation of HK expression in tumor cells and its binding to VDAC provide both a metabolic benefit and apoptosis-suppressive capacity that offers the cell a growth advantage and increases its resistance to chemotherapy. VDAC has also been recognized as a key protein in mitochondria-mediated apoptosis since it is the proposed target for the pro- and antiapoptotic Bcl-2-family of proteins, as well as due to its function in the release of apoptotic proteins located in the inter-membranal space. These and other functions point to VDAC1 as being a rational target for the development of a new generation of therapeutics.


Assuntos
Neoplasias/tratamento farmacológico , Canal de Ânion 1 Dependente de Voltagem/efeitos dos fármacos , Proteínas Reguladoras de Apoptose , Sobrevivência Celular , Hexoquinase/metabolismo , Humanos , Proteínas Mitocondriais/fisiologia , Terapia de Alvo Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Canal de Ânion 1 Dependente de Voltagem/antagonistas & inibidores , Canal de Ânion 1 Dependente de Voltagem/fisiologia
19.
J Neurochem ; 119(5): 1137-50, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21951169

RESUMO

Mitochondrial outer membrane Bax oligomers are critical for cytochrome c release, but the role of resident mitochondrial proteins in this process remains unclear. Membrane-associated Bax has primarily been studied using 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) as the solubilizing agent, as it does not induce conformational artifacts, although recent evidence indicates it may have other artifactual effects. The objective of this study was to investigate digitonin as an alternative detergent to assess Bax oligomeric state, and possible interaction with voltage-dependent anion channel (VDAC)1 in cerebellar granule neurons. VDAC1 co-immunoprecipitated with Bax in digitonin extracts from healthy and apoptotic neurons. Two-dimensional blue native-SDS-PAGE revealed five Bax and VDAC1 oligomers having similar masses from 120 to 500 kDa. The levels of two VDAC1 oligomers in Bax 1D1 immunodepleted extracts negatively correlated with levels of co-precipitated VDAC1, indicating the co-precipitated VDAC1 was derived from these oligomers. Immunodepletion with the 6A7 antibody modestly reduced the levels of Bax oligomers from apoptotic but not healthy neurons. A sixth 170 kDa oligomer containing exclusively 6A7 Bax and no VDAC1 was identified after apoptosis induction. CHAPS failed to solubilize VDAC1, and additionally yielded no distinct oligomers. We conclude that digitonin is a potentially useful detergent preserving Bax-VDAC1 interactions that may be disrupted with CHAPS.


Assuntos
Córtex Cerebelar/química , Grânulos Citoplasmáticos/química , Digitonina/farmacologia , Neurônios/química , Canal de Ânion 1 Dependente de Voltagem/química , Proteína X Associada a bcl-2/química , Animais , Animais Recém-Nascidos , Córtex Cerebelar/citologia , Córtex Cerebelar/metabolismo , Ácidos Cólicos/farmacologia , Grânulos Citoplasmáticos/metabolismo , Neurônios/classificação , Neurônios/metabolismo , Cultura Primária de Células , Ratos , Ratos Wistar , Solubilidade , Canal de Ânion 1 Dependente de Voltagem/fisiologia , Proteína X Associada a bcl-2/fisiologia
20.
Am J Physiol Regul Integr Comp Physiol ; 300(6): R1311-5, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21389333

RESUMO

The mitochondrial content of skeletal muscles is proportional to activity level, with the assumption that intrinsic mitochondrial function is the same in all muscles. This may not hold true for all muscles. For example, the diaphragm is a constantly active muscle; it is possible that its mitochondria are intrinsically different compared with other muscles. This study tested the hypothesis that mitochondrial respiration rates are greater in the diaphragm compared with triceps surae (TS, a limb muscle). We isolated mitochondria from diaphragm and TS of adult male Sprague Dawley rats. Mitochondrial respiration was measured by polarography. The contents of respiratory complexes, uncoupling proteins 1, 2, and 3 (UCP1, UCP2, and UCP3), and voltage-dependent anion channel 1 (VDAC1) were determined by immunoblotting. Complex IV activity was measured by spectrophotometry. Mitochondrial respiration states 3 (substrate and ADP driven) and 5 (uncoupled) were 27 ± 8% and 24 ± 10%, respectively, lower in diaphragm than in TS (P < 0.05 for both comparisons). However, the contents of respiratory complexes III, IV, and V, UCP1, and VDAC1 were higher in diaphragm mitochondria (23 ± 6, 30 ± 8, 25 ± 8, 36 ± 15, and 18 ± 8% respectively, P ≤ 0.04 for all comparisons). Complex IV activity was 64 ± 16% higher in diaphragm mitochondria (P ≤ 0.01). Mitochondrial UCP2 and UCP3 content and complex I activity were not different between TS and diaphragm. These data indicate that diaphragm mitochondria respire at lower rates, despite a higher content of respiratory complexes. The results invalidate our initial hypothesis and indicate that mitochondrial content is not the only determinant of aerobic capacity in the diaphragm. We propose that UCP1 and VDAC1 play a role in regulating diaphragm aerobic capacity.


Assuntos
Mitocôndrias Musculares/fisiologia , Músculo Esquelético/fisiologia , Consumo de Oxigênio/fisiologia , Músculos Respiratórios/fisiologia , Animais , Respiração Celular/fisiologia , Diafragma , Extremidades , Canais Iônicos/fisiologia , Masculino , Proteínas Mitocondriais/fisiologia , Modelos Animais , Ratos , Ratos Sprague-Dawley , Proteína Desacopladora 1 , Canal de Ânion 1 Dependente de Voltagem/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...