Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Health Perspect ; 131(11): 117003, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37909725

RESUMO

BACKGROUND: Mechanisms for how environmental chemicals might influence pain has received little attention. Epidemiological studies suggest that environmental factors such as pollutants might play a role in migraine prevalence. Potential targets for pollutants are the transient receptor potential (TRP) channels ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1), which on activation release pain-inducing neuropeptide calcitonin gene-related peptide (CGRP). OBJECTIVE: In this study, we aimed to examine the hypothesis that environmental pollutants via TRP channel signaling and subsequent CGRP release trigger migraine signaling and pain. METHODS: A calcium imaging-based screen of environmental chemicals was used to investigate activation of migraine pain-associated TRP channels TRPA1 and TRPV1. Based on this screen, whole-cell patch clamp and in silico docking were performed for the pesticide pentachlorophenol (PCP) as proof of concept. Subsequently, PCP-mediated release of CGRP and vasodilatory responses of cerebral arteries were investigated. Finally, we tested whether PCP could induce a TRPA1-dependent induction of cutaneous hypersensitivity in vivo in mice as a model of migraine-like pain. RESULTS: A total of 16 out of the 52 screened environmental chemicals activated TRPA1 at 10 or 100µM. None of the investigated compounds activated TRPV1. Using PCP as a model of chemical interaction with TRPA1, in silico molecular modeling suggested that PCP is stabilized in a lipid-binding pocket of TRPA1 in comparison with TRPV1. In vitro, ex vivo, and in vivo experiments showed that PCP induced calcium influx in neurons and resulted in a TRPA1-dependent CGRP release from the brainstem and dilation of cerebral arteries. In a mouse model of migraine-like pain, PCP induced a TRPA1-dependent increased pain response (Ntotal=144). DISCUSSION: Here we show that multiple environmental pollutants interact with the TRPA1-CGRP migraine pain pathway. The data provide valuable insights into how environmental chemicals can interact with neurobiology and provide a potential mechanism for putative increases in migraine prevalence over the last decades. https://doi.org/10.1289/EHP12413.


Assuntos
Poluentes Ambientais , Transtornos de Enxaqueca , Canais de Potencial de Receptor Transitório , Camundongos , Animais , Canal de Cátion TRPA1/fisiologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Cálcio/metabolismo , Xenobióticos , Canais de Potencial de Receptor Transitório/metabolismo , Transtornos de Enxaqueca/metabolismo , Dor , Poluentes Ambientais/toxicidade
2.
Mediators Inflamm ; 2021: 4736670, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34876884

RESUMO

Synovitis is the primary driving factor for the occurrence and development of knee osteoarthritis (KOA) and fibroblast-like synoviocytes (FLSs) and plays a crucial role during this process. Our previous works revealed that transient receptor potential ankyrin 1 (TRPA1) ion channels mediate the amplification of KOA synovitis. In recent years, essential oils have been proved to have blocking effect on transient receptor potential channels. Meanwhile, the therapeutic effect of Sanse Powder on KOA synovitis has been confirmed in clinical trials and basic studies; although, the mechanism remains unclear. In the present study, Sanse Powder essential oil nanoemulsion (SP-NEs) was prepared, and then chemical composition, physicochemical properties, and stability were investigated. Besides, both in MIA-induced KOA rats and in LPS-stimulated FLSs, we investigated whether SP-NES could alleviate KOA synovitis by interfering with AMP-activated protein kinase- (AMPK-) mammalian target of rapamycin (mTOR), an energy sensing pathway proved to negatively regulate the TRPA1. Our research shows that the top three substances in SP-NEs were tumerone, delta-cadinene, and Ar-tumerone, which accounted for 51.62% of the total, and should be considered as the main pharmacodynamic ingredient. Less inflammatory cell infiltration and type I collagen deposition were found in the synovial tissue of KOA rats treated with SP-NEs, as well as the downregulated expressions of interleukin (IL)-1ß, IL-18, and TRPA1. Besides, SP-NEs increased the phosphorylation level of AMPK and decreased the phosphorylation level of mTOR in the KOA model, and SP-NEs also upregulated expressions of peroxisome proliferator-activated receptor-gamma (PPARγ) and PPARγ coactivator-1α and downstream signaling molecules of AMPK-mTOR in vivo and in vitro. To conclude, a kind of Chinese herbal medicine for external use which is effective in treating synovitis of KOA was extracted and prepared into essential oil nanoemulsion with stable properties in the present study. It may alleviate synovitis in experimental KOA through the negative regulation of TRPA1 by AMPK-mTOR signaling.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Medicina Tradicional Chinesa , Óleos Voláteis/farmacologia , Osteoartrite do Joelho/tratamento farmacológico , Sinoviócitos/efeitos dos fármacos , Sinovite/tratamento farmacológico , Serina-Treonina Quinases TOR/farmacologia , Serina-Treonina Quinases TOR/fisiologia , Canal de Cátion TRPA1/fisiologia , Animais , Modelos Animais de Doenças , Emulsões , Masculino , Nanopartículas , Pós , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sinoviócitos/fisiologia
3.
Eur J Pharmacol ; 912: 174553, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34627805

RESUMO

Transient receptor potential ankyrin 1 (TRPA1) channel is a calcium permeable, non-selective cation channel, expressed in the sensory neurons and non-neuronal cells of different tissues. Initially studied for its role in pain and inflammation, TRPA1 has now functionally involved in multiple other physiological functions. TRPA1 channel has been extensively studied for modulation by pungent compounds present in the spices and herbs. In the last decade, the role of TRPA1 agonism in body weight reduction, secretion of hunger and satiety hormones, insulin secretion and thermogenesis, has unveiled the potential of the TRPA1 channel to be used as a preventive target to tackle obesity and associated comorbidities including insulin resistance in type 2 diabetes. In this review, we summarized the recent findings of TRPA1 based dietary/non-dietary modulation for its role in obesity prevention and therapeutics.


Assuntos
Produtos Biológicos/farmacologia , Moduladores de Transporte de Membrana/farmacologia , Obesidade/prevenção & controle , Canal de Cátion TRPA1/agonistas , Canal de Cátion TRPA1/fisiologia , Animais , Humanos , Canal de Cátion TRPA1/química
4.
Toxicol Appl Pharmacol ; 426: 115647, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34271065

RESUMO

Acrolein, an electrophilic α,ß-unsaturated aldehyde, is present in foods and beverages, and is a product of incomplete combustion, and thus, reaches high ppm levels in tobacco smoke and structural fires. Exposure to acrolein is linked with cardiopulmonary toxicity and cardiovascular disease risk. The hypothesis of this study is the direct effects of acrolein in isolated murine blood vessels (aorta and superior mesenteric artery, SMA) are transient receptor potential ankyrin-1 (TRPA1) dependent. Using isometric myography, isolated aorta and SMA were exposed to increasing levels of acrolein. Acrolein inhibited phenylephrine (PE)-induced contractions (approximately 90%) in aorta and SMA of male and female mice in a concentration-dependent (0.01-100 µM) manner. The major metabolite of acrolein, 3-hydroxypropylmercapturic acid (3HPMA), also relaxed PE-precontracted SMA. As the SMA was 20× more sensitive to acrolein than aorta (SMA EC50 0.8 ± 0.2 µM; aorta EC50 > 29.4 ± 4.4 µM), the mechanisms of acrolein-induced relaxation were studied in SMA. The potency of acrolein-induced relaxation was inhibited significantly by: 1) mechanically-impaired endothelium; 2) Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME); 3) guanylyl cyclase (GC) inhibitor (ODQ); and, 4) a TRPA1 antagonist (A967079). TRPA1 positive immunofluorescence was present in the endothelium. Compared with other known TRPA1 agonists, including allyl isothiocyanate (AITC), cinnamaldehyde, crotonaldehyde, and formaldehyde, acrolein stimulated a more potent TRPA1-dependent relaxation. Acrolein, at high concentration [100 µM], induced tension oscillations (spasms) independent of TRPA1 in precontracted SMA but not in aorta. In conclusion, acrolein is vasorelaxant at low levels (physiological) yet vasotoxic at high levels (toxicological).


Assuntos
Acetilcisteína/análogos & derivados , Acroleína/farmacologia , Aorta Torácica/efeitos dos fármacos , Artéria Mesentérica Superior/efeitos dos fármacos , Canal de Cátion TRPA1/fisiologia , Acetilcisteína/sangue , Acetilcisteína/farmacologia , Acroleína/sangue , Animais , Aorta Torácica/fisiologia , Feminino , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/fisiologia , Glutationa S-Transferase pi/genética , Glutationa S-Transferase pi/fisiologia , Masculino , Artéria Mesentérica Superior/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Canal de Cátion TRPA1/genética
5.
Cells ; 10(5)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064835

RESUMO

TRPA1 (transient receptor potential ankyrin 1), the lone member of the mammalian ankyrin TRP subfamily, is a Ca2+-permeable, non-selective cation channel. TRPA1 channels are localized to the plasma membranes of various cells types, including sensory neurons and vascular endothelial cells. The channel is endogenously activated by byproducts of reactive oxygen species, such as 4-hydroxy-2-noneal, as well as aromatic, dietary molecules including allyl isothiocyanate, a derivative of mustard oil. Several studies have implicated TRPA1 as a regulator of vascular tone that acts through distinct mechanisms. First, TRPA1 on adventitial sensory nerve fibers mediates neurogenic vasodilation by stimulating the release of the vasodilator, calcitonin gene-related peptide. Second, TRPA1 is expressed in the endothelium of the cerebral vasculature, but not in other vascular beds, and its activation results in localized Ca2+ signals that drive endothelium-dependent vasodilation. Finally, TRPA1 is functionally present on brain capillary endothelial cells, where its activation orchestrates a unique biphasic propagation mechanism that dilates upstream arterioles. This response is vital for neurovascular coupling and functional hyperemia in the brain. This review provides a brief overview of the biophysical and pharmacological properties of TRPA1 and discusses the importance of the channel in vascular control and pathophysiology.


Assuntos
Regulação da Expressão Gênica , Canal de Cátion TRPA1/genética , Aldeídos/farmacologia , Animais , Calcitonina/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sistema Cardiovascular/metabolismo , Crotalus , Células Endoteliais/metabolismo , Humanos , Hipertensão , Inflamação , Isotiocianatos/farmacologia , Conformação Molecular , Mostardeira/química , Proteínas do Tecido Nervoso/metabolismo , Óleos de Plantas/química , Conformação Proteica , Domínios Proteicos , Acidente Vascular Cerebral , Canal de Cátion TRPA1/fisiologia , Canais de Potencial de Receptor Transitório/metabolismo , Vasodilatação
6.
J Pharmacol Sci ; 146(4): 200-205, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34116733

RESUMO

Gentle touch such as stroking of the skin produces a pleasant feeling, which is detected by a rare subset of sensory neurons that express Mas-related G protein-coupled receptor B4 (MrgprB4) in mice. We examined small populations of MrgprB4-positive neurons in the trigeminal ganglion and the dorsal root ganglion, and most of these were sensitive to transient receptor potential ankyrin 1 (TRPA1) agonist but not TRPV1, TRPM8, or TRPV4 agonists. Deficiency of MrgprB4 did not affect noxious pain or itch behaviors in the hairless plantar and hairy cheek. Although behavior related to acetone-induced cold sensing in the hind paw was not changed, unpleasant sensory behaviors in response to acetone application or sucrose splash to the cheek were significantly enhanced in Mrgprb4-knockout mice as well as in TRPA1-knockout mice. These results suggest that MrgprB4 in the trigeminal neurons produces pleasant sensations in cooperation with TRPA1, rather than noxious or cold sensations. Pleasant sensations may modulate unpleasant sensations on the cheek via MrgprB4.


Assuntos
Expressão Gênica/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Sensação/genética , Sensação/fisiologia , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/fisiologia , Gânglio Trigeminal/citologia , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenômenos Fisiológicos da Pele/genética , Canal de Cátion TRPA1/metabolismo
7.
Physiol Res ; 70(3): 363-381, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33982589

RESUMO

The discovery of the role of the transient receptor potential ankyrin 1 (TRPA1) channel as a polymodal detector of cold and pain-producing stimuli almost two decades ago catalyzed the consequent identification of various vertebrate and invertebrate orthologues. In different species, the role of TRPA1 has been implicated in numerous physiological functions, indicating that the molecular structure of the channel exhibits evolutionary flexibility. Until very recently, information about the critical elements of the temperature-sensing molecular machinery of thermosensitive ion channels such as TRPA1 had lagged far behind information obtained from mutational and functional analysis. Current developments in single-particle cryo-electron microscopy are revealing precisely how the thermosensitive channels operate, how they might be targeted with drugs, and at which sites they can be critically regulated by membrane lipids. This means that it is now possible to resolve a huge number of very important pharmacological, biophysical and physiological questions in a way we have never had before. In this review, we aim at providing some of the recent knowledge on the molecular mechanisms underlying the temperature sensitivity of TRPA1. We also demonstrate how the search for differences in temperature and chemical sensitivity between human and mouse TRPA1 orthologues can be a useful approach to identifying important domains with a key role in channel activation.


Assuntos
Anquirinas/genética , Canal de Cátion TRPA1/genética , Sensação Térmica/genética , Animais , Anquirinas/fisiologia , Temperatura Baixa , Temperatura Alta , Humanos , Camundongos , Canal de Cátion TRPA1/fisiologia , Sensação Térmica/fisiologia
8.
J Invest Dermatol ; 141(10): 2338-2343, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34023128

RESUMO

Periostin, an extracellular matrix and matricellular protein, binds to several types of integrins that transduce its signals. Its function in allergic inflammation is the establishment of sustained chronic inflammation through an amplification of T helper type 2‒immune responses. In addition, recent studies have shown a significant role of periostin in itch sensation through direct integrin-mediated stimulation of nerve fibers and interaction with immune and nonimmune cells (e.g., macrophages, eosinophils, basophils, and keratinocytes). The objective of this review is to describe the role of periostin in itch induction in human and animal models and its expression in human pruritic conditions.


Assuntos
Moléculas de Adesão Celular/fisiologia , Prurido/etiologia , Animais , Humanos , Integrinas/fisiologia , Peptídeo Natriurético Encefálico/fisiologia , Sensação , Canal de Cátion TRPA1/fisiologia
9.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806052

RESUMO

In addition to the sense of taste and olfaction, chemesthesis, the sensation of irritation, pungency, cooling, warmth, or burning elicited by spices and herbs, plays a central role in food consumption. Many plant-derived molecules demonstrate their chemesthetic properties via the opening of transient receptor potential ankyrin 1 (TRPA1) and transient receptor potential vanilloid 1 (TRPV1) channels. TRPA1 and TRPV1 are structurally related thermosensitive cation channels and are often co-expressed in sensory nerve endings. TRPA1 and TRPV1 can also indirectly influence some, but not all, primary taste qualities via the release of substance P and calcitonin gene-related peptide (CGRP) from trigeminal neurons and their subsequent effects on CGRP receptor expressed in Type III taste receptor cells. Here, we will review the effect of some chemesthetic agonists of TRPA1 and TRPV1 and their influence on bitter, sour, and salt taste qualities.


Assuntos
Canal de Cátion TRPA1/fisiologia , Canais de Cátion TRPV/fisiologia , Paladar , Animais , Peptídeo Relacionado com Gene de Calcitonina/química , Capsaicina/farmacologia , Cátions , Humanos , Camundongos , Neurônios/metabolismo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Polimorfismo de Nucleotídeo Único , Ratos , República da Coreia , Células Receptoras Sensoriais/metabolismo , Especiarias , Substância P/metabolismo , Canal de Cátion TRPA1/química , Canais de Cátion TRPV/química , Papilas Gustativas/metabolismo , Nervo Trigêmeo/metabolismo
10.
Cancer Res ; 81(12): 3387-3401, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33771895

RESUMO

Although macrophages (MΦ) are known to play a central role in neuropathic pain, their contribution to cancer pain has not been established. Here we report that depletion of sciatic nerve resident MΦs (rMΦ) in mice attenuates mechanical/cold hypersensitivity and spontaneous pain evoked by intraplantar injection of melanoma or lung carcinoma cells. MΦ-colony stimulating factor (M-CSF) was upregulated in the sciatic nerve trunk and mediated cancer-evoked pain via rMΦ expansion, transient receptor potential ankyrin 1 (TRPA1) activation, and oxidative stress. Targeted deletion of Trpa1 revealed a key role for Schwann cell TRPA1 in sciatic nerve rMΦ expansion and pain-like behaviors. Depletion of rMΦs in a medial portion of the sciatic nerve prevented pain-like behaviors. Collectively, we identified a feed-forward pathway involving M-CSF, rMΦ, oxidative stress, and Schwann cell TRPA1 that operates throughout the nerve trunk to signal cancer-evoked pain. SIGNIFICANCE: Schwann cell TRPA1 sustains cancer pain through release of M-CSF and oxidative stress, which promote the expansion and the proalgesic actions of intraneural macrophages. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/12/3387/F1.large.jpg.


Assuntos
Dor do Câncer/patologia , Hiperalgesia/patologia , Macrófagos/imunologia , Melanoma Experimental/complicações , Nervos Periféricos/imunologia , Células de Schwann/imunologia , Canal de Cátion TRPA1/fisiologia , Animais , Dor do Câncer/etiologia , Dor do Câncer/metabolismo , Feminino , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Neoplasias Pulmonares/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
11.
Life Sci ; 266: 118906, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33338502

RESUMO

AIMS: The aim of this study was to investigate the role of TRPA1 in the pathogenesis of AD. MAIN METHODS: The experimental atopic dermatitis (AD)-like skin lesions were established using 2,4-dinitrochlorobenzene (DNCB). Mice were divided into three groups: TRPA1-/- and WT groups were treated with DNCB dissolved in a 3:1 mixture of acetone and olive oil; the negative control group was treated with 3:1 mixture of acetone and olive oil without DNCB. The treatment lasted for 21 days, after which the animals were sacrificed and their blood, ears and dorsal skin tissue samples were collected for analysis. KEY FINDINGS: Lower dermatitis score, ear thickness, pruritus score, and epidermal hyperplasia were observed in mice in TRPA1-/- mice compared to the WT group. Besides, lower dermal mast cell infiltration, proinflammatory cytokines, Th2 cytokines and the infiltration of macrophages were observed in the TRPA1-/- mice compared to the WT group. Furthermore, we demonstrated that TRPA1 antagonist HC-030031 could alleviate AD-like symptoms and reduce the degree of epidermal hyperplasia in mice. SIGNIFICANCE: TRPA1 has a crucial role during the AD pathogenesis in mice, thus may be used as a potential new target for treating patients with chronic skin inflammatory disease.


Assuntos
Dermatite Atópica/complicações , Inflamação/prevenção & controle , Macrófagos/imunologia , Mastócitos/imunologia , Prurido/prevenção & controle , Canal de Cátion TRPA1/fisiologia , Acetanilidas/farmacologia , Animais , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/patologia , Dinitroclorobenzeno/toxicidade , Inflamação/etiologia , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Prurido/etiologia , Prurido/patologia , Purinas/farmacologia , Canal de Cátion TRPA1/antagonistas & inibidores
12.
J Neurophysiol ; 124(5): 1388-1398, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32965166

RESUMO

Vagal afferent neurons abundantly express excitatory transient receptor potential (TRP) channels, which strongly influence afferent signaling. Cannabinoids have been identified as direct agonists of TRP channels, including TRPA1 and TRPV1, suggesting that exogenous cannabinoids may influence vagal signaling via TRP channel activation. The diverse therapeutic effects of electrical vagus nerve stimulation also result from administration of the nonpsychotropic cannabinoid, cannabidiol (CBD); however, the direct effects of CBD on vagal afferent signaling remain unknown. We investigated actions of CBD on vagal afferent neurons, using calcium imaging and electrophysiology. CBD produced strong excitatory effects in neurons expressing TRPA1. CBD responses were prevented by removal of bath calcium, ruthenium red, and the TRPA1 antagonist A967079, but not the TRPV1 antagonist SB366791, suggesting an essential role for TRPA1. These pharmacological experiments were confirmed using genetic knockouts where TRPA1 KO mice lacked CBD responses, whereas TRPV1 knockout (KO) mice exhibited CBD-induced activation. We also characterized CBD-provoked inward currents at resting potentials in vagal afferents expressing TRPA1 that were absent in TRPA1 KO mice, but persisted in TRPV1 KO mice. CBD also inhibited voltage-activated sodium conductances in A-fiber, but not in C-fiber afferents. To simulate adaptation, resulting from chronic cannabis use, we administered cannabis extract vapor daily for 3 wk. Cannabis exposure reduced the magnitude of CBD responses, likely due to a loss of TRPA1 signaling. Together, these findings detail a novel excitatory action of CBD at vagal afferent neurons, which requires TRPA1 and may contribute to the vagal mimetic effects of CBD and adaptation following chronic cannabis use.NEW & NOTEWORTHY CBD usage has increased with its legalization. The clinical efficacy of CBD has been demonstrated for conditions including some forms of epilepsy, depression, and anxiety that are also treatable by vagus nerve stimulation. We found CBD exhibited direct excitatory effects on vagal afferent neurons that required TRPA1, were augmented by TRPV1, and attenuated following chronic cannabis vapor exposure. These effects may contribute to vagal mimetic effects of CBD and adaptation after chronic cannabis use.


Assuntos
Canabidiol/administração & dosagem , Canal de Cátion TRPA1/fisiologia , Canais de Cátion TRPV/fisiologia , Nervo Vago/fisiologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Masculino , Camundongos Knockout , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/fisiologia , Imagem Óptica , Ratos Sprague-Dawley , Canal de Cátion TRPA1/genética , Canais de Cátion TRPV/genética , Nervo Vago/efeitos dos fármacos
13.
Sci Immunol ; 5(50)2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859683

RESUMO

Adult mammalian wounds, with rare exception, heal with fibrotic scars that severely disrupt tissue architecture and function. Regenerative medicine seeks methods to avoid scar formation and restore the original tissue structures. We show in three adult mouse models that pharmacologic activation of the nociceptor TRPA1 on cutaneous sensory neurons reduces scar formation and can also promote tissue regeneration. Local activation of TRPA1 induces tissue regeneration on distant untreated areas of injury, demonstrating a systemic effect. Activated TRPA1 stimulates local production of interleukin-23 (IL-23) by dermal dendritic cells, leading to activation of circulating dermal IL-17-producing γδ T cells. Genetic ablation of TRPA1, IL-23, dermal dendritic cells, or γδ T cells prevents TRPA1-mediated tissue regeneration. These results reveal a cutaneous neuroimmune-regeneration cascade triggered by topical TRPA1 activators that promotes adult mammalian tissue regeneration, presenting a new avenue for research and development of therapies for wounds and scars.


Assuntos
Regeneração , Fenômenos Fisiológicos da Pele , Canal de Cátion TRPA1/fisiologia , Adjuvantes Imunológicos , Animais , Cicatriz/induzido quimicamente , Cicatriz/imunologia , Feminino , Imiquimode , Inflamação/induzido quimicamente , Inflamação/imunologia , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos SCID , Camundongos Transgênicos , Pele/imunologia , Canal de Cátion TRPA1/imunologia , Cicatrização
14.
Cell Death Dis ; 11(8): 633, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32801314

RESUMO

Oxidative stress is implicated in retinal cell injury associated with glaucoma and other retinal diseases. However, the mechanism by which oxidative stress leads to retinal damage is not completely understood. Transient receptor potential ankyrin 1 (TRPA1) is a redox-sensitive channel that, by amplifying the oxidative stress signal, promotes inflammation and tissue injury. Here, we investigated the role of TRPA1 in retinal damage evoked by ischemia (1 hour) and reperfusion (I/R) in mice. In wild-type mice, retinal cell numbers and thickness were reduced at both day-2 and day-7 after I/R. By contrast, mice with genetic deletion of TRPA1 were protected from the damage seen in their wild-type littermates. Daily instillation of eye drops containing two different TRPA1 antagonists, an oxidative stress scavenger, or a NADPH oxidase-1 inhibitor also protected the retinas of C57BL/6J mice exposed to I/R. Mice with genetic deletion of the proinflammatory TRP channels, vanilloid 1 (TRPV1) or vanilloid 4 (TRPV4), were not protected from I/R damage. Surprisingly, genetic deletion or pharmacological blockade of TRPA1 also attenuated the increase in the number of infiltrating macrophages and in the levels of the oxidative stress biomarker, 4-hydroxynonenal, and of the apoptosis biomarker, active caspase-3, evoked by I/R. These findings suggest that TRPA1 mediates the oxidative stress burden and inflammation that result in murine retinal cell death. We also found that TRPA1 (both mRNA and protein) is expressed by human retinal cells. Thus, it is possible that inhibition of a TRPA1-dependent pathway could also attenuate glaucoma-related retinal damage.


Assuntos
Traumatismo por Reperfusão/metabolismo , Retina/metabolismo , Canal de Cátion TRPA1/metabolismo , Animais , Morte Celular , Inflamação , Isquemia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidase 1/metabolismo , Estresse Oxidativo/fisiologia , Reperfusão , Traumatismo por Reperfusão/fisiopatologia , Retina/fisiologia , Doenças Retinianas , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/fisiologia , Canais de Cátion TRPV/metabolismo , Canais de Potencial de Receptor Transitório/genética
15.
Curr Biol ; 30(17): 3378-3396.e7, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32679097

RESUMO

Hypoxia sensors are essential for regulating local oxygen (O2) homeostasis within the body. This is especially pertinent within the CNS, which is particularly vulnerable to O2 deprivation due to high energetic demand. Here, we reveal hypoxia-monitoring function exerted by astrocytes through an O2-regulated protein trafficking mechanism within the CNS. Strikingly, cultured mouse astrocytes isolated from the parafacial respiratory group (pFRG) and retrotrapezoid nucleus (RTN) region are capable of rapidly responding to moderate hypoxia via the sensor cation channel transient receptor potential (TRP) A1 but, unlike multimodal sensory neurons, are inert to hyperoxia and other TRPA1 activators (carbon dioxide, electrophiles, and oxidants) in normoxia. Mechanistically, O2 suppresses TRPA1 channel activity by protein internalization via O2-dependent proline hydroxylation and subsequent ubiquitination by an E3 ubiquitin ligase, NEDD4-1 (neural precursor cell-expressed developmentally down-regulated protein 4). Hypoxia inhibits this process and instantly accumulates TRPA1 proteins at the plasma membrane, inducing TRPA1-mediated Ca2+ influx that triggers ATP release from pFRG/RTN astrocytes, potentiating respiratory center activity. Furthermore, astrocyte-specific Trpa1 disruption in a mouse brainstem-spinal cord preparation impedes the amplitude augmentation of the central autonomic respiratory output during hypoxia. Thus, reversible coupling of the TRPA1 channels with O2-dependent protein translocation allows astrocytes to act as acute hypoxia sensors in the medullary respiratory center.


Assuntos
Astrócitos/patologia , Neurônios Dopaminérgicos/patologia , Endocitose , Hipóxia/fisiopatologia , Oxigênio/metabolismo , Canal de Cátion TRPA1/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Astrócitos/metabolismo , Neurônios Dopaminérgicos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Transporte Proteico
16.
Int J Mol Sci ; 21(10)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443485

RESUMO

The special issue "Ion Channels of Nociception" contains 13 articles published by 73 authors from different countries united by the main focusing on the peripheral mechanisms of pain. The content covers the mechanisms of neuropathic, inflammatory, and dental pain as well as pain in migraine and diabetes, nociceptive roles of P2X3, ASIC, Piezo and TRP channels, pain control through GPCRs and pharmacological agents and non-pharmacological treatment with electroacupuncture.


Assuntos
Canais Iônicos/fisiologia , Nociceptividade , Animais , Humanos , Transtornos de Enxaqueca/metabolismo , Transtornos de Enxaqueca/fisiopatologia , Dor/metabolismo , Dor/fisiopatologia , Manejo da Dor , Canal de Cátion TRPA1/fisiologia , Canais de Cátion TRPV/fisiologia
17.
Physiol Res ; 69(Suppl 1): S35-S42, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32228010

RESUMO

Cough is one of the most important defensive reflexes. However, extensive non- productive cough is a harmful mechanism leading to the damage of human airways. Cough is initiated by activation of vagal afferents in the airways. The site of their convergence is particularly the nucleus of the solitary tract (nTS). The second-order neurons terminate in the pons, medulla and spinal cord and there is also the cortical and subcortical control of coughing.Upper airway cough syndrome (UACS) - previously postnasal drip syndrome - is one of the most common causes of chronic cough together with asthma and gastroesophageal reflux. The main mechanisms leading to cough in patients with nasal and sinus diseases are postnasal drip, direct irritation of nasal mucosa, inflammation in the lower airways, upper airway inflammation and the cough reflex sensitization. The cough demonstrated by UACS patients is probably due to hypersensitivity of the upper airways sensory nerve or lower airways sensory nerve, or a combination of both. Further studies are needed to clarify this mechanism.


Assuntos
Tosse/fisiopatologia , Mucosa Nasal/fisiopatologia , Células Receptoras Sensoriais/fisiologia , Nervo Vago/fisiopatologia , Animais , Capsaicina/efeitos adversos , Doença Crônica , Tosse/induzido quimicamente , Humanos , Mucosa Nasal/efeitos dos fármacos , Células Receptoras Sensoriais/efeitos dos fármacos , Síndrome , Canal de Cátion TRPA1/agonistas , Canal de Cátion TRPA1/fisiologia , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/fisiologia , Traqueia/efeitos dos fármacos , Traqueia/fisiopatologia , Nervo Vago/efeitos dos fármacos
18.
Artigo em Inglês | MEDLINE | ID: mdl-32250774

RESUMO

Ion channels underlie electrical excitability in cells and are essential for a variety of functions, most notably neuromuscular and sensory activity. They are also validated targets for a preponderance of approved anthelmintic compounds. Transient receptor potential (TRP) channels constitute an ion channel superfamily whose members play important roles in sensory signaling, regulation of ion homeostasis, organellar trafficking, and other key cellular and organismal activities. Unlike most other ion channels, TRP channels are often polymodal, gated by a variety of mechanisms. Furthermore, TRP channels fall into several classes or subtypes based on sequence and structure. Until recently, there had been very little investigation of the properties and functions of TRP channels from parasitic helminths, including schistosomes, but that situation has changed in the past few years. Indeed, it is now clear that at least some schistosome TRP channels exhibit unusual pharmacological properties, and, intriguingly, both a mammalian and a schistosome TRP channel are activated by praziquantel, the current antischistosomal drug of choice. With the latest release of the Schistosoma mansoni genome database, several changes in predicted TRP channel sequences appeared, some of which were significant. This review updates and reassesses the TRP channel repertoire in S. mansoni, examines recent findings regarding these potential therapeutic targets, and provides guideposts for some of the physiological functions that may be mediated by these channels in schistosomes.


Assuntos
Schistosoma/fisiologia , Canais de Potencial de Receptor Transitório/fisiologia , Animais , Anti-Helmínticos/farmacologia , Genes de Helmintos , Genoma Helmíntico , Humanos , Canais Iônicos/efeitos dos fármacos , Canais Iônicos/genética , Canais Iônicos/fisiologia , Filogenia , Praziquantel/farmacologia , Schistosoma/efeitos dos fármacos , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/fisiologia , Esquistossomose/tratamento farmacológico , Canal de Cátion TRPA1/efeitos dos fármacos , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/fisiologia , Canais de Cátion TRPV/efeitos dos fármacos , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/fisiologia , Canais de Potencial de Receptor Transitório/efeitos dos fármacos , Canais de Potencial de Receptor Transitório/genética
19.
Mol Neurobiol ; 57(5): 2420-2435, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32095993

RESUMO

Central neuropathic pain is a common untreated symptom in progressive multiple sclerosis (PMS) and is associated with poor quality of life and interference with patients' daily activities. The neuroinflammation process and mitochondrial dysfunction in the PMS lesions generate reactive species. The transient potential receptor ankyrin 1 (TRPA1) has been identified as one of the major mechanisms that contribute to neuropathic pain signaling and can be activated by reactive compounds. Thus, the goal of our study was to evaluate the role of spinal TRPA1 in the central neuropathic pain observed in a PMS model in mice. We used C57BL/6 female mice (20-30 g), and the PMS model was induced by the experimental autoimmune encephalomyelitis (EAE) using mouse myelin oligodendrocyte glycoprotein (MOG35-55) antigen and CFA (complete Freund's adjuvant). Mice developed progressive clinical score, with motor impairment observed after 15 days of induction. This model induced mechanical and cold allodynia and heat hyperalgesia which were measured up to 14 days after induction. The hypersensitivity observed was reduced by the administration of selective TRPA1 antagonists (HC-030031 and A-967079, via intrathecal and intragastric), antioxidants (α-lipoic acid and apocynin, via intrathecal and intragastric), and TRPA1 antisense oligonucleotide (via intrathecal). We also observed an increase in TRPA1 mRNA levels, NADPH oxidase activity, and 4-hydroxinonenal (a TRPA1 agonist) levels in spinal cord samples of PMS-EAE induced animals. In conclusion, these results support the hypothesis of the TRPA1 receptor involvement in nociception observed in a PMS-EAE model in mice.


Assuntos
Encefalomielite Autoimune Experimental/complicações , Hiperalgesia/fisiopatologia , Proteínas do Tecido Nervoso/fisiologia , Neuralgia/fisiopatologia , Nociceptividade/fisiologia , Medula Espinal/fisiopatologia , Canal de Cátion TRPA1/fisiologia , Acetanilidas/farmacologia , Acetanilidas/uso terapêutico , Acetofenonas/farmacologia , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Antipirina/análogos & derivados , Antipirina/farmacologia , Antipirina/uso terapêutico , Dipirona/farmacologia , Dipirona/uso terapêutico , Encefalomielite Autoimune Experimental/fisiopatologia , Feminino , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito/imunologia , Glicoproteína Mielina-Oligodendrócito/toxicidade , NADPH Oxidases/antagonistas & inibidores , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Nociceptividade/efeitos dos fármacos , Oligonucleotídeos Antissenso/farmacologia , Estresse Oxidativo , Oximas/farmacologia , Oximas/uso terapêutico , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/toxicidade , Pregabalina/farmacologia , Pregabalina/uso terapêutico , Purinas/farmacologia , Purinas/uso terapêutico , Canal de Cátion TRPA1/antagonistas & inibidores , Canal de Cátion TRPA1/biossíntese , Canal de Cátion TRPA1/genética , Ácido Tióctico/farmacologia , Regulação para Cima/efeitos dos fármacos
20.
Yakugaku Zasshi ; 140(1): 1-6, 2020.
Artigo em Japonês | MEDLINE | ID: mdl-31902877

RESUMO

Dysesthesia is an unpleasant abnormal sensation, often accompanied by pain, paresthesia (abnormal sensation), and numbness (decrease or loss of sensation). Dysesthesia has been associated with various conditions, although its underlying mechanisms are largely unknown. This study assessed the roles of transient receptor potential ankyrin 1 (TRPA1) in dysesthesia by utilizing three animal models of dysesthesia characterized by reductions in blood flow to the skin: a transient hindlimb ischemia/reperfusion model, characterized by spontaneous licking and tactile hypoesthesia of the ischemic hindpaw; a streptozotocin-induced diabetic neuropathy model in mice, characterized by cold hypersensitivity, which is likely parallel to the reduced skin blood flow of the hindpaw; and a hindlimb ischemia model. TRPA1 inhibition or deficiency blocked spontaneous licking in the transient hindlimb ischemia/reperfusion model and cold hypersensitivity in the diabetic mouse model mice. Consistent with these results, the nocifensive behaviors induced by intraplantar injection of a TRPA1 agonist were enhanced in the diabetic neuropathy and hindlimb ischemia models. Hypoxia enhanced H2O2-induced TRPA1 responses in human TRPA1-expressing cells and cultured mouse dorsal root ganglion neurons, with this hypoxia-induced TRPA1 sensitization to H2O2 being associated with hypoxia-induced inhibition of the hydroxylation of prolyl hydroxylases. These results suggest that dysesthesia following blood flow reduction is caused by the activation of TRPA1 sensitized by hypoxia and that hypoxia-induced TRPA1 sensitization plays a pivotal role in painful dysesthesia induced by peripheral blood flow reduction.


Assuntos
Parestesia/genética , Canal de Cátion TRPA1/fisiologia , Animais , Neuropatias Diabéticas , Modelos Animais de Doenças , Humanos , Hipóxia , Parestesia/etiologia , Parestesia/fisiopatologia , Fluxo Sanguíneo Regional , Pele/irrigação sanguínea , Canal de Cátion TRPA1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...